
Learning Linear Causal Representations
Using Higher-Order Cumulants

a thesis presented
by

Paula Leyes Carreno
to

The Department of Computer Science

in partial fulfillment of the requirements
for the degree of
Bachelor of Arts

in the joint subjects of
Computer Science and Mathematics

Harvard University
Cambridge, Massachusetts

April 2024

© 2024 - Paula Leyes Carreno
All rights reserved.

Thesis advisor: Anna Seigal Paula Leyes Carreno

Learning Linear Causal Representations
Using Higher-Order Cumulants

Abstract

Causal representation learning seeks to extract a representation of data that

captures causal relationships, allowing for better understanding, prediction, and

manipulation of the underlying processes. Such a representation is identifiable if the

transformation from the latent representation to the observed variables and the

latent model are both unique. In this thesis, we study the identifiability of causal

representation learning in the linear setting. We prove that one perfect intervention

per latent variable is both sufficient and necessary for identifiability given access to

finitely many cumulants of the observed variables. We further show that one soft

intervention per latent variable does not suffice for identifiability. The proof for the

sufficiency of perfect interventions is constructive. We implement our algorithm for

causal representation learning and verify its performance on synthetic data.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Our contributions . 2

2 Background 4
2.1 Preliminaries . 4
2.2 Related work . 12

3 Theoretical Results 16
3.1 Setup . 16
3.2 Recovery of model parameters . 22
3.3 Recovery of G . 34

4 Computational Results 38
4.1 Population cumulants . 39
4.2 Sample cumulants . 41

5 Conclusion and Future Work 48

A Adapted Algorithms 50

B Computational Complexity 56

References 68

iv

Listing of figures

2.1.1 Fibers of an order-3 tensor . 5
2.1.2 Slices of an order-3 tensor . 5

4.1.1 Parameter estimation error from population cumulants 40
4.2.1 Parameter estimation error from sample cumulants 42
4.2.2 Parameter vs population cumulants estimation 43
4.2.3 Error in estimating the mixing matrix from sample cumulants 44
4.2.4 Parameter estimation error from sample cumulants with nonlinearity

in the transformation from latent to observed variables 46
4.2.5 Error in estimating the mixing matrix from sample cumulants with

nonlinearity in the latent space . 47

v

List of symbols

Symbol Meaning/Description
G Transitive closure of the graph G

M:l = [M]l lth column of matrix M

Ml: = ml lth row of matrix M

MT transpose of matrix M

In Identity matrix of size n× n

0m×n m× n zero matrix

diag(T) m×m diagonal matrix of diagonal m×m×m tensor T ,
satisfying diag(T)ii = Tiii

[n] Integer set {0, 1, . . . , n− 1}

σ
Given a permutation matrix P , we define
its associated permutation σ as σ(i) = j ⇔ Pij = 1

Sn unit n-sphere: {x ∈ Rn+1 | ∥x∥ = 1}

≈ Approximately equal

vi

Acknowledgments

I would like to express my sincere gratitude to my thesis advisor Professor Anna
Seigal, for her unwavering support and patience throughout this project and for
being a wonderful mentor during my last two years at Harvard.

I am also deeply indebted to Doctor Chiara Meroni. I could have not carried out
this research project without her guidance and advice, and I feel very fortunate to
have had the opportunity to collaborate with and learn from her.

I would also like to thank Professor Weiwei Pan and Professor David
Alvarez-Melis for generously agreeing to act as readers for this thesis and for their
helpful suggestions.

Moreover, I’d like to extend my gratitude to Álvaro Ribot, Ada Wang and Aida
Maraj, for their insightful advice and feedback.

Lastly, I would like to thank my parents, for always believing in me and
supporting me throughout the years.

1

1
Introduction

1.1 Motivation

A key determinant of the performance of machine learning methods is the choice of
data representation they are applied on [5]. Modern methods like deep learning and
large language models learn high-level representations of data by themselves, which
leads to more effective and robust performance across a wide range of tasks [8]. The
representations they learn, however, do not necessarily reflect the true data
generating process, which can make it difficult to interpret and understand them.
Being able to reason about these learned representations is not only key in
diagnosing why the model may be making certain mistakes or failing to generalize
to unseen data, but also to explain model predictions to stakeholders in fields where
interpretability is crucial, such as healthcare [51]. Causal representation learning,
also referred to as causal disentanglement, aims to enhance the interpretability of

1

learned representations by simultaneously learning latent high-level representations
of data and capturing their causal structure.

A representation is identifiable if both the latent causal structure and the
transformation from the latent representation to the observed data are unique.
Identifiability is crucial to achieve meaningful and well-founded disentanglement,
and in applications such as causal discovery [28]. It is, however, impossible without
imposing structure on the data generation process or auxiliary information [26, 34].
In [48], Squires et al. study identifiability by considering observed variables that are
a linear transformation of a linear latent causal model. They show that access to
the covariance matrix of the observed variables alone is not sufficient to recover the
model and the transformation from latent to observed variables, and prove that
interventional data is needed for identifiability. We build on their work by taking a
method of moments approach [40] to the study of identifiability. We notice that,
unlike the covariance matrix, the third-order cumulant of the observed variables
exhibits a structure that renders its decomposition unique. In view of this, we
examine whether working with the third-order cumulant instead of the covariance
matrix offers advantages for identifiability, in particular regarding the quantity and
type of interventional data required. We use the terminology in [49] for
interventions: given a variable Zk, a perfect intervention at Zk removes the causal
dependencies of Zk on its parents and changes its stochasticity, and a soft
intervention modifies the magnitude of the causal dependencies of Zk on its parents
and changes its stochasticity. It is also possible to have an intervention that sets Zk

to a deterministic value, but we do not consider such case here as it is more
restrictive than the former two and overly simple for certain applications [36].

1.2 Our contributions

Our contributions are both theoretical and practical. On the theoretical front, we
show that, given finitely many cumulants of the observed variables, interventional
data is necessary for identifiability. In particular, we prove that in the setting of
perfect single-node interventions, one intervention per latent node is both sufficient

2

and in the worst case necessary for identifiability. We further show that one soft
intervention per latent node is not sufficient to recover the graph or the mixing from
latent to observed variables in the worst case.

On the practical front, we propose a method for causal disentanglement using the
third-order cumulant of the observed variables as input. The algorithm is
algebraically simpler than the one proposed in [48], presents similar sample
complexity and accuracy of recovery, and demonstrates robustness to a certain type
of misspecification of the latent model.

The subsequent chapters of the thesis are structured as follows: Chapter 2
provides some theoretical background and an overview of related work in the field.
In Chapter 3 we present our theoretical results. In Chapter 4 we apply our method
for causal disentanglement to synthetic data and analyze its performance and
robustness to model misspecification. Finally, Chapter 5 suggests some directions
for future work. The code for our computational results can be found at:
https://github.com/paulaleyes14/linear-causal-representations

3

https://github.com/paulaleyes14/linear-causal-representations

2
Background

2.1 Preliminaries

Tensors

A tensor is an element of the tensor product of N vector spaces. After fixing a basis
for each vector space, it can be represented as a multidimensional array. The order
of a tensor is the number of dimensions of such array. A vector is thus an order-1
tensor, a matrix is an order-2 tensor, an order-3 tensor has three indices, etc.

Fibers extend the concepts of rows and columns of a matrix to higher dimensions.
They are obtained by fixing all indices of a tensor but one. As an example, matrix
columns are mode-1 fibers, since they are obtained by fixing all indices of a matrix
but the first one, and matrix rows are mode-2 fibers. The fibers obtained for order-3
tensors when fixing the third index are called tube fibers. For higher-order tensors,

4

we just use the terminology of mode-k fibers. Figure 2.1.1 shows the fibers of an
order-3 tensor.

(a) Mode-1 fibers (b) Mode-2 fibers (c) Mode-3 fibers

Figure 2.1.1: Fibers of an order-3 tensor

Similarly to fibers, tensor slices are obtained by fixing all indices of a tensor but
two. They are thus two-dimensional objects. Figure 2.1.2 shows the slices of an
order-3 tensor.

(a) Frontal slices (b) Horizontal slices (c) Lateral slices

Figure 2.1.2: Slices of an order-3 tensor

Using fibers, we may flatten a tensor, that is, reshape it into a matrix. The

5

mode-n flattening of a tensor T , denoted by T(n), is a matrix whose columns are the
mode-n fibers of T . As an example, let T ∈ R3×3×3, with frontal slices:

T1 =

1 2 3

1 2 3

1 2 3

 , T2 =

4 5 6

4 5 6

4 5 6

 , T3 =

7 8 9

7 8 9

7 8 9

 . (2.1)

Then we have that

T(1) =

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

 ,

T(2) =

1 1 1 4 4 4 7 7 7

2 2 2 5 5 5 8 8 8

3 3 3 6 6 6 9 9 9

 ,

T(3) =

1 1 1 2 2 2 3 3 3

4 4 4 5 5 5 6 6 6

7 7 7 8 8 8 9 9 9

 .

(2.2)

The flattenings of a tensor can be used to multiply it by one or several matrices. We
denote the n-mode product of a tensor T ∈ RK1×K2×···×KN with a matrix
M ∈ RJ×Kn by T ×n M . The resulting tensor lives in RK1×···×Kn−1×J×Kn+1×···×KN

and can be expressed using T ’s mode-n flattening by MT(n). Given a tensor
T ∈ RK×K×···×K and a matrix M ∈ RJ×K , we let M · T denote the J × J × · · · × J

tensor resulting from multiplying T by M along every mode.
Just as with matrices, we can define what it means for higher-order tensors to be

symmetric. An order-N tensor T is said to be symmetric if all of its modes have the

6

same size and it is invariant under permutation of its indices. Mathematically, we
require that

1. T ∈ RK×K···×K ,

2. Tk1k2···kN = Tkσ(1)kσ(2)···kσ(N)
for all permutations σ on {1, 2, · · · , N}.

A tensor T ∈ RK1×K2×···×KN is said to have rank one if it can be expressed as the
outer product of N vectors:

T = v1 ⊗ v2 ⊗ · · · ⊗ vN . (2.3)

Elementwise, we have

Tk1k2···kN = (v1)k1(v2)k2 · · · (vN)kN for all 1 ≤ kn ≤ Kn. (2.4)

More generally, a tensor is said to have rank R if the minimum number of
rank-one terms we need to add to express it is R.

The CANDECOMP/PARAFAC (CP) [11, 22] decomposition of a tensor T

factorizes it into a sum of rank-one tensors. Thus, decomposing a third-order tensor
T ∈ RK1×K2×K3 using CP yields:

T ≈
R∑

r=1

ur ⊗ vr ⊗ wr, (2.5)

where ur ∈ RK1 , vr ∈ RK2 and wr ∈ RK3 . When R equals the rank of the tensor, the
decomposition is called rank decomposition.

We can group the u, v and w vectors appearing in the decomposition into
matrices:

U =
[
u1 u2 u3 · · · uR

]
, V =

[
v1 v2 v3 · · · vR

]
, W =

[
w1 w2 w3 · · · wR

]
.

(2.6)
These are called the factor matrices of the decomposition. Imposing constraints on
their form yields different versions of the CP decomposition. Of interest to us will

7

be the symmetric CP decomposition, in which U = V = W . Whenever the
decomposition of a tensor is discussed in this thesis, we will be referring specifically
to its symmetric CP decomposition.

Unlike matrices, which can be expressed in various ways as a sum of rank-one
matrices when their rank is greater than 1, higher-order tensors often have a unique
decomposition up to significantly higher ranks. We highlight the result by Robert
Jennrich, documented by Richard A. Harshman [22]:

Theorem 2.1 (Jennrich’s theorem [22]). If T =
∑R

i=1 αiv
⊗3
i with v1, . . . , vR linearly

independent, then T has rank R and its decomposition is unique up to permutation
and scaling.

An algorithm to recover the factor matrix of such a decomposition up to
permutation and scaling of columns is presented in [32]. It proceeds as follows:

Algorithm 1 Simultaneous diagonalization [32]
1: Input: T ∈ RK×K×K

2: Output: V =

 ↑ ↑ ↑
v1 v2 . . . vR

↓ ↓ ↓

 such that T =
∑R

i=1 αiv
⊗3
i

3: a, b ∼ SK−1

4: Ma ←
∑R

i=1⟨vi, a⟩αiviv
T
i

5: Mb ←
∑R

i=1⟨vi, b⟩αiviv
T
i

6: eigvalues, eigvectors ← eigendecompose(Ma(Mb)
†)

7: return eigvectors

Ma and Mb are weighted sums of the horizontal slices of T , each slice weighted by
the ith entry of a and the ith entry of b, respectively. Equivalently, Ma = V DaV

T

and Mb = V DbV
T , where Da is a diagonal matrix satisfying that (Da)ii = ⟨vi, a⟩αi,

and similarly for Db. We thus have that Ma(Mb)
† = V Da(Db)

†V †. The columns of
V are precisely the eigenvectors of this matrix, as desired.

8

Graphs and graphical models

A graph G = (V,E) is a mathematical structure consisting of a set of vertices (also
called nodes), denoted by V , and a set of pairs of vertices called edges, denoted by
E. In an undirected graph, edges are unordered pairs: (u, v) ∈ E denotes an edge
from vertex u to vertex v and viceversa. In a directed graph, they are ordered:
(u, v) ∈ E denotes an edge from vertex u to vertex v. A vertex with at least two
incoming edges is called a collider [53].

A directed graph G = (V,E) is a directed acyclic graph (DAG) if it contains no
directed cycles, that is, there does not exist a sequence of edges
(u1, v1), (u2, v2), . . . , (ut, vt) ∈ E such that vn = un+1 for all n ∈ {1, . . . , t− 1} and
vt = u1. Given two vertices u1, u2 ∈ V , we say that

1. u1 is a parent of u2, denoted by u1 ∈ pa(u2), if (u1, u2) ∈ E.

2. u1 is a child of u2, denoted by u1 ∈ ch(u2), if (u2, u1) ∈ E.

3. u1 is an ancestor of u2, denoted by u1 ∈ an(u2), if there exists a directed path
from u1 to u2 in G.

4. u1 is a descendant of u2, denoted by u1 ∈ des(u2), if there exists a directed
path from u2 to u1 in G.

5. u1 is a source vertex if pa(u1) = ∅.

6. u1 is a sink vertex if ch(u1) = ∅.

If indices suffice to identify vertices, we may replace u1 by 1 and u2 by 2 in
definitions 1-4 above, i.e., u1 ∈ pa(u2)⇔ 1 ∈ pa(2), and similarly for children,
ancestors, and descendants.

The transitive closure of a directed graph G = (V,E), is the graph G = (V,E)

satisfying that (u, v) ∈ E for all vertices u, v ∈ V such that there exists a path from
u to v in G [41].

An Erdős–Rényi model is a model for generating random undirected graphs.
There exist two variations of the model; the one relevant for this thesis is the

9

G(n, d) model. In such model, a graph is generated by considering n vertices and
including each possible edge between pairs of vertices independently with
probability d [42]. We refer to the parameter d as the density of the model.

Graphs can be used to represent relationships between entities: each vertex
represents an entity and edges encode the relationships between them. When such
representation takes the form of a directed acyclic graph, we refer to it as a DAG
model. In a probabilistic graphical model, the entities are random variables, and
edges encode conditional dependencies between them [37]. If the graph is a DAG,
the random variables represented by two sets of vertices X and Y are conditionally
independent given a third set Z if, for all x ∈ X and y ∈ Y , there is no consecutive
sequence of edges (regardless of their directions) between x and y containing no
colliders other than those in Z or with descendants in Z, and no non-collider
vertices in Z [31].

The skeleton of a graph G is the undirected graph with the same vertices and
edges as G [24]. Given a graph G = (V,E) and a set S ⊆ V , the induced subgraph of
G over S is the graph whose set of vertices is S and whose edge set consists of all
the edges in E connecting vertices in S [16]. A v-structure is a three-vertex induced
subgraph of G. A Markov equivalence class is a set of DAGs that encode the same
set of conditional independencies. Two DAGs are in the same Markov equivalence
class only if they have the same skeleton and the same v-structures [56].

Cumulants

Cumulants are a set of quantities used to describe a probability distribution. The
cumulant generating function of a random variable X ∈ R is the natural logarithm
of its moment generating function:

K(t) = logE[etX] (2.7)

The dth-order cumulant of X, denoted by κd, is the result of evaluating the dth

derivative of the cumulant generating function at 0. Alternatively, just like moments
can be obtained from the Taylor expansion of the moment generating function,

10

cumulants can be obtained from the Taylor expansion of the cumulant generating
function:

K(t) =
∞∑
d=0

κd
td

d!
(2.8)

The first-order cumulant of X is its mean, the second-order cumulant is its variance,
and the third-order cumulant equals its third-order central moment. Higher-order
cumulants are polynomial functions of the central moments [35]. This relationship
can be used to calculate cumulants if the moment generating function does not exist.

The joint cumulant generating function of a vector of random variables
X = (X1, . . . , Xn) is the natural logarithm of its joint moment generating function:

K(t) = logE[etX] = logE[et1X1+...+tnXn] (2.9)

for t = (t1, . . . , tn) ∈ Rn. Given a set of indices {i1, i2, . . . , ir} ⊆ {1, 2, . . . , n}, the
joint cumulant of Xi1 , Xi2 . . . , Xir , denoted by κr(i1, i2, . . . , ir), is defined as the
coefficient of ti1 ti2 ...tir

r!
in the Taylor series expansion of K(t):

K(t) =
∞∑
d=0

(∑
1≤i1,...,id≤n

κd(i1, . . . , id)
ti1 . . . tid

d!

)
(2.10)

Note that κr(i1, i2, . . . , ik) = κr(σ(i1), σ(i2), . . . , σ(ik)) for all permutations σ of
{i1, . . . , ir}, which matches our intuition that the joint cumulant of a set of variables
should not depend on their ordering.

The dth-order cumulant tensor of X, denoted by κd(X), is a symmetric
n× n× · · · × n (d times) tensor satisfying κd(X)i1,...,id = κd(i1, . . . , id). Whenever we
mention the dth-order cumulant of a random vector in this thesis we will be referring
to its dth-order cumulant tensor. Cumulant tensors present several interesting
properties [35]. Of interest to us will be the following:

1. Multilinearity: let X be an Rn−valued random variable, M be a m× n

matrix, and recall that we use · to denote the multiplication of a tensor by a

11

matrix along every mode. Then

κd(MX) = M · κd(X). (2.11)

2. Cumulant tensors of independent random variables are diagonal.

K-statistics are a family of formulas used to estimate cumulants from a data sample.
They are minimum-variance unbiased estimators, meaning their expected value
equals the true value of the cumulant (unbiased), and they have the lowest variance
among all unbiased estimators (minimum variance) [20].

2.2 Related work

As mentioned in Section 1.1, the goals of causal representation learning are twofold:
it aims to learn a representation of data and the causal dependencies relating the
learned features. We present previous work in the identifiability of causal
representation learning, as well as that of each of these aspects.

Identifiable representation learning

As its name indicates, the field of identifiable representation learning studies the
identifiability of latent representations from observed data. Traditionally,
identifiable representation learning has been studied within the framework of
independent component analysis (ICA). Classical ICA assumes that observed
signals are linear mixtures of independent source signals, and the goal is to separate
these sources from the observed mixtures [14]. In [13], Comon shows that such
representation is identifiable if and only if at most one source is normally
distributed, under the assumptions that the number of sources equals the number of
observed variables and the mixing matrix is invertible. Eriksson et al. [18] extend
this result to the case when the number of sources can exceed the number of
observed variables, under the assumption that there is no Gaussian source, and
Wang et al. [58] to the general case. Various identifiability conditions have also

12

been obtained for the nonlinear setting, based on incorporating auxiliary variables
[25] or introducing alternative assumptions on the mixing [62]. These models
assume independence of the latent variables or conditional independence given the
auxiliary variables, which is often too restrictive of an assumption. Recent work by
Zimmerman et al. [63] manages to alleviate the independence assumption by
assuming instead that the latent variables follow a known distribution. Similarly, in
[1], Ahuja et al. assume knowledge of (at least part of) the mechanisms governing
the evolution of the latent variables, and use the fact that such mechanisms
constrain the set of possible latent representations that are consistent with the
observed data to circumvent the independence assumption. These works, however,
do not consider the case when the latent variables are causally related.

Causal structure learning

The goal of causal structure learning is to determine, from measurements of
variables X = (X0, . . . , Xp−1), the graph G relating the variables. It is usually
assumed that the variables follow a linear DAG model, which we may study using a
linear structural equation model:

X = ΛX+ ϵ, (2.12)

where |Λ|ij ̸= 0 if and only if there exists an edge Xj → Xi in G, and ϵ is the noise
term. Using observational data alone, full identifiability of G can only be achieved if
the entries of ϵ are non-Gaussian. Shimizu [44] and Améndola et al. [3] present
methods for model recovery in such a setting, based on tensor decomposition of
higher-order cumulants of X, or on the vanishing of equations in entries of these
cumulants, respectively. If the entries of ϵ are Gaussian, only the Markov
equivalence class of G can be recovered from observational data. This is because
two graphs belonging to the same Markov equivalence class encode the same set of
conditional independencies between their nodes, so the statistical dependencies
captured by their respective covariance matrices are the same [56]. Interventional
data makes it possible to reduce the size of the recovered Markov equivalence class

13

[23]. Reducing it to size 1 is equivalent to recovering G. In [17], Eberhardt et al.
show that, in the worst case, p− 1 interventions are required to do so.

Learning latent DAG models and causal representation learning

Although the field of causal disentanglement has garnered increased attention in
recent years, the problem of learning the structure of latent variable models is not
new. In [45], Silva et al. propose a two-step approach to learning the causal
structure among latent variables. Such approach relies on the vanishing Tetrad
conditions [47], and requires that every observed variable is an anchor, that is, has
exactly one latent parent [21, 43]. Despite being less restrictive, many recent works
also impose structural assumptions on the map from latent to observed variables: in
[10], Cai et al. propose a method to estimate the structure over latent variables in
the non-Gaussian setting. The method relies on the so-called Triad constraints, and
requires that every latent variable has at least two corresponding anchors. In [30],
Kivva et al. study the setting where the latent variables are discrete, and show that
the latent model is identifiable under the assumption that no two latent nodes have
the same set of observed children. Finally, Jiang et al. [27] impose structural
assumptions in the setting where both the mixing function and causal model are
nonparametric. They show that one intervention per latent node is sufficient for
identifiability of the causal model up to isolated edges, as long as the latent graph
lacks imaginary subsets. Isolated edges are edges Zi → Zj satisfying that pa(Zi) =

des(Zj) = ∅, while imaginary subsets are subsets of observed variables that may not
be the children of a single latent variable.

Ahuja et al. [2] and Brehmer et al. [7] do not restrict the map, but assume access
to paired counterfactual data, which is often not realistic in applications such as
image restoration [61] and biology [50]. In [48], Squires et al. consider the setting of
unpaired data with a linear mapping from latent to observed variables. As
mentioned in Section 1.1, they prove that, having access to the covariance matrix of
the observed variables alone, one intervention per latent node is sufficient and
necessary for identifiability. Their results strengthen some of those of Liu et al. [33],

14

another work considering unpaired data, and are extended to consider the setting of
nonlinear transformations from latent to observed variables in [9].

In [60], Zhang et al. show that, in the infinite-data regime, where the
observational and interventional distributions of the observed variables can be
determined exactly, one soft intervention per latent node suffices for identifiability of
the latent causal model. They require the transformation from latent to observed
variables to be polynomial, but not necessarily linear. Varici et al. [54] consider the
setting of a linear mixing with nonlinear causal relationships. They leverage this
nonlinearity in latent space to show that one soft intervention per latent node is
sufficient for identifiability of the causal model, though not the transformation from
latent to observed variables. Finally, as in [27], von Kügelgen et al. [57] consider the
setting where both the mixing function and causal model are nonparametric, but
without structural assumptions on the mixing function. They prove that, in the
setting of unpaired data, one intervention per latent variable is sufficent for
identifiability if the number of latent variables is two, and extend their results to
allow for an arbitrary number of latent variables by considering paired data.

15

3
Theoretical Results

3.1 Setup

We consider q latent variables Z = (Z0, . . . , Zq−1) and p observed variables
X = (X0, . . . , Xp−1). The latent variables follow a linear DAG model. We let G

denote such DAG, and specify the model using a linear structural equation model:

Z = ΛZ+ ϵ. (3.1)

We let Ω[n] = κn(ϵ) and wl = Ω
[3]
lll = κ3(ϵl), and we have that |Λ|ij ̸= 0 if and only if

there exists an edge Zj → Zi in G. We assume that the observed variables are an
injective linear mixing of the latent variables X = BZ = B(Iq − Λ)−1ϵ, where the
latter expression is obtained by isolating Z in equation (3.1). Our goal is to recover
the model parameters B and Λ. We list our modeling assumptions below:

16

1. 2 ≤ q ≤ p.

2. The noise vector ϵ is assumed to have statistically independent and
non-Gaussian entries.

3. B is full rank.

4. Let H denote the Moore-Penrose inverse of B. We assume that the rows of H
have norm one and that the entry of largest absolute value in each row of H is
positive. If multiple entries have the same absolute value, we assume that the
leftmost one is positive.

5. The model parameters are generic.

Assumption 4 simply fixes the inherent scaling indeterminacy of the problem:
X = ((Iq − Λ)H)†ϵ may be rewritten as X = ((Iq − Λ)MM−1H)†ϵ for any diagonal
matrix M with positive entries without changing X’s distribution. Thus, it holds
without loss of generality. Assumption 5 also does. Regarding assumption 2, as
remarked in [48], the entries of ϵ being independent holds for a causally sufficient
structural equation model. Assuming that q ≤ p and that the entries of ϵ are
non-Gaussian facilitates compatibility of our setup with the identifiability guarantees
of ICA, but these assumptions can be relaxed. See Chapter 5 and [14, 18, 29, 58].

3.1.1 Connection to ICA

As mentioned in Section 2.2, classical ICA posits that the observed variables are a
linear mixing of latent sources. If the number of sources is less than or equal to the
number of observed variables, the sources are non-Gaussian and statistically
independent, and the mixing matrix has full rank, ICA is identifiable and the
sources and mixing matrix can be recovered up to permutation and column scaling
[13, 18]. This is precisely our setting: recall that X = B(Iq − Λ)−1ϵ, we assume that
q ≤ p and that the entries of ϵ are independent and non-Gaussian and, by
assumption 5, the columns of B(Iq − Λ)−1 are linearly independent. Hence, we can
use ICA to recover B(Iq − Λ)−1 up to column permutation and scaling. We proceed

17

to outline how such recovery may be achieved using tensor decomposition on the
third-order cumulant of X.

3.1.2 Product recovery using tensor decomposition

We use symmetric tensor decomposition to decompose the third-order cumulant of
X and recover B(Iq − Λ)−1(diag(Ω[3]))1/3 up to permutation of the columns. Since
we have p observed variables and q latent variables, the third-order cumulant of X is
a symmetric p× p× p tensor of rank q. We have that

κ3(X) = E[(X− E(X))⊗3]

= [B(Iq − Λ)−1] · Ω[3]

=

q∑
l=1

(
3
√
wl[B(Iq − Λ)−1]l

)⊗3

=

q∑
l=1

wl

(
[B(Iq − Λ)−1]l

)⊗3
.

(3.2)

The columns of B(Iq − Λ)−1 are linearly independent by assumption 5, so Theorem
2.1 guarantees that the decomposition of κ3(X) will be unique up to permutation
and scaling. Note that that is the best we can hope for. The permutation
indeterminacy is inevitable as reordering the summands yields the same
decomposition, while the scaling indeterminacy cannot be avoided either because we
may rewrite wl ([B(Iq − Λ)−1]l)

⊗3 as wl

µ

(
3
√
µ · [B(Iq − Λ)−1]l

)⊗3 for any µ ̸= 0 and
still obtain the same decomposition.

Using Algorithm 1, we can recover the vectors up to norm one, that is, adjusting
the scaling appropriately so that κ3(X) =

∑q
l=1 αl(vl)

⊗3 with ∥vl∥2 = 1, Algorithm 1
allows us to recover the vectors vl. We note that in this step we also learn the latent
dimension: q equals the rank of κ3(X) which, using the notation from Algorithm 1,
is precisely the number of nonzero eigenvalues of Ma(Mb)

†. We may therefore
assume without loss of generality that q is known. To find the vector of coefficients

18

α = (α1, . . . , αq), we solve the least squares problem

min
α1,...,αq

∥κ3(X)−
q∑

l=1

αl(vl)
⊗3∥. (3.3)

Note that this implies that we can recover the product B(Iq −Λ)−1(diag(Ω[3]))1/3 up
to permutation, by absorbing each coefficient into its respective vector:
κ3(X) =

∑q
l=1 αl(vl)

⊗3 =
∑q

l=1(
3
√
αlvl)

⊗3. Thus, we can conclude that from the
third-order cumulant of X we can recover the product B(Iq − Λ)−1(diag(Ω[3]))1/3P ,
where P is a permutation matrix.

We assume without loss of generality that P = Iq in the observational context.
This holds without loss of generality because it is a labeling of the nodes in the
latent graph. From here onwards, we use this labeling, that is, Zm is the mth latent
node as given by the permutation in the observational context, and we recover B

and Λ up to this permutation. We now prove some facts about the entries of
B(Iq − Λ)−1 that will be useful in future sections.

Claim 3.1. Assume that i ̸= j. Then the i, j entry of (Iq − Λ)−1 equals the sum of
the paths from Zj to Zi in our graph G, where a path Zj → Zk1 → . . .→ Zkm → Zi is
represented by the product of its corresponding entries in Λ : λikm · λkmkm−1 · . . . · λk1j.

Proof. We prove by induction that the i, j entry of Λr contains the sum of paths
from Zj to Zi in G of length exactly r (if any such path exists). The base case with
r = 1 holds by definition of Λ. Assume that the proposition holds for Λn. We have
that

Λn+1
ij =

q∑
k=1

Λn
ik · Λkj. (3.4)

By our inductive hypothesis, Λn
ik contains the sum of paths from Zk to Zi in G of

length exactly n. We have that Λkj ̸= 0 if and only if j ∈ pa(k) in G, in which case
multiplying each path from Zk to Zi of length exactly n by Λkj will yield a path
from Zj to Zi of length exactly n+ 1, as desired.

19

We now show that

(Iq − Λ)−1 = Iq +

q−1∑
n=1

Λn. (3.5)

This follows because

(Iq − Λ)(Iq +

q−1∑
n=1

Λn) = (Iq +

q−1∑
n=1

Λn)(Iq − Λ)

= Iq −
q−1∑
n=1

(Λn − Λn)− Λq

= Iq,

(3.6)

where Λq = 0q×q because the maximum length of any path in a graph with q nodes
is q − 1. We can thus conclude that, if i ̸= j

(Iq − Λ)−1
ij =

q−1∑
n=1

Λn
ij, (3.7)

which is precisely the sum of the paths from Zj to Zi in G.

Corollary 3.2. The i, j entry of B(Iq −Λ)−1 equals the sum of the paths from Zj to
Xi in our graph G, where a path Zj → Zk1 → . . .→ Zkm → Xi is represented by the
product of its corresponding entries in Λ and B: bikm · λkmkm−1 · . . . · λk1j.

3.1.3 Necessity of interventional data

Access to the product B(Iq − Λ)−1(diag(Ω[3]))1/3 alone is not sufficient to recover B

and Λ. To see this, let Λ̂ = 0q×q, Ĥ = M(Iq − Λ)H, where M is a diagonal matrix
with positive entries making Ĥ satisfy assumption 4, and Ω̂ = (diag(Ω[3]))−1/3M−1.
Then Ω̂(Iq − Λ̂)Ĥ = (diag(Ω[3]))−1/3(Iq − Λ)H. Thus, Λ̂ and Ĥ are solutions to the
causal disentanglement problem. Since Λ̂ is the zero matrix, this implies that a
solution with independent latent variables will always be consistent with
B(Iq − Λ)−1(diag(Ω[3]))1/3. In addition, having access to a finite number of
higher-order cumulants of X does not improve the situation.

20

Theorem 3.3. It is not possible to separate B and Λ beyond the recovery of
B(Iq − Λ)−1 using finitely many cumulants of X.

Proof. We consider the expressions for the different cumulants of X. We have that

κ1(X) = E[X] = B(Iq − Λ)−1Ω[1],

κ2(X) = E[(X− E[X])⊗
2

] = [B(Iq − Λ)−1] · Ω[2],

κ3(X) = E[(X− E[X])⊗
3

] = [B(Iq − Λ)−1] · Ω[3],

κ4(X) = [B(Iq − Λ)−1] · Ω[4],

...
κn(X) = [B(Iq − Λ)−1] · Ω[n].

(3.8)

We can see that, regardless of the order of the cumulant tensor we consider, we only
have access to the product B(Iq − Λ)−1. Therefore, that is the best we can hope to
recover.

In order to recover B and Λ we will use interventional data. Recall our definition
of interventions from Section 1.1: given a variable Zk, a perfect intervention at Zk

removes the causal dependencies of Zk on its parents and changes its stochasticity,
while a soft intervention modifies the magnitudes of the causal dependencies of Zk

on its parents and changes its stochasticity. We now characterize what this means
for our model parameters.

Definition 3.4 (Interventions). A perfect intervention at Zk sets the kth row of Λ
to 0, while a soft intervention modifies all nonzero entries of the kth row of Λ. Both
modify the distribution of ϵk, inducing a change in the value of κ3(ϵk) = diag(Ω[3])kk.

From here onwards we assume that we can observe X in various contexts, where a
context is either observational or corresponds to an intervention at Zk. We assume
that every latent variable is intervened at and we can identify the observational
context, but the intervention target of each interventional context is unknown.
Given a tensor T in the observational context, we let T (k) denote such tensor after an
intervention at Zk and, to simplify notation, we let D = diag(Ω[3])1/3. Using tensor

21

decomposition, we can recover the products B(Iq − Λ)−1D and B(Iq − Λ(k))D(k)P (k)

for all intervened variables Zk. Our goal is to use this collection of closely-related
matrices to find B and Λ. We note that the permutation matrices P (k) encode a
relabeling of the nodes in the latent graph, arising from the permutation
indeterminacy of tensor decomposition: P

(k)
ij = 1 indicates that node Zi has been

relabeled as node Zj in the interventional context with intervention target Zk.

3.2 Recovery of model parameters

In order to use the collection of closely-related matrices obtained from κ3(X) to
recover B and Λ, we must first match each interventional context with its
corresponding intervention target. That is, having recovered B(Iq − Λ)−1D from the
third-order cumulant of X in the observational context, and B(Iq − Λ̃)−1D̃P̃ from
the third-order cumulant in some interventional context, we want to find k ∈ [q]

such that Λ̃ = Λ(k), D̃ = D̃(k) and P̃ = P̃ (k). From here onwards, we let C denote
the Moore-Penrose inverse of the product recovered in the observational context,
and we use C ′(k) to designate the result of reordering the rows of C(k) to match the
labeling of the latent nodes given by the permutation in the observational context:

C = (B(Iq − Λ)−1D)† = D−1(Iq − Λ)H,

C(k) = (B(Iq − Λ(k))−1D(k)P (k))† = (P (k))T (D(k))−1(Iq − Λ(k))H,

C ′(k) = P (k)C(k) = (D(k))−1(Iq − Λ(k))H.

(3.9)

The facts we present below underpin our algorithm to recover the intervention
targets. They do not depend on the type of interventions considered, and as a
consequence neither does the correctness of the algorithm.

Remark 3.5. Claims 3.6 and 3.7, and Propositions 3.8, 3.9 and 3.10 hold
regardless of whether the intervention at Zk is perfect or soft.

Claim 3.6. Λi: = Λ
(k)
i: for all i ̸= k.

Proof. By Definition 3.4, λkj ̸= λ
(k)
kj for all nonzero λkj. Entries of Λ not of this form

remain unchanged under an intervention at Zk, so Λi: = Λ
(k)
i: for all i ̸= k.

22

Claim 3.7. Dii ̸= D
(k)
ii if and only if i = k.

Proof. Recall that D = (diag(Ω[3]))1/3, that is, Dii = κ3(ϵi)
1/3. The claim now

follows from Definition 3.4 and from the fact that an intervention at Zk does not
affect the stochasticity of latent variables other than Zk.

Proposition 3.8. Let σ(k) be the permutation associated to P (k). Then ci ̸= c
(k)

σ(k)(i)

if and only if i = k.

Proof. We have that

ci =

q∑
j=1

1

Dii

(Iq − Λ)ijhj =
1

Dii

(hi −
∑

j∈pa(i)

λijhj),

c
(k)

σ(k)(i)
=

q∑
j=1

1

D
(k)
ii

(Iq − Λ(k))ijhj =
1

D
(k)
ii

(hi −
∑

j∈pa(i)

λ
(k)
ij hj).

(3.10)

First assume that ci ̸= c
(k)

σ(k)(i)
. Then we must have that Dii ̸= D

(k)
ii or Λi: ̸= Λ

(k)
i: . It

follows by Claims 3.6 and 3.7 that i = k. Similarly, assume instead that i = k. By
Claim 3.7, Dii ̸= D

(k)
ii , so ci ̸= c

(k)

σ(k)(i)
. Note that assumption 5 guarantees that the

difference between ci and c
(k)

σ(k)(i)
due to the difference between Dii and D

(k)
ii is not

offset by the potential difference between Λi: and Λ
(k)
i: .

We now present the algorithm to recover the intervention targets.

23

Algorithm 2 Recover intervention target (recover_int)
1: Input: C and C̃ = P̃ T D̃−1(Iq − Λ̃)H, the Moore-Penrose inverses of the products

recovered via tensor decomposition of κ3(X) in the observational context and in
an interventional context with unknown intervention target, respectively.

2: Output: (k, j) such that C̃ = C(k) and P̃kj = 1. k is the intervention target of the
context where C̃† was recovered. P̃ encodes a relabeling of the nodes in the la-
tent graph, arising from the permutation indeterminacy of tensor decomposition.
P̃kj = 1 indicates that node Zk has been relabeled as Zj in the interventional
context where C̃† was recovered.

3: q ←number of rows of C
4: matchedobs ← set()
5: matchedint ← set()
6: for i = 0 to q − 1 do
7: if ci has matching row in C̃ then
8: m← index of matching row
9: Add i to matchedobs

10: Add m to matchedint

11: end if
12: end for
13: k ← [q]\matchedobs

14: j ← [q]\matchedint

15: return (k, j)

Proposition 3.9. Given C and C̃ = P̃ T D̃−1(Iq − Λ̃)H as input, the output of
Algorithm 2 is the value of (k, j) such that C̃ = C(k) and P̃kj = 1.

Proof. Let (k, j) be the output of Algorithm 2, σ̃ be the permutation associated to
P̃ , and n be such that Λ̃ = Λ(n), D̃ = D(n), and P̃ = P (n). We wish to show that
n = k and P

(n)
nj = 1. By Proposition 3.8, we have that every row in C has a matching

row in C̃ except for cn. Thus, at the end of the for loop, [q]\matchedobs = n and
[q]\matchedint = σ̃(n). It follows that n = k and P̃nj = 1.

24

Even with the intervention targets identified, using the products recovered in the
different contexts to determine the values of B and Λ remains challenging if the
labeling of nodes in the latent graph is not consistent across contexts. To address
this, it suffices to recover the permutation matrices {P (k)}k∈[q]. We now present an
algorithm to do so.

Algorithm 3 Recover permutation matrix (recover_perm)
1: Input: C and C(k). C is as in Algorithm 2. C(k) is the Moore-Penrose inverse

of the product recovered via tensor decomposition of κ3(X) in the interventional
context with intervention target Zk.

2: Output: P (k), the permutation matrix encoding the relabeling of the latent nodes
in the interventional context corresponding to an intervention at Zk.

3: q ←number of rows of C
4: P ← 0q×q

5: (a, b)← recover_int(C,C(k))
6: P [a, b]← 1

7: for i = 0 to q − 1 do
8: if i = a then
9: continue

10: else
11: j ← index of matching row in C(k) to ci

12: P [i, j]← 1

13: end if
14: end for
15: return P

Proposition 3.10. Given C and C(k) as input, the output of Algorithm 3 is P (k).

Proof. Let P be the output of Algorithm 3. We wish to show that P = P (k). By
Proposition 3.9 we have that pk = p

(k)
k . It remains to show that pi = p

(k)
i for all

i ̸= k. Let i ∈ [q] with i ̸= k. By Proposition 3.8, we have that ci = c
(k)

σ(k)(i)
and, by

25

assumption 5, ci ̸= c
(k)
l for all l ̸= σ(k)(i). The index of the row of C(k) matching ci,

denoted by j in Algorithm 3, is thus equal to σ(k)(i). Since σ(k)(i) = j, P (k)
ij = 1, so

pi = p
(k)
i .

3.2.1 Perfect interventions

Sufficiency

The goal of this section is to prove the following theorem:

Theorem 3.11. One perfect intervention per latent variable is sufficient to recover
B and Λ from κ3(X).

The proof is constructive: we present algorithms to recover B and Λ from κ3(X).
Having performed tensor decomposition to recover our products of interest, matched
each context with its intervention target, and recovered the corresponding
permutation matrices by Algorithms 2 and 3, we have access to B(Iq − Λ)−1D and
B(Iq − Λ(k))−1D(k) for all k ∈ [q], and thus to C and C ′(k) for all k ∈ [q] too. We
now present an algorithm to recover H from these products. This suffices to recover
B as, by definition, B = H†.

26

Algorithm 4 Recover mixing matrix (recover_H)
1: Input: C ′(k) for all k ∈ [q], the Moore-Penrose inverses of the products recovered

in the interventional contexts after undoing the relabeling of the latent nodes
resulting from tensor decomposition.

2: Output: H, the Moore-Penrose inverse of the mixing matrix B.

3: q ← number of rows of C ′(0)

4: p← number of columns of C ′(0)

5: Ĥ ← 0q×p

6: for i = 0 to q − 1 do
7: ĥi = normalize(c′(i)i)

8: idx← index of leftmost element of greatest absolute value in ĥi

9: if ĥi[idx] < 0 then
10: ĥi = (−1) · ĥi

11: end if
12: end for
13: return Ĥ

Proposition 3.12. Given C ′(k) for all k ∈ [q] as input, the output of Algorithm 4 is
H.

Proof. Let Ĥ be the output of Algorithm 4. We wish to show that ĥi = hi for all
i ∈ [q]. Let i ∈ [q]. We have that

c
′(i)
i =

q∑
j=1

1

D
(i)
ii

(Iq − Λ(i))ijhj =
1

D
(i)
ii

(hi −
∑

j∈pa(i)

λ
(i)
ij hj). (3.11)

Recall that, by Definition 3.4, λ(i)
ij = 0 for all j ∈ [q]. We can thus simplify the

above expression and obtain
c
′(i)
i =

1

D
(i)
ii

hi. (3.12)

By assumption 4, hi has norm 1 and satisfies that its leftmost entry with largest

27

absolute value is positive. Thus, by normalizing and adjusting the sign
appropriately, we get that ĥi = hi, as desired.

Finally, we present an algorithm to recover Λ, assuming access to H, C and C ′(k)

for all k ∈ [q]. Recall from equation (3.10) that ci is a linear combination of
{hi,hj : j ∈ pa(i)}, and the coefficients of {hj : j ∈ pa(i)} in this linear combination
are scalar multiples of entries of Λ:

ci =
1

Dii

(hi −
∑

j∈pa(i)

λijhj). (3.13)

The algorithm leverages this fact, iteratively recovering the entries of Λ by first
identifying source nodes in the latent graph and proceeding in a breadth-first
manner [15].

28

Algorithm 5 Recover the latent graph (recover_Λ)
1: Input: C, C ′(k) for all k ∈ [q] and H. C is as in Algorithms 2 and 3, and C ′(k)

and H are as in Algorithm 5.
2: Output: Λ, the matrix encoding the latent graph.

3: q ← number of rows in C

4: nodes ←set([q])
5: V0 ← []

6: Λ̂← 0q×q

7: for i = 0 to q − 1 do
8: if ci ∥ c′(i)i then
9: Add i to V0

10: Remove i from nodes
11: end if
12: end for
13: for j = 1 to q − 1 do
14: if nodes ̸= ∅ then
15: Vj = Vj−1

16: else
17: break
18: end if
19: for n ∈ nodes do
20: if cn ∈ span{hn,hm : m ∈ Vj−1} then
21: Add n to Vj

22: Remove n from nodes
23: Solve for γn, {γm}m∈Vj−1

in the system cn = γnhn −
∑

m∈Vj−1
γmhm

24: Λ̂[n,m]← γm
γn

for all γm in {γm}m∈Vj−1

25: end if
26: end for
27: end for
28: return Λ̂

29

To prove the correctness of the algorithm, we first prove the following lemma:

Lemma 3.13. Let level(i) denote the minimum number of steps required to reach Zi

from a source node in the latent graph, and Vj be as in Algorithm 5. Then for all
j ∈ [q], Vj = {i | level(i) ≤ j}.

Proof. We proceed by induction. First consider the case j = 0. By construction,
V0 = {i | ci ∥ c′(i)i }. Recall from equations (3.10) and (3.12) that

ci =
1

Dii

(hi −
∑

m∈pa(i)

λimhm),

c
′(i)
i =

1

D
(i)
ii

hi.

(3.14)

Thus, ci ∥ c′(i)i ⇔ pa(i) = ∅ ⇔ level(i) = 0, as desired. Now assume that the
proposition holds for j = t, that is, Vt = {i | level(i) ≤ t}. By construction,

Vt+1 = {i | ci ∈ span{hi,ht : t ∈ Vt}}. (3.15)

Since H is full row rank by assumption 3, we have by equation (3.14) that

ci ∈ span{hi,ht : t ∈ Vt} ⇔ pa(i) ⊆ Vt. (3.16)

Thus, Vt+1 = {i | pa(i) ⊆ Vt} = {i | level(i) ≤ t+ 1}.

We can use this fact to prove that the output of Algorithm 5 is Λ.

Proposition 3.14. Given C, C ′(k) for all k ∈ [q], and H as input, the output of
Algorithm 5 is Λ.

Proof. Let Λ̂ be the output of Algorithm 5. We wish to show that Λ̂ = Λ. Let
level(i) be as in Lemma 3.13. We prove that after t iterations of the for loop
starting on line 13, Λ̂n: = Λn: for all n such that level(n) ≤ t. Since level(i) ≤ q − 1

for all nodes Zi in the latent graph, this shows that Λ̂ = Λ. We proceed by
induction. The case t = 0 follows from the fact that Λn: = 01×q for all n satisfying

30

that level(n) = 0 and Λ̂ = 0q×q before the first iteration of the for loop. Now
assume that the proposition holds for t = r. That is, after r iterations of the for
loop starting on line 13, Λ̂n: = Λn: for all n such that level(n) ≤ r. Consider
iteration r + 1. By lines 21 and 22, we have that n ̸∈ nodes for all n ∈ Vr which, by
Lemma 3.13, implies that level(n) ≥ r + 1 for all n ∈ nodes. Only rows Λ̂n: for n ∈
nodes can be modified in iteration r + 1 of the for loop, so it suffices to show that
Λ̂n: = Λn: for all n such that level(n) = r + 1. Let n ∈ [q] be such that
level(n) = r + 1. Then, by Lemma 3.13, pa(n) ⊆ Vr so, by equation (3.14),
cn ∈ span{hn,hm : m ∈ Vr}. Since H is full row rank by assumption 3, we have by
the same equation that solving the system on line 23 yields γn = 1/Dnn,
γm = λnm/Dnn for all m ∈ pa(n), and γm = 0 for all m ̸∈ pa(n). Thus, on line 24 we
set Λ̂nm = λnm for all m ∈ pa(n), while leaving Λ̂nm = 0 otherwise, so Λ̂n: = Λn:.

We have presented algorithms to recover B and Λ from B(Iq − Λ)D and
B(Iq − Λ(k))D(k)P (k) for all k ∈ [q], so Theorem 3.11 holds.

Worst-case necessity

Having shown that one perfect intervention per latent variable suffices for recovery
of B and Λ from κ3(X), we now prove that such set of interventions is also
necessary for recovery. The proof follows the approach in [48].

Theorem 3.15. Let n denote the number of intervened variables and assume that
n < q. Then there exist matrices H and Λ and a set K of n distinct intervention
targets such that H and Λ are not identifiable up to permutation of the latent nodes.

Proof. Assume that variable Z0 is not intervened at. It suffices to find Ĥ, D̂,
{D̂(k)}k∈K , Λ̂ and {Λ̂(k)}k∈K such that D̂−1(Iq − Λ̂)Ĥ = D−1(Iq − Λ)H,
(D̂(k))−1(Iq − Λ̂(k))Ĥ = (D(k))−1(Iq − Λ(k))H for all k ∈ K and such that there is no

31

permutation matrix P and diagonal matrix S for which PSĤ = H. Let

D̂ =

[
← e1 →
D1:q,0:q

]
, D̂(k) =

[
← e1 →
D

(k)
1:q,0:q

]
,

Λ̂ =

[
01×q

Λ1:q,0:q

]
, Λ̂(k) =

[
01×q

Λ
(k)
1:q,0:q

]
,

Ĥ =

[
(D−1(Iq − Λ))0:H

H1:q,0:p

]
.

(3.17)

Then D̂−1(Iq − Λ̂)Ĥ = D−1(Iq − Λ)H and
(D̂(k))−1(Iq − Λ̂(k))Ĥ = (D(k))−1(Iq − Λ(k))H for all k ∈ K. Suppose that Z0 has at
least one parent, that is, ∃j > 0 such that Λ0j ̸= 0 and thus (D−1(Iq −Λ))0j ̸= 0 too.
Then the first row of Ĥ is a linear combination of at least two rows of H. Since H is
full row rank by assumption 3, PSĤ ̸= H for all permutation matrices P and
diagonal matrices S.

3.2.2 Soft interventions

In this section, we prove that the additional information obtained by considering
κ3(X) instead of κ2(X) is not enough to offset the loss of inferring power resulting
from studying soft interventions instead of perfect ones. We first prove
non-identifiability in the case p = q = 2, and then use this result to prove
non-identifiability for arbitrary p and q in the worst case.

Proposition 3.16. Let p = q = 2. Then H and Λ cannot be recovered from κ3(X)

in the general case.

32

Proof. Let p = q = 2 and

H =

[
h00 h01

h10 h11

]
, B = H−1, Λ = Λ(1) =

[
0 λ01

0 0

]
, Λ(0) =

[
0 λ

(0)
01

0 0

]
,

D−1 =

[
d00 0

0 d11

]
, (D(0))−1 =

[
d
(0)
00 0

0 d11

]
, (D(1))−1 =

[
d00 0

0 d
(1)
11

]
.

(3.18)

with
√
h2
00 + h2

01 =
√

h2
10 + h2

11 = 1. Then from the third-order cumulant of X we
have access to

D−1(I2 − Λ)H =

[
d00h00 − d00h10λ01 d00h01 − d00h11λ01

d11h10 d11h11

]
,

(D(0))−1(I2 − Λ(0))H =

[
d
(0)
00 h00 − d

(0)
00 h10λ

(0)
01 d

(0)
00 h01 − d

(0)
00 h11λ

(0)
01

d11h10 d11h11

]
,

(D(1))−1(I2 − Λ(1))H =

[
d00h00 − d00h10λ01 d00h01 − d00h11λ01

d
(1)
11 h10 d

(1)
11 h11

]
.

(3.19)

For identifiability to hold, we would want the values of the parameters in equation
(3.18) to be the only ones giving rise to the products in equation (3.19) (up to
permutation of the latent nodes). This is, however, not the case. Computations in
Julia [6] using Oscar.jl [38] show that there is in fact a nine-dimensional family of
parameters compatible with assumptions 1-5 giving rise to these same products.

To prove non-identifiability for arbitrary p and q in the worst case, it suffices to
embed this 4-variable configuration into a larger graph.

Theorem 3.17. One soft intervention per latent node is not sufficient to recover B

and Λ from κ3(X) in the worst case.

Proof. Let B̂, Λ̂, {Λ̂(k)}k∈[2], D̂, {D̂(k)}k∈[2] be as in equation (3.18), albeit with the

33

addition of the hat notation, and consider the model with parameters

B =

 B̂ 02×(q−2)

0(p−2)×2

Iq−2

0(p−q)×(q−2)

 ,

Λ(0) =

[
0 Λ̂

(0)
01 01×(q−2)

0(q−1)×q

]
, Λ = {Λ(k)}k∈[q]\{0} =

[
0 Λ̂01 01×(q−2)

0(q−1)×q

]
.

(3.20)

Since the values of B̂ and Λ̂ cannot be determined uniquely up to scaling and
permutation of the latent nodes, it follows that those of B and Λ cannot either.

One soft intervention per latent node is, however, sufficient to recover G. The
following section presents a constructive proof. Recall from Section 2.1 that
G = (V,E) denotes the transitive closure of the graph G = (V,E), i.e., (u, v) ∈ E

for all vertices u, v ∈ V such that there exists a path from u to v in G.

3.3 Recovery of G

3.3.1 Perfect interventions

Section 3.2.1 proves that one perfect intervention per latent node is sufficient to
recover B and Λ from κ3(X). It thus follows that such set of interventions is
sufficient to recover G too. We now prove that, in the worst case, recovery of G is
not possible with fewer perfect interventions.

Theorem 3.18. One intervention per latent node is necessary to recover G from
κ3(X).

Proof. Assume the setup in the example given in the proof of Theorem 3.15. We
have that pa(0) = ∅ according to Λ̂, while pa(0) ̸= ∅ according to Λ. The products
D−1(Iq − Λ)H and {(D(k))−1(Iq − Λ(k))H}k∈K are thus consistent with multiple
transitive closures.

34

3.3.2 Soft interventions

As proved in Section 3.2.2, one soft intervention per latent node is not sufficient to
recover B and Λ. Such set of interventions does suffice, however, to recover G:

Theorem 3.19. One soft intervention per latent node is sufficient to recover G

from κ3(X).

The proof of Theorem 3.19 is constructive and follows a similar approach to [52].
By Remark 3.5, we may assume we have access to B(Iq − Λ)−1D and
B(Iq − Λ(k))−1D(k) for all k ∈ [q]. The algorithm to recover G from these products
relies on the following fact:

Proposition 3.20. [B(Iq − Λ)−1]l ̸= [B(Iq − Λ(k))−1]l if and only if l ∈ an(k).

Proof. First assume that [B(Iq − Λ)−1]l ̸= [B(Iq − Λ(k))−1]l. By Corollary 3.2, this
implies that intervening at Zk induces a change in a path from Zl to at least one Xt

for some t ∈ [p] in G. Denote that path by P . Since B remains unchanged under an
intervention, P is a product of entries of Λ and B and, by Claim 3.6, Λi: = Λ

(k)
i: for

all i ̸= k, we must have that P contains a factor of the form λkj. That is, there
exists j ∈ pa(k) such that there exists a path from Zl to Zk in G going through Zj.
The existence of such a path proves that l ∈ an(k).

Now assume that l ∈ an(k). Then there exists a path P from Zl to Zk in G. By
Claim 3.1, (Iq − Λ)−1

kl ̸= 0. Let Zj be the parent of Zk in P . Then λkj is a factor in
P that changes value after an intervention at Zk, so

(Iq − Λ)−1
tl ̸= (Iq − Λ(k))−1

tl ⇔ (B(Iq − Λ)−1)tl ̸= (B(Iq − Λ(k))−1)tl

⇔ [B(Iq − Λ)−1]l ̸= [B(Iq − Λ(k))−1]l.
(3.21)

We now present an algorithm to recover G; we store G as a dictionary satisfying
that G[m] = {n | n ∈ an(m)} for all m ∈ [q].

35

Algorithm 6 Recover transitive closure (recover_TS)
1: Input: B(Iq − Λ)−1D and B(Iq − Λ(k))−1D(k) for all k ∈ [q]

2: Output: G, the transitive closure of the latent graph.

3: q ←number of columns in B(Iq − Λ)−1D

4: Ĝ = {}
5: for k = 0 to q − 1 do
6: ancestor_set ← set()
7: for l = 0 to q − 1 do
8: if l = k then
9: continue

10: else
11: if [B(Iq − Λ)−1D]l ̸= [B(Iq − Λ(k))−1D(k)]l then
12: Add l to ancestor_set
13: end if
14: end if
15: end for
16: Ĝ[k] = ancestor_set
17: end for
18: return Ĝ

Proposition 3.21. Given B(Iq − Λ)−1D and B(Iq − Λ(k))−1D(k) for all k ∈ [q] as
input, the output of Algorithm 6 is G.

Proof. Let Ĝ be the output of Algorithm 6. We wish to show that Ĝ = G. Let
k ∈ [q]. By Proposition 3.20, we have that [B(Iq − Λ)−1]l ̸= [B(Iq − Λ(k))−1]l if and
only if l ∈ an(k). By Claim 3.7, Dii = D

(k)
ii for all i ̸= k. Thus,

[B(Iq − Λ)−1D]l ̸= [B(Iq − Λ(k))−1D(k)]l and l ̸= k both hold if and only if l ∈ an(k).
Since line 12 is run precisely when these conditions are met, we have that
Ĝ[k] = {l | l ∈ an(k)} = G[k], as desired.

Finally, we note that the proof of Theorem 3.15 did not assume the type of

36

interventions considered. Thus, by Theorem 3.18, one soft intervention per latent
node is necessary to recover G from κ3(X) in the worst case.

37

4
Computational Results

We evaluate the performance of Algorithms 1-5 on synthetic data. The
implementation of the algorithms adapts them to minimize susceptibility to noise,
as follows:

• To find a single row that differs between matrices M and M ′ (up to
permutation of the rows), we solve for i in

max
i

min
j
∥mi −m′

j∥. (4.1)

• To determine whether a vector vr is in the span of {v1, v2, . . . , vn}, we let

V =

 ↑ ↑ ↑
v1 v2 · · · vn

↓ ↓ ↓

 (4.2)

38

and solve for x in V x = vr using ordinary least squares. We consider vr to be
in the span of {v1, . . . , vn} if the residuals are below a threshold. We find an
appropriate value for the threshold using randomized search.

The adapted algorithms are presented in more detail in Appendix A, and a
comprehensive computational complexity analysis is included in Appendix B.

We evaluate the performance of the algorithms using both population and sample
cumulants as inputs. We calculate the sample cumulants using k-statistics, and use
the Python package causaldag [12] to sample our graphs. It implements an
extension of the Erdős–Rényi model to DAGs: given a density d, the edge i→ j is
added to the graph with probability d and if and only if i > j. As in [48], we fix
d = 0.75, sample the entries of H independently from Unif([−2, 2]), and the nonzero
entries of Λ independently from Unif(±[0.25, 1]). We assume that the entries of ϵ
follow an exponential distribution, with rate parameter 1 in the observational
context. The rate parameter in an interventional context is sampled from
Unif([0.25, 0.8]).

4.1 Population cumulants

We consider values of q in {4, 5, 6, 7}, and let p range from q to 15 for each value of
q. We generate 500 models for each value of (q, p) and measure the mean Frobenius
error in estimating the parameters H and Λ. The results are presented in Figure
4.1.1. We can see that the algorithm exhibits good performance in recovering the
parameters, particularly when p = q. This is not surprising, as when p > q, the
vectors recovered in the tensor decomposition step are the result of calculating the
eigendecomposition of a rank-deficient matrix: using the notation from Algorithm 1,
we have that Ma(Mb)

† is a p× p matrix of rank q.

39

(a) Error in estimating H

(b) Error in estimating Λ

Figure 4.1.1: Parameter estimation error from population cumulants

40

4.2 Sample cumulants

To construct the sample cumulants, we fix p = 5 and q = 4, and consider sample
sizes ranging from 2500 to 250000. As in Section 4.1, we generate 500 models, and
measure the mean Frobenius error in estimating the parameters H and Λ for each
number of samples. The results are presented in Figure 4.2.1. We find that the
method is consistent for recovering H and Λ from noisy data, i.e., the estimates
approach the true parameters as the number of samples increases.

We point out that the performance of the model is limited by how well the
sample cumulants approximate the population cumulants. That is, if, as the number
of samples increases, the difference between the true parameters and the original
parameters follows the same trend as the difference between the sample cumulants
and the population cumulants, we can assert that the method is doing as well as
could be expected. To check whether this is the case, at each number of samples
and for each of the 500 models we generate, we calculate the mean Frobenius norm
of the difference between the population cumulant and the sample cumulant across
contexts. We then take the mean across models and plot that against the mean
difference in H and Λ. See Figure 4.2.2.

We posit that a significant part of the error in recovering H is due to assumption
4: normalizing brings the absolute value of the entries in a given row of H closer
together; if several entries have an absolute value close to the maximum of the row,
noisy data can lead to the wrong entry being deemed as that having the maximum
absolute value, potentially causing the row to be recovered with the incorrect sign.
Computational results validate this hypothesis: letting abs(H) denote the matrix
obtained by taking the entrywise absolute value of H, we find that the mean
Frobenius error in estimating abs(H) is smaller than that in estimating H. See
Figure 4.2.3.

41

(a) Error in estimating H

(b) Error in estimating Λ

Figure 4.2.1: Parameter estimation error from sample cumulants

42

(a) Error in estimating H vs error in estimating
population cumulants

(b) Error in estimating Λ vs error in estimating
population cumulants

Figure 4.2.2: Parameter vs population cumulants estimation

43

Figure 4.2.3: Error in estimating the mixing matrix from sample cumulants

To test robustness of the method to model misspecification, we consider adding
two kinds of nonlinearity:

1. Nonlinearity in the transformation from latent to observed variables, by letting

X = BZ+ α

[
Z2

0(p−q)×1

]
, α ∈ R. (4.3)

2. Nonlinearity in the latent space, by letting

Z = (Iq − Λ)−1ϵ+ αϵ2, α ∈ R. (4.4)

We find that the method is sensitive to nonlinearity in the transformation from
latent to observed variables: the errors in estimating B and Λ increase significantly
and do not improve with the number of samples for α = 0.1. See Figure 4.2.4.

On the other hand, the method demonstrates remarkable robustness to

44

nonlinearity in the latent space. Although the accuracy in recovering Λ decreases
considerably for α = 0.1, the method remains consistent at estimating B for various
values of α. See Figure 4.2.5. It is not surprising that the method does better at
recovering B than Λ: despite Z now being a nonlinear function of ϵ, the linear
nature of B’s transformation is preserved, as we still have that X = BZ. Λ, on the
other hand, is now involved in the nonlinear relationship introduced by ϵ2. Finally,
we note that the method does better at recovering B as the value of α increases. We
hypothesize that this might be the case because, with nonlinearity in the latent
space, the third-order cumulant of X becomes

κ3(X) = B(I − Λ)−1 · κ3(ϵ) + αB · κ3(ϵ
2). (4.5)

Unlike in the linear case, the expression for κ3(X) now contains a summand in
which B appears isolated from Λ. The larger the value of α, the larger the
contribution of this summand to the value of κ3(X). Such larger contribution can in
turn make it easier to discern the influence of B on κ3(X), potentially leading to a
better recovery.

45

(a) Error in estimating H

(b) Error in estimating Λ

Figure 4.2.4: Parameter estimation error from sample cumulants with nonlinearity in the
transformation from latent to observed variables

46

Figure 4.2.5: Error in estimating the mixing matrix from sample cumulants with nonlinearity
in the latent space

47

5
Conclusion and Future Work

In this thesis, we have proved that one perfect intervention per latent variable is
sufficient and necessary for the identifiability of linear causal disentanglement. The
proof is constructive, yielding an algorithm for causal disentanglement that
demonstrates good performance with noisy data, and robustness to model
misspecification in the latent space. Finally, we have established the worst-case
insufficiency of one soft intervention per latent node for identifiability. We propose
several directions for future work.

Higher-dimensional latent space and Gaussian noise

As noted in assumptions 1 and 2, we have restricted our attention to the case q ≤ p

and the entries of ϵ being non-Gaussian. These assumptions have made our setup fit
well with the identifiability guarantees of classical ICA. Identifiability would still
hold if one entry of ϵ was Gaussian [18], and recent work in the identifiability of

48

overcomplete ICA [58] suggests that the method could be adapted to the case when
q > p by using the subspace power method for tensor decomposition [29]. This
would allow our method to handle situations where the latent space is
higher-dimensional than the observed space, which arise for instance in image
recognition and active shape models [59].

Nonlinear setting

We have demonstrated that the method presents robustness to a certain type of
nonlinearity in the latent space, and provided a hypothesis for why this might be
the case. Further research is needed to validate it and shed more light on the factors
contributing to this performance.

In addition, despite the aforementioned robustness to nonlinearity, the theoretical
guarantees of our method only hold when both the transformation from latent to
observed variables and the latent model are linear. As mentioned in Section 2.2,
current works propose various ways to relax these assumptions. We hope that the
results derived in this thesis will help inform further research in this direction.

Partial identifiability with soft interventions

We have shown that one soft intervention per latent variable suffices to recover the
transitive closure of the latent DAG but not the model parameters B and Λ in the
worst case. In the future, it would be interesting to characterize more precisely what
partial identifiability can be recovered from such a set of soft interventions.

49

A
Adapted Algorithms

Several of the algorithms presented rely on finding matching rows between matrices.
Algorithm 7 is a helper function to accomplish this task: given a vector v of size
1× n and a matrix M of size m× n, it finds the row of M minimizing the Euclidean
distance from v. It returns the index of such row, denoted below by match below,
and the corresponding Euclidean distance: ∥v −Mmatch:∥.

50

Algorithm 7 Find matching row (match_row)
1: Input: v, M . v is a vector of size 1× n and M is a matrix of size m× n.
2: Output: (argmin

i∈[m]

∥v −Mi:∥,min
i∈[m]
∥v −Mi:∥)

3: m← number of rows in M

4: diff ← max_float
5: match ← −1
6: for i = 0 to m− 1 do
7: current_diff ← norm(mi − v)

8: if current_diff < diff then
9: diff ← current_diff

10: match ← i

11: end if
12: end for
13: return (match, diff)

Recall that both Algorithm 2 and Algorithm 3 require comparing the rows of C,
the Moore-Penrose inverse of the product recovered in the observational context,
and those of C̃ or C(k) respectively, the Moore-Penrose inverse of the product
recovered in an interventional context. We leverage this commonality and merge
them into a single algorithm at the implementation level, Algorithm 8. The inputs
to Algorithm 8 are those of Algorithm 2 together with a set which keeps track of the
intervention targets that have already been matched with an interventional context.
Such set is denoted by currentints below. The algorithm proceeds as follows:

1. For each i ∈ [q], it matches ci with c̃j minimizing ∥ci − c̃j∥. This is the for
loop starting on line 10. matchesint is a dictionary keeping track of the times
each row of C̃ is deemed as a match.

2. By Proposition 3.8, every row of C has a corresponding matching row in C̃

except the row k for which C̃ = C(k). We would thus expect step 1 to correctly

51

pair up all matching rows. It does not necessarily hold, however, that

argmin
j
∥ck − c̃j∥ = σ̃(k). (A.1)

To account for this, as well for other row mismatches when the cumulants are
estimated using fewer samples, the algorithm carries out another round of
matching. It uses matchesint to determine which rows of C̃ have been matched
multiple times and which remain unmatched. The set of indices of unmatched
rows is denoted by unmatched_rows below. For each j such that c̃j has been
matched multiple times, let I denote the set of indices of rows of C that have
been matched with c̃j (these are the first elements of the tuples in tuple_list).
The algorithm deems n = argmin

i∈I
∥ci − c̃j∥ as the correct match, and matches

each ci for i ∈ I\[n] with argmin
j∈unmatched_rows

∥ci − c̃j∥. We ensure that this step

does not result again in multiple rows of C being matched with the same row
of C̃ by removing the matched index from unmatched_rows in every iteration
of the loop (line 25).

3. After steps 1 and 2, the algorithm has constructed a one-to-one
correspondence between rows of C and rows of C̃. Such correspondence is
stored in diff_list. We have that for each tuple (i, j, diff) ∈ diff_list, i is the
index of a row in C, j that of the row of C̃ with which ci has been matched,
and diff = ∥ci − c̃j∥. By Proposition 3.8, we expect diff to be very close to 0

for all tuples in diff_list except the one whose first entry is the value of i such
that C̃ = C(i) and P̃ = P (i). The algorithm uses this fact to determine such
value, by finding the tuple (i, j, diff) ∈ diff_list maximizing diff and such that
i ̸∈ currentints. To construct P̃ , it leverages the fact that a match between ci

and c̃j indicates that node Zi has been relabeled as node Zj in the
interventional context where C̃† was recovered or, in other words, P̃ [i, j] = 1.

52

Algorithm 8 Recover intervention target - adapted (recover_int_ad)
1: Input: C, C̃ = P̃ T D̃−1(Iq− Λ̃)H and current_ints. C and C̃ are as in Algorithm

2; current_ints is a set containing the intervention targets that have already
been matched with an interventional context.

2: Output: (k, j, P (k)) such that C̃ = C(k), P̃ = P (k) and P̃kj = 1.

3: q ←number of rows of C
4: diff_ list ← []

5: matchesint ← {}
6: P ← 0q×q

7: for k = 0 to q − 1 do
8: matchesint[k]← 0

9: end for
10: for i = 0 to q − 1 do
11: row_int, diff ← match_row(ci, C̃)

12: matchesint[row_int] += 1

13: Append (i, row_int, diff) to diff_ list
14: end for
15: unmatched_rows ← [key′ | (key′, value′) ∈ matchesint ∧ value′ = 0]

16: for (key, value) in matchesint do
17: if value > 1 then
18: tuple_list ← [(i, j, diff) ∈ diff_list | j = key]
19: Sort tuple_list by ascending order of the third element in each tuple
20: Remove tuple_list[0] from tuple_list
21: Remove all elements in tuple_list from diff_list
22: for (obs_row_idx, _, _) in tuple_list do
23: row_int_new, diff_new ← match_row(cobs_row_idx, C̃[unmatched_rows]:)

24: new_match← (obs_row_idx, unmatched_rows[row_int_new], diff_new)

25: Remove unmatched_rows[row_int_new] from unmatched_rows
26: Append new_match to diff_list
27: end for
28: end if
29: end for

53

30: for (i, j,_) ∈ diff_list do
31: P [i, j]← 1
32: end for
33: Sort diff_list by descending order of the third element in each tuple
34: for tuple in diff_list do
35: if tuple[0] ̸∈ current_ints then
36: return (tuple[0], tuple[1], P)
37: end if
38: end for

Algorithm 4 is implemented as presented. Algorithm 9 is the adapted version of
Algorithm 5. As mentioned in Chapter 4, we use ordinary least squares to determine
whether a vector vr is in the span of a set of vectors {v1, v2, . . . , vn}, considering vr

to be in such span if the residuals are below a threshold. We use randomized search
to find an appropriate value for such threshold, and set it to 10−8 when using
population cumulants as inputs and to 0.01 in the finite-sample case. We use the
least squares approach to determine whether the if blocks starting on lines 8 and
20 of Algorithm 5 should be executed. The algorithm undergoes no other changes.

54

Algorithm 9 Recover the latent graph - adapted (recover_Λ_ad)
1: Input: C, C ′(k) for all k ∈ [q] and H. C is as in Algorithms 2 and 3, and C ′(k)

and H are as in Algorithm 5.
2: Output: Λ, the matrix encoding the latent graph.

3: q ← number of rows in C

4: nodes ←set([q])
5: V0 ← []

6: Λ̂← 0q×q

7: for i = 0 to q − 1 do
8: sol, residual ← least_squares(cTi x = (c

′(i)
i)T)

9: if residual < threshold then
10: Add i to V0

11: Remove i from nodes
12: end if
13: end for
14: for j = 1 to q − 1 do
15: if nodes ≠ ∅ then
16: Vj = Vj−1

17: else
18: break
19: end if
20: for n ∈ nodes do

21: A←

 ↑ ↑ ↑ ↑
hn hm1 hm2 · · · hmt

↓ ↓ ↓ ↓

 where Vj−1 = {m1,m2, . . . ,mt}

22: sol, residual ← least_squares(Ax = cTn)

23: if residual < threshold then
24: Add n to Vj

25: Remove n from nodes
26: Solve for γn, {γm}m∈Vj−1

in the system cn = γnhn −
∑

m∈Vj−1
γmhm

27: Λ̂[n,m]← γm
γn

for all γm in {γm}m∈Vj−1

28: end if
29: end for
30: end for
31: return Λ̂

55

B
Computational Complexity

We analyze the worst-case time complexity of both the base and adapted
algorithms, and use it to determine the overall time complexity of our method for
causal disentanglement.

1. Algorithm 1 takes as input a K ×K ×K tensor. Sampling the vectors a and b

takes time O(K). Calculating Ma requires performing K2 multiplications K

times and K2 additions K − 1 times, so its time complexity is O(K3). It
follows that this is also the time complexity of calculating Mb. The
Moore-Penrose inverse of Mb can be calculated in time O(K3) using singular
value decomposition [55], and multiplying Ma times M †

b using the elementary
algorithm for matrix multiplication takes time O(K3) too [46]. Finally,
calculating the eigendecomposition of Ma(Mb)

† also takes time O(K3) [39].
The overall runtime of Algorithm 1 is thus O(K3).

56

2. Algorithm 2 takes as input two q × p matrices. The bottleneck of the
algorithm is the for loop starting on line 6, which runs for q iterations. In
each iteration we traverse through the rows of C̃, comparing each to ci. The
time complexity of the algorithm is thus O(q2p).

3. Algorithm 3 also takes as input two q × p matrices. It first calls Algorithm 2.
The loop starting on line 7 is then run for q iterations. In all iterations except
for one, the algorithm traverses through the rows of C(k) and compares each
one to ci. The work done per iteration is thus O(qp), and the overall time
complexity of the algorithm O(q2p).

4. Algorithm 4 takes as input q matrices of size q × p. It then picks a row of each
of those matrices and modifies it to satisfy assumption 4. The time complexity
of the algorithm is thus O(qp).

5. Algorithm 5 takes as input q + 2 matrices of size q × p. The for loop starting
on line 7 runs for q iterations. Determining whether ci ∥ c′(i)i requires
traversing through the elements of the rows, and thus takes O(p) time.
Therefore, the time complexity of this first for loop is O(qp). In the worst
case, in which the latent graph contains a single source node and the number
of steps to reach a node Zi from such source node is different for each i ∈ [q],
the for loop starting on line 13 runs for q − 1 iterations. The rest of the
analysis assumes we are in such worst case. We have that |Vj−1| = j, and the
inner loop starting on line 19 runs for q − j iterations. Checking whether
cn ∈ span{hn,hm : m ∈ Vj−1} amounts to solving the system of linear
equations

 ↑ ↑ ↑ ↑
hn hm1 hm2 · · · hmj

↓ ↓ ↓ ↓




xn

xm1

xm2

...
xmj


= cTn , (B.1)

which can be done in time O(p(j + 1)2) using Gaussian elimination [19]. The

57

work done within the if block that follows is then determined by the time
required to set the entries of Λ to their correct value on line 24, as the
solutions to the system on line 23 are obtained when checking the span
condition. This operation takes time O(j), so the overall runtime of the for
loop starting on line 13 is O

(∑q−1
j=1(q − j)p(j + 1)2

)
= O(q4p). This is also

the runtime of the algorithm, as O(qp+ q4p) = O(q4p).

6. Algorithm 6 takes as input two p× q matrices. The for loops starting on lines
5 and 7 both run for q iterations. In all but one iteration of the inner loop,
two vectors of size p× 1 are compared, which takes time O(p). The overall
time complexity of the algorithm is thus O(q2p).

7. Algorithm 7 takes as input a vector of size 1× n and a matrix of size m× n.
The bottleneck of the algorithm is the for loop starting on line 6. It runs for
m iterations and the work done per iteration is O(n), the time required to
compute norm(mi − v). The overall runtime of the algorithm is thus O(mn).

8. Algorithm 8 takes as input two q × p matrices and a set of size at most q. The
for loop starting on line 7 runs for q iterations and the work done per
iteration is constant, so its runtime is O(q). The one starting on line 10 also
runs for q iterations, and the work done per iteration is determined by the call
to match_row, which takes time O(qp). The runtime of this for loop is thus
O(q2p). In the worst case, the initial round of matching will result in all rows
of C being matched with the same row of C̃. The rest of the analysis assumes
we are in such worst case. We have that |unmatched_rows| = q − 1 and the
if block starting on line 17 is entered once, in which |tuple_list| = q. The
bottleneck of this if block is the for loop starting on line 22, which runs for q

iterations. The work per iteration is in turn determined by the call to
match_row on line 24, which takes time O(qp). The overall runtime of the
for loop starting on line 16 is thus O(q2p). Setting the entries of P to their
correct value takes time O(q) as it requires traversing through diff_list, and
sorting the latter takes time O(q log q) [4]. Finally, the for loop starting on

58

line 34 runs for at most q iterations and the work per iteration is O(q), so its
time complexity is O(q2). The time complexity of the algorithm is thus equal
to the time required to run the for loops starting on lines 10 and 16: O(q2p).

9. As mentioned in Appendix A, Algorithm 9 is the adapted version of
Algorithm 5, and the only difference between them is the method used to
determine whether a vector vr is in the span of a set of vectors {v1, v2, . . . , vn}.
Algorithm 9 uses least squares to accomplish this task. Solving the least
squares problem on line 8 amounts to calculating

sol = 1

ci · cTi
· ci · (c′(i)i)T ,

residual = ∥cTi · sol− (c
′(i)
i)T∥.

(B.2)

Using the elementary algorithm for matrix multiplication, the runtime of this
operation is O(p), as both ci and c

′(i)
i are 1× p vectors [46]. Thus, the for

loop starting on line 7 runs for q iterations and the work per iteration is O(p),
so its overall runtime is O(qp). The for loop starting on line 14 is the
bottleneck of the algorithm. As mentioned when analyzing the time
complexity of Algorithm 5, it runs for q − 1 iterations in the worst case, in
which case the inner loop starting on line 20 runs for q− j iterations. The rest
of the analysis assumes we are in such worst case. Solving the least squares
problem on line 22 amounts to calculating

sol = (ATA)−1ATcTn

residual = ∥A · sol− cTn∥
(B.3)

A is a matrix of size p× (j + 1), so multiplying AT times A takes time
O(p(j + 1)2) using the elementary algorithm for matrix multiplication [46].
Inverting the product can then be done in time O((j + 1)3) using Gaussian
elimination [19]. The time complexity of multiplying AT times cTn is in turn
O(p(j + 1)), and that of multiplying (ATA)−1 times ATcTn is O((j + 1)2).
Since j goes from 1 to q − 1 and q ≤ p, p ≥ j + 1 for all values of j, so the

59

runtime of the least squares operation on line 22 is O(p(j + 1)2). As in
Algorithm 5, the work done within the if block starting on line 23 is
determined by the time required to set the entries of Λ to their correct value
on line 27, which takes O(j) time. The runtime of the for loop starting on
line 20 is therefore O

(∑q−1
j=1(q − j)p(j + 1)2

)
= O(q4p), the same as in

Algorithm 5. This is also the overall runtime of the algorithm.

We now analyze the worst-case time complexity of our method for causal
disentanglement. Let p and q denote the number of observed and latent variables,
respectively. Constructing the cumulant tensors in each context using t samples
takes time O(tp3). We then use Algorithm 1 to decompose each of the q + 1 tensors,
one per context. This takes time O(qp3). The method then runs Algorithm 8 q

times to match each context with its corresponding intervention target and recover
the relabelings of the latent nodes arising from tensor decomposition. This step has
time complexity O(q3p). Once the intervention targets and permutation matrices
have been recovered, we use Algorithm 4 to recover the pseudoinverse of the mixing
matrix B, which takes time O(qp). We can then recover B by calculating the
pseudoinverse of the output of Algorithm 4, which can be done in time O(q2p) using
singular value decomposition [55]. Finally, we use Algorithm 9 to recover Λ, which
takes time O(q4p). The total cost is therefore O(tp3 + q4p+ qp3). Assuming that the
number of latent variables is less than the number of samples used to calculate the
cumulants, this reduces to O(tp3 + q4p).

60

References

[1] Kartik Ahuja, Jason Hartford, and Yoshua Bengio. Properties from
mechanisms: an equivariance perspective on identifiable representation
learning. In International Conference on Learning Representations, 2022.

[2] Kartik Ahuja, Jason Hartford, and Yoshua Bengio. Weakly supervised
representation learning with sparse perturbations. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[3] Carlos Améndola, Mathias Drton, Alexandros Grosdos, Roser Homs, and Elina
Robeva. Third-order moment varieties of linear non-Gaussian graphical models.
Information and Inference: A Journal of the IMA, 12(3):iaad007, 2023.

[4] Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau. On the
worst-case complexity of TimSort. arXiv preprint arXiv:1805.08612, 2018.

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:
A review and new perspectives. IEEE Transactions on Pattern Analysis and
machine intelligence, 35(8):1798–1828, 2013.

[6] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A
fresh approach to numerical computing. SIAM Review, 59(1):65–98, 2017.

[7] Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco S Cohen. Weakly

61

supervised causal representation learning. Advances in Neural Information
Processing Systems, 35:38319–38331, 2022.

[8] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke,
Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
et al. Sparks of artificial general intelligence: Early experiments with GPT-4.
arXiv preprint arXiv:2303.12712, 2023.

[9] Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam,
Bernhard Schölkopf, and Pradeep Ravikumar. Learning linear causal
representations from interventions under general nonlinear mixing. Advances in
Neural Information Processing Systems, 36, 2024.

[10] Ruichu Cai, Feng Xie, Clark Glymour, Zhifeng Hao, and Kun Zhang. Triad
constraints for learning causal structure of latent variables. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[11] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in
multidimensional scaling via an n-way generalization of “Eckart-Young”
decomposition. Psychometrika, 35(3):283–319, 1970.

[12] Chandler Squires. causaldag: creation, manipulation, and learning of causal
models. https://github.com/uhlerlab/causaldag, 2018.

[13] Pierre Comon. Independent component analysis, a new concept? Signal
Processing, 36:287–314, 1994.

[14] Pierre Comon and Christian Jutten. Handbook of Blind Source Separation:
Independent component analysis and applications. Academic press, 2010.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition, chapter 22.2, pages 594–602. The
MIT Press, 3rd edition, 2009.

62

https://github.com/uhlerlab/causaldag

[16] Reinhard Diestel. Graph Theory. Electronic library of mathematics. Springer,
2005.

[17] Frederick Eberhardt, Clark Glymour, and Richard Scheines. On the number of
experiments sufficient and in the worst case necessary to identify all causal
relations among n variables. In Conference on Uncertainty in Artificial
Intelligence, 2005.

[18] Jan Eriksson and Visa Koivunen. Identifiability, separability, and uniqueness of
linear ICA models. IEEE Signal Processing Letters, 11(7):601–604, 2004.

[19] Richard William Farebrother. Linear least squares computation, chapter 1,
pages 11–13. Routledge, 1988.

[20] Ronald Aylmer Fisher. Moments and product moments of sampling
distributions. Proceedings of the London Mathematical Society, 2(1):199–238,
1930.

[21] Yoni Halpern, Steven Horng, and David Sontag. Anchored discrete factor
analysis. arXiv preprint arXiv:1511.03299, 2015.

[22] Richard A. Harshman. Foundations of the PARAFAC procedure: Models and
conditions for an ”explanatory” multimodal factor analysis. UCLA Working
Papers in Phonetics, 16:1–84, 1970.

[23] Alain Hauser and Peter Bühlmann. Characterization and greedy learning of
Markov equivalence classes of directed acyclic graphs. Journal of Machine
Learning Research, 13:2409–2464, 2012.

[24] Yangbo He, Jinzhu Jia, and Bin Yu. Counting and exploring sizes of Markov
equivalence classes of directed acyclic graphs. Journal of Machine Learning
Research, 16(79):2589–2609, 2015.

[25] Aapo Hyvärinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ICA using
auxiliary variables and generalized contrastive learning. In Kamalika

63

Chaudhuri and Masashi Sugiyama, editors, Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pages 859–868, 2019.

[26] Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component
analysis: Existence and uniqueness results. Neural Networks, 12:429–439, 1999.

[27] Yibo Jiang and Bryon Aragam. Learning nonparametric latent causal graphs
with unknown interventions. Advances in Neural Information Processing
Systems, 36, 2024.

[28] Ilyes Khemakhem, Ricardo Monti, Diederik Kingma, and Aapo Hyvarinen.
ICE-BeeM: Identifiable conditional energy-based deep models based on
nonlinear ICA. Advances in Neural Information Processing Systems,
33:12768–12778, 2020.

[29] Joe Kileel and Joao M. Pereira. Subspace power method for symmetric tensor
decomposition and generalized PCA. arXiv preprint arXiv:1912.04007, 2019.

[30] Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam.
Learning latent causal graphs via mixture oracles. Advances in Neural
Information Processing Systems, 34:18087–18101, 2021.

[31] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques - Adaptive Computation and Machine Learning. The MIT
Press, 2009.

[32] Sue E. Leurgans, Robert T. Ross, and Rebecca B. Abel. A decomposition for
three-way arrays. SIAM Journal on Matrix Analysis and Applications,
14(4):1064–1083, 1993.

[33] Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton
van den Hengel, Kun Zhang, and Javen Qinfeng Shi. Identifying weight-variant
latent causal models. arXiv preprint arXiv:2208.14153, 2022.

64

[34] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain
Gelly, Bernhard Schölkopf, and Olivier Bachem. Challenging common
assumptions in the unsupervised learning of disentangled representations. In
International Conference on Machine Learning, pages 4114–4124. PMLR, 2019.

[35] Peter McCullagh. Tensor methods in statistics: Monographs on statistics and
applied probability. Chapman and Hall/CRC, 2018.

[36] Nicolai Meinshausen, Alain Hauser, Joris M. Mooij, Jonas Peters, Philip
Versteeg, and Peter Bühlmann. Methods for causal inference from gene
perturbation experiments and validation. Proceedings of the National Academy
of Sciences, 113(27):7361–7368, 2016.

[37] Kevin Murphy. An introduction to graphical models. Rap. tech, 96:1–19, 2001.

[38] OSCAR: Open source computer algebra research system, version 1.1.0-dev.
https://www.oscar-system.org, 2024.

[39] Victor Y Pan and Zhao Q Chen. The complexity of the matrix eigenproblem.
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, pages 507–516, 1999.

[40] Karl Pearson. Method of moments and method of maximum likelihood.
Biometrika, 28(1/2):34–59, 1936.

[41] Paul Purdom Jr. A transitive closure algorithm. BIT Numerical Mathematics,
10(1):76–94, 1970.

[42] Erdos Renyi. On random graph. Publicationes Mathematicate, 6:290–297, 1959.

[43] Basil Saeed, Anastasiya Belyaeva, Yuhao Wang, and Caroline Uhler. Anchored
causal inference in the presence of measurement error. In Conference on
Uncertainty in Artificial Intelligence, 2019.

[44] Shohei Shimizu. LiNGAM: non-Gaussian methods for estimating causal
structures. Behaviormetrika, 41:65–98, 2014.

65

https://www.oscar-system.org

[45] Ricardo Silva, Richard Scheine, Clark Glymour, and Peter Spirtes. Learning
the structure of linear latent variable models. Journal of Machine Learning
Research, 7(8):191–246, 2006.

[46] Steven S. Skiena. The algorithm design manual, chapter 2, pages 45–46.
Springer, 1998.

[47] Charles Spearman. Pearson’s contribution to the theory of two factors. British
Journal of Psychology, 19(1):95, 1928.

[48] Chandler Squires, Anna Seigal, Salil Bhate, and Caroline Uhler. Linear causal
disentanglement via interventions. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[49] Chandler Squires and Caroline Uhler. Causal structure learning: A
combinatorial perspective. Foundations of Computational Mathematics,
23(5):1781–1815, 2023.

[50] Stefan G Stark, Joanna Ficek, Francesco Locatello, Ximena Bonilla, Stéphane
Chevrier, Franziska Singer, Tumor Profiler Consortium, Gunnar Rätsch, and
Kjong-Van Lehmann. SCIM: universal single-cell matching with unpaired
feature sets. Bioinformatics, 36(Supplement 2):919–927, 12 2020.

[51] Gregor Stiglic, Primoz Kocbek, Nino Fijacko, Marinka Zitnik, Katrien Verbert,
and Leona Cilar. Interpretability of machine learning‐based prediction models
in healthcare. WIREs Data Mining and Knowledge Discovery, 10(5), June 2020.

[52] Jin Tian and Judea Pearl. Causal discovery from changes. In Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence, pages
512–521, 2001.

[53] Thaddäus Tönnies, Sabine Kahl, and Oliver Kuss. Collider bias in observational
studies: consequences for medical research part 30 of a series on evaluation of
scientific publications. Deutsches Ärzteblatt International, 119(7):107, 2022.

66

[54] Burak Varici, Emre Acarturk, Karthikeyan Shanmugam, Abhishek Kumar, and
Ali Tajer. Score-based causal representation learning with interventions. arXiv
preprint arXiv:2301.08230, 2023.

[55] Vinita Vasudevan and M Ramakrishna. A hierarchical singular value
decomposition algorithm for low rank matrices. arXiv preprint
arXiv:1710.02812, 2017.

[56] Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models.
In Proceedings of the Sixth Annual Conference on Uncertainty in Artificial
Intelligence, 1990.

[57] Julius von Kügelgen, Michel Besserve, Liang Wendong, Luigi Gresele, Armin
Kekić, Elias Bareinboim, David Blei, and Bernhard Schölkopf. Nonparametric
identifiability of causal representations from unknown interventions. Advances
in Neural Information Processing Systems, 36, 2024.

[58] Kexin Wang and Anna Seigal. Identifiability of overcomplete independent
component analysis. arXiv preprint arXiv:2401.14709, 2024.

[59] Quan Wang. Kernel principal component analysis and its applications in face
recognition and active shape models. arXiv preprint arXiv:1207.3538, 2012.

[60] Jiaqi Zhang, Kristjan Greenewald, Chandler Squires, Akash Srivastava,
Karthikeyan Shanmugam, and Caroline Uhler. Identifiability guarantees for
causal disentanglement from soft interventions. Advances in Neural
Information Processing Systems, 36, 2024.

[61] Dihan Zheng, Xiaowen Zhang, Kaisheng Ma, and Chenglong Bao. Learn from
unpaired data for image restoration: A variational Bayes approach. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(5):5889–5903,
2022.

67

[62] Yujia Zheng, Ignavier Ng, and Kun Zhang. On the identifiability of nonlinear
ICA: sparsity and beyond. Advances in Neural Information Processing Systems,
35:16411–16422, 2022.

[63] Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and
Wieland Brendel. Contrastive learning inverts the data generating process. In
International Conference on Machine Learning, pages 12979–12990. PMLR,
2021.

68

	Introduction
	Motivation
	Our contributions

	Background
	Preliminaries
	Related work

	Theoretical Results
	Setup
	Recovery of model parameters
	Recovery of G

	Computational Results
	Population cumulants
	Sample cumulants

	Conclusion and Future Work
	Adapted Algorithms
	Computational Complexity
	References

