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Abstract. We uncover connections between maximum likelihood estimation in statistics and norm minimization
over a group orbit in invariant theory. We focus on Gaussian transformation families, which include
matrix normal models and Gaussian graphical models given by transitive directed acyclic graphs.
We use stability under group actions to characterize boundedness of the likelihood, and existence
and uniqueness of the maximum likelihood estimate. Our approach reveals promising consequences
of the interplay between invariant theory and statistics. In particular, existing scaling algorithms
from statistics can be used in invariant theory, and vice versa.
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1. Introduction. The task of fitting data to a model is fundamental in statistics. A
statistical model is a set of probability distributions. We seek a point in a model that best fits
some empirical data. A widespread approach is to maximize the likelihood of observing the
data as we range over the model. A point that maximizes the likelihood is called a maximum
likelihood estimate (MLE). There are several ways to compute an MLE for different statistical
models, usually via optimization approaches that find a local maximum [30, 33]. There is
growing interest in understanding when algorithms to find an MLE are guaranteed to work,
and under which conditions an MLE exists or is unique. In this paper, we approach such
questions using invariant theory.

Invariant theory studies actions of groups on vector spaces or, more generally, on algebraic
varieties. An important concept is the orbit of a point under the group action, which is the set
of all points that differ from the original point by a transformation in the group. The capacity
of a point is the infimal norm along its orbit. If the orbit is closed, the capacity is attained;
otherwise the capacity is attained only on the orbit closure. Points with zero capacity are
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called unstable; they form the null cone, a classical object in invariant theory dating back
to Hilbert [23], which is of particular interest for moduli spaces of algebraic objects. More
recently, algorithmic approaches to stability questions have been taken, with a special focus
on testing null cone membership [1, 8, 9, 11, 20, 24]. A number of applied problems have been
cast within an invariant theoretic framework, including questions in quantum information
theory, complexity theory, and analytic inequalities; see, e.g., [8, section 1.2].

There is a close connection between statistical models and group actions, dating back to
Fisher [19]. We build a bridge between invariant theory and maximum likelihood estimation.
In this paper, we study this connection in the setting of multivariate Gaussian models. We
define Gaussian group models, multivariate Gaussian models whose concentration matrices
are of the form gTg, where g lies in a group. Examples of Gaussian group models are matrix
normal models and Gaussian graphical models defined by transitive directed acyclic graphs.

The connection between invariant theory and maximum likelihood estimation also holds
for discrete statistical models, as we discuss in our companion paper [2]. There, we show that
maximum likelihood estimation in log-linear models is equivalent to computing the capacity
under a torus action. Both Gaussian group models and log-linear models fall within the
framework of exponential families.

Main contributions. We show that finding the MLE can be cast as the problem of com-
puting the capacity; see Propositions 3.4 and 3.13. Viewing maximum likelihood estimation as
a norm minimization problem allows us to build a correspondence between notions of stability
from invariant theory and MLE properties:\left\{       

unstable
semistable
polystable
stable

\right\}       \leftarrow \rightarrow 

\left\{       
likelihood unbounded from above
likelihood bounded from above

MLE exists
MLE exists uniquely

\right\}       
For some models we prove an exact equivalence between the four notions of stability on the
left and the four properties of the MLE on the right; see Theorem 3.15 for complex Gaussian
group models. For real statistical models, we prove real analogues of the correspondence that
hold at two levels of generality; see Theorems 3.6 and 3.10. The two levels of generality
correspond to non-reductive and reductive groups.

While invariant theory often focuses on reductive groups, Gaussian group models are
natural to study in both settings. For matrix normal models, which are given by reductive
groups, we use descriptions of the null cone to give improved bounds on the number of samples
generically required for a bounded likelihood function; see Theorem 4.8 and Corollary 4.9.
Gaussian models defined by transitive directed acyclic graphs are in general given by non-
reductive groups. For such models, our results translate to exact conditions for MLE existence
in terms of linear independence of the rows of the sample matrix; see Theorem 5.3.

Our connection between invariant theory and maximum likelihood estimation leads to the
algorithmic consequences that we detail below.

Algorithmic implications. Scaling algorithms are iterative algorithms existing both in
statistics and in invariant theory. They are characterized by update steps, which are given
by a group action in many instances. For matrix normal models, we show the equivalence ofD
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GLm1 \times GLm2 G

operator scaling

flip-flop algorithm

norm minimization

IPS for Gaussian group models

Left-right action General group action

Invariant Theory:

Statistics:

Figure 1. Overview of different scaling algorithms. For the invariant theory algorithms, we use matrices
of determinant one, e.g., SLm1 \times SLm2 \subseteq GLm1 \times GLm2 .

two alternating algorithms: operator scaling from invariant theory for null cone membership
testing [20, 22], and the flip-flop algorithm from statistics for maximum likelihood estimation
[17, 29]; see the left of Figure 1 and section 4.5. This equivalence enables us to obtain a
complexity analysis for the flip-flop algorithm (see Theorem 4.15) by directly adapting the
result for the corresponding null cone membership problem from [9, Theorem 1.1].

We now describe how this can be extended to more general scaling algorithms; see the
right-hand side of Figure 1. The flip-flop algorithm can be thought of as an instance of iterative
proportional scaling (IPS) (or iterative proportional fitting (IPF)), a family of methods to find
the MLE in a statistical model [10, 18]. For Gaussian group models, we can find an MLE
via the geodesically convex optimization approaches from [8] that minimize the norm over an
orbit. These algorithms can be thought of as generalizations of operator scaling. We therefore
regard them as IPS for Gaussian group models. Properties (such as complexity or efficiency)
of scaling algorithms for testing stability translate, under our correspondence, to properties
of the corresponding IPS algorithm for finding the MLE.

The connection between norm minimization in invariant theory and IPS in statistics is
discussed for torus actions and discrete models in our companion paper [2]. There, [2, Figure 4]
gives the analogue of Figure 1 for the setting of a discrete model and a torus action (rather
than a Gaussian model and a general group action). The starting point of both figures is
Sinkhorn scaling [35], an alternating method that involves the left-right action of a product
of two tori. The alternating idea from Sinkhorn's scaling generalizes to products of groups,
e.g., to operator scaling and the flip-flop algorithm in Figure 1.

We see that algorithms in invariant theory can be used in maximum likelihood estimation,
and vice versa. In statistics, many iterative algorithms for finding the MLE are well known.
It is a more recent question to understand when they converge, i.e., when an MLE exists,
and when convergence is to a unique solution, i.e., when the MLE is unique. The historical
progression is the opposite in invariant theory: the distinction between different types of
stability is classical, while more recent approaches use algorithms to test instability. OurD
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results are intended to stimulate further research to deepen the connection between the fields.1

Organization. To address readers with different backgrounds, we present preliminaries
from invariant theory and statistics in section 2. We consider the general setting of a Gaussian
group model in section 3. We then study matrix normal models in section 4, followed by
transitive directed acyclic graphs in section 5.

2. Preliminaries.

2.1. Maximum likelihood estimation. A statistical model is a set of probability distri-
butions. In this paper we consider multivariate Gaussian distributions with mean zero. The
density function of an m-dimensional Gaussian with mean zero and covariance matrix \Sigma is

f\Sigma (y) =
1\sqrt{} 

det(2\pi \Sigma )
exp

\biggl( 
 - 1

2
yT\Sigma  - 1y

\biggr) 
,

where y \in \BbbR m and \Sigma is in the cone of m \times m positive definite matrices, which we denote by
PDm. We often consider the concentration matrix \Psi = \Sigma  - 1. A Gaussian model is determined
by a set of concentration matrices, i.e., a subset of PDm.

A maximum likelihood estimate (MLE) is a point in the model that maximizes the likeli-
hood of observing some data y = (y1, . . . , yn), where n is the sample size. That is, an MLE
maximizes the likelihood function

(2.1) Ly(\theta ) = f\theta (y1) \cdot \cdot \cdot f\theta (yn),

where the model is parametrized by \theta \in \Theta . It is often convenient to work with the log-likelihood
function \ell y = logLy, which has the same maximizers.

For Gaussian models \scrM \subseteq PDm, the data is a tuple Y = (Y1, . . . , Yn) \in (\BbbR m)n. The
likelihood function (2.1) is

LY (\Psi ) =
n\prod 

i=1

f\Psi  - 1(Yi).

The log-likelihood function can be written, up to additive and multiplicative constants, as

(2.2) \ell Y (\Psi ) = log det(\Psi ) - tr(\Psi SY ),

where SY = 1
n

\sum n
i=1 YiY

T
i is the sample covariance matrix, an m \times m positive semidefinite

matrix. It is well known that the unique maximizer of the likelihood over the positive definite
cone is \^\Psi = S - 1

Y , if SY is invertible. If SY is not invertible, the likelihood function is unbounded
and the MLE does not exist; see [36, Proposition 5.3.7].

The minimum number of samples needed for an MLE to generically exist is the maximum
likelihood threshold (mlt) of a model. The minimum number of samples needed for the likeli-
hood to be generically bounded is denoted by mlt\mathrm{b}. By generically, we mean that a property
holds away from an algebraic hypersurface. Hence, it will hold almost surely, i.e., outside of a
set of Lebesgue measure zero. As an example, the discussion above says that mlt = mlt\mathrm{b} = m
when the Gaussian model is the full positive definite cone,\scrM = PDm.

1Since the preprint of this paper first appeared, our dictionary between ML estimation and invariant theory
has been used to obtain ML thresholds in two families of multivariate Gaussian models: matrix normal models
(see section 4) and their higher-order generalization, tensor normal models (see Example 3.3) [12, 13].D
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2.2. Invariant theory. This section gives a friendly guide to our invariant theory setting,
following [37]. We explain how our seemingly special setting fits into usual terminology of
invariant theory in Remark 2.4.

Invariant theory studies actions of a group G and notions of stability with respect to this
action. In this article we work with linear actions on a real or complex vector space. Such a
linear action corresponds to a representation \varrho : G\rightarrow GLm(\BbbK ); i.e., each group element g \in G
is assigned an invertible matrix in GLm(\BbbK ), where \BbbK is \BbbR or \BbbC . The group element g \in G
acts on \BbbK m by left multiplication with the matrix \varrho (g). For a vector v \in \BbbK m, we define the
capacity to be cap(v) := infg\in G \| g \cdot v\| 2. Here and throughout the paper, \| \cdot \| denotes the
Euclidean norm for vectors and Frobenius norm for matrices. We now define the four notions
of stability for such an action.

Definition 2.1. Let v \in \BbbK m. We denote the orbit of v by G \cdot v, the orbit closure with respect
to the Euclidean topology by G \cdot v, and the stabilizer of v by Gv. We say v is

(a) unstable if 0 \in G \cdot v, i.e., cap(v) = 0;

(b) semistable if 0 /\in G \cdot v, i.e., cap(v) > 0;

(c) polystable if v \not = 0 and G \cdot v is closed;

(d) stable if v is polystable and Gv is finite.
The set of unstable points is called the null cone of the group action.

The orbit and orbit closure of v only depend on the group \varrho (G). Thus, when studying the
notions from Definition 2.1(a)--(c) we can assume G \subseteq GLm after restricting to the image of
\varrho . We call G \subseteq GLm Zariski closed if G is the zero locus of a set of polynomials in the matrix
entries. The transpose of g \in G is denoted by gT and the Hermitian transpose by g\ast . We say
that a group G is self-adjoint if g \in G implies gT \in G (for \BbbK = \BbbR ), or if g \in G implies g\ast \in G
(for \BbbK = \BbbC ).

Next, we introduce the moment map and state the Kempf--Ness theorem, a crucial ingre-
dient for many of our results. We consider G \subseteq GLm(\BbbK ), a Zariski closed and self-adjoint
subgroup. For each vector v \in \BbbK m, we study the map

\gamma v : G  - \rightarrow \BbbR , g \mapsto  - \rightarrow \| gv\| 2

and note that the infimum of \gamma v is the capacity of v. Since G is defined by polynomial
equations, we can consider its tangent space TImG \subseteq \BbbK m\times m at the identity matrix Im, and
we can compute the differential of the map \gamma v at the identity:

DIm\gamma v : TImG  - \rightarrow \BbbR , \.g \mapsto  - \rightarrow 2Re[tr( \.gvv\ast )].

The moment map \mu assigns this differential to each vector v, i.e.,

\mu : \BbbK m  - \rightarrow Hom\BbbR (TImG,\BbbR ), v \mapsto  - \rightarrow DIm\gamma v.

The moment map vanishes at a vector v if and only if the identity matrix Im is a critical point
of the map \gamma v. Now we are ready to formulate the Kempf--Ness theorem, which is due to [25]
for \BbbK = \BbbC . The first proof for \BbbK = \BbbR was given in [34].D
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Theorem 2.2 (Kempf--Ness). Let G \subseteq GLm(\BbbK ) be a Zariski closed self-adjoint subgroup
with moment map \mu , where \BbbK \in \{ \BbbR ,\BbbC \} . If \BbbK = \BbbR , let K be the set of orthogonal matrices in
G. If \BbbK = \BbbC , let K be the set of unitary matrices in G. For v \in \BbbK m, we have the following:

(a) The vector v is of minimal norm in its orbit if and only if \mu (v) = 0.

(b) If \mu (v) = 0 and w \in G \cdot v is such that \| v\| = \| w\| , then w \in K \cdot v.
(c) If the orbit G \cdot v is closed, then there exists some w \in G \cdot v with \mu (w) = 0.

(d) If \mu (v) = 0, then the orbit G \cdot v is closed.

(e) The vector v is polystable if and only if there exists 0 \not = w \in G \cdot v with \mu (w) = 0.

(f) The vector v is semistable if and only if there exists 0 \not = w \in G \cdot v with \mu (w) = 0.

Proof. Parts (a)--(d) are [37, Theorems 3.26 and 3.28], while part (e) is a direct consequence
of (c) and (d). Part (f) follows from the fact that any orbit closure G \cdot v contains a unique
closed orbit, which is not the zero orbit if and only if v is semistable. For \BbbK = \BbbC this
can be found in [37, Theorem 3.20], and for \BbbK = \BbbR we refer the reader to [34, section 9.3]
or [6, Theorem 1.1(iii)]. For the latter, note that [6, Condition (1)] is satisfied in our setting
by [37, Theorem 2.16].

The assumption that G is connected, which appears in [37, Theorem 3.26], is not needed
here, by the following argument. If G\circ is the identity component of G, then the quotient
group G/G\circ is finite, and its elements can be represented by unitary matrices, by the polar
decomposition [37, Theorem 2.16]. Hence (a)--(f) above depend only on G\circ .

The following result relates the capacity over \BbbC to the capacity over \BbbR .

Proposition 2.3. Let G\BbbR be a Zariski closed self-adjoint subgroup of GLm(\BbbR ), and denote
by G\BbbC its Zariski closure in GLm(\BbbC ). Let cap\BbbK (v) be the capacity of v \in \BbbK m under G\BbbK , and
denote the null cone under left multiplication with G\BbbK by \scrN \BbbK . Then, for v \in \BbbR m, we have the
equality of capacities cap\BbbR (v) = cap\BbbC (v). In particular, \scrN \BbbR = \scrN \BbbC \cap \BbbR m.

Proof. The group G\BbbC \subseteq GLm(\BbbC ) is self-adjoint by [37, Lemma 3.29]. The capacity cap\BbbK (v)
is attained at all elements of minimal norm in the closed orbit contained in G\BbbK \cdot v, by Kempf--
Ness. Hence we can reduce to studying a closed orbit G\BbbR \cdot v. If w is of minimal norm in G\BbbR \cdot v,
then it is of minimal norm in G\BbbC \cdot v by [37, Lemma 3.31] or [34, Lemma 8.1]. Thus, G\BbbC \cdot w is
closed by Kempf--Ness, and hence \| w\| 2 = cap\BbbC (v).

Remark 2.4. We relate our special setting to the usual setting from invariant theory, where
one considers a linearly reductive group G over \BbbK \in \{ \BbbR ,\BbbC \} . For such a group, any finite di-
mensional rational representation \varrho : G \rightarrow GL(V ) over \BbbK on a vector space V is semisimple
(also called fully reducible); i.e., the representation decomposes into irreducible representa-
tions. Moreover, \varrho (G) \subseteq GL(V ) is a closed algebraic subgroup; see, e.g., [31, Theorem 5.39].
Hence, there exists an inner product on V such that \varrho (G) \subseteq GL(V ) is self-adjoint; see [32, The-
orem 7.1] for \BbbK = \BbbC and [32, Theorem 7.2] for \BbbK = \BbbR .

3. Gaussian group models. We construct Gaussian models from representations G \rightarrow 
GL(V ) of a group G on a real vector space V . This extends the idea that log-linear models
are orbits of the action by a torus, which is utilized in [2]. Our construction only depends on
the image of the group G inside GL(V ). We view each group element as an m\times m invertibleD
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matrix by fixing an isomorphism V \sim = \BbbR m. The Gaussian group model given by G is the
multivariate Gaussian model consisting of all distributions of mean zero whose concentration
matrices lie in the set

\scrM G = \{ gTg | g \in G\} .

Equivalently, we take \scrM G to be the model consisting of distributions whose covariance ma-
trices are of the form ggT. This is an instance of a transformation family, a statistical model
on which a group acts transitively; see [5]. Our construction includes familiar examples of
statistical models.

Example 3.1. When G is the general linear group GL(V ), every concentration matrix lies
in\scrM G, and we get a standard multivariate Gaussian of dimension dim(V ); see section 2.1.

Example 3.2. When G is the torus of diagonal matrices GT(V ), the concentration ma-
trices gTg are also diagonal, and the Gaussian group model consists of dim(V ) independent
univariate Gaussian variables.

Given two matrices Ak \in \BbbR mk\times mk , the Kronecker product A1\otimes A2 is a an m1m2\times m1m2

matrix. Its rows are indexed by (i1, i2), and its columns are indexed by (j1, j2), where the
indices ik and jk range from 1 to mk. The entry of A1 \otimes A2 at index ((i1, i2), (j1, j2)) is
(A1)i1j1(A2)i2j2 .

Example 3.3. Consider the subset of GLm1m2 given by the image of

GLm1 \times GLm2  - \rightarrow GLm1m2 ,

(g1, g2) \mapsto  - \rightarrow g1 \otimes g2.

The concentration matrices in the Gaussian group model are those of the form

(g1 \otimes g2)T(g1 \otimes g2) = gT1 g1 \otimes gT2 g2,

a Kronecker product of an m1 \times m1 concentration matrix and an m2 \times m2 concentration
matrix. These Gaussian group models are known as matrix normal models, which we discuss
in detail in section 4. This setting can be extended to tensor normal models under the map
(g1, . . . , gd) \mapsto \rightarrow g1 \otimes \cdot \cdot \cdot \otimes gd.

We discuss further examples in the context of directed graphical models in section 5. Now,
we describe maximum likelihood estimation for the Gaussian group model given by G.

The log-likelihood function is

(3.1) \ell Y (\Psi ) = log det(\Psi ) - tr(\Psi SY ),

where SY = 1
n

\sum n
i=1 YiY

T
i is the sample covariance matrix; see (2.2). An MLE is a concentra-

tion matrix in\scrM G that maximizes the log-likelihood.
Next, we describe how finding the MLE relates to finding the capacity of the tuple Y .

A consequence of our results is that algorithms to find the capacity can be used to find the
MLE in Gaussian group models. For example, we can apply methods described in [8] to the
settings of Theorems 3.10 and 3.15.D
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3.1. Equivalence of optimization problems. We compare the maximization of the log-
likelihood to the minimization of the norm \| g \cdot Y \| 2, where Y is a tuple of samples and g is an
element of the group. The action of the group G on the tuple Y = (Y1, . . . , Yn) \in V n is given
by g \cdot Y = (gY1, . . . , gYn); i.e., when considering the action on V n the group G is diagonally
embedded in GL(V n). We can rewrite the norm as

(3.2) \| g \cdot Y \| 2 =
n\sum 

i=1

(gYi)
TgYi = n tr(gTgSY ).

We compare this expression for the norm with the log-likelihood in (3.1). The term
appearing with SY in the trace is \Psi in the log-likelihood and gTg in the norm. This explains
our choice to let the Gaussian group model consist of distributions with concentration matrix
gTg \in \scrM G.

Combining the expressions for the norm and the log-likelihood, we see that maximizing
the log-likelihood over concentration matrices in the model\scrM G is equivalent to minimizing

 - \ell Y (gTg) =
1

n
\| g \cdot Y \| 2  - log det(gTg)

over g \in G. We show that this minimization can be done in two steps. First, we minimize the
norm over the subgroup G\pm 

\mathrm{S}\mathrm{L}, consisting of matrices in G of determinant \pm 1. Then, we find
the scalar multiple of this matrix that minimizes the overall expression. For this, we require
that the group G be closed under nonzero scalar multiples.

Proposition 3.4. Let Y \in V n be a tuple of samples. If the group G \subseteq GL(V ) is closed
under nonzero scalar multiples, the supremum of the log-likelihood (3.1) over\scrM G is the double
infimum

 - inf
\lambda \in \BbbR >0

\Biggl( 
\lambda 

n

\Biggl( 
inf

h\in G\pm 
\mathrm{S}\mathrm{L}

\| h \cdot Y \| 2
\Biggr) 
 - dim(V ) log \lambda 

\Biggr) 
.

The MLEs, if they exist, are the matrices \lambda hTh, where h minimizes \| h \cdot Y \| under the action
of G\pm 

\mathrm{S}\mathrm{L} on V n, and \lambda \in \BbbR >0 is the unique value minimizing the outer infimum.

Proof. Maximizing \ell Y (\Psi ) over\scrM G is equivalent to minimizing

f : G\rightarrow \BbbR ,

g \mapsto \rightarrow 1

n
\| g \cdot Y \| 2  - log det(gTg),

since f(g) only depends on the positive definite matrix gTg. We write g \in G as g = \tau h, where
\tau \in \BbbR >0 and h \in G\pm 

\mathrm{S}\mathrm{L}. Using g
Tg = \tau 2hTh, and setting \lambda := \tau 2 and m := dim(V ), we have

f(g) =
\tau 2

n
\| h \cdot Y \| 2  - log det(\tau 2hTh) =

\tau 2

n
\| h \cdot Y \| 2  - log(\tau 2m) =

\lambda 

n
\| h \cdot Y \| 2  - m log(\lambda ).
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The minimum value of the function \lambda \mapsto \rightarrow \lambda C  - log(\lambda ) is log(C) + 1 for C > 0, which increases
as C increases. Hence, to minimize f , we can first find the minimal norm in the orbit closure
and then minimize the univariate function in \lambda , i.e.,

inf
g\in G

f(g) = inf
\lambda \in \BbbR >0

\Biggl( 
\lambda 

n

\Biggl( 
inf

h\in G\pm 
\mathrm{S}\mathrm{L}

\| h \cdot Y \| 2
\Biggr) 
 - m log \lambda 

\Biggr) 
.

Furthermore, an MLE is a matrix \^\Psi \in \scrM G that maximizes \ell Y (\Psi ). Comparing \ell Y (\Psi ) with
the infimum in the claim, we see that the MLEs are all matrices \^\Psi = gTg = \lambda hTh, where
g =
\surd 
\lambda h, and h and \lambda minimize the inner and outer infima, respectively.

The group G\pm 
\mathrm{S}\mathrm{L} may split into two parts: G+

\mathrm{S}\mathrm{L}, consisting of matrices in G of determinant
one, and G - 

\mathrm{S}\mathrm{L}, consisting of matrices of determinant  - 1. If we prefer to optimize over one
part, say G+

\mathrm{S}\mathrm{L}, we can compute the capacity of Y under G\pm 
\mathrm{S}\mathrm{L} by doing two minimizations. A

fixed matrix h\prime \in G - 
\mathrm{S}\mathrm{L} gives a bijection between G+

\mathrm{S}\mathrm{L} and G - 
\mathrm{S}\mathrm{L} via h \mapsto \rightarrow hh\prime . Hence we can

minimize \| h \cdot Y \| over G\pm 
\mathrm{S}\mathrm{L} by minimizing both \| h \cdot Y \| and \| h \cdot (h\prime \cdot Y )\| over G+

\mathrm{S}\mathrm{L}. However,
we can ignore neither G+

\mathrm{S}\mathrm{L} nor G - 
\mathrm{S}\mathrm{L}. The following is an example of a group, closed under

nonzero scalar multiples, such that the norm \| h \cdot Y \| can be attained at one but not the other.

Example 3.5. Let the group G consist of nonzero scalar multiples of block-diagonal 6\times 6
matrices of the form

(3.3)

\left[  M 0 0

0 S1MS - 1
1 0

0 0 S2MS - 1
2

\right]  , where S1 =

\biggl[ 
1 2
2 1

\biggr] 
, S2 =

\biggl[ 
1 0
0 2

\biggr] 
,

and M \in O2 is an orthogonal 2\times 2 matrix. The component G+
\mathrm{S}\mathrm{L} consists of matrices in (3.3)

where M is special orthogonal, while the component G - 
\mathrm{S}\mathrm{L} consists of matrices in (3.3) where

M is orthogonal with determinant  - 1. Note that although the group G contains matrices of
determinant  - 1, it does not contain any orthogonal matrices of determinant  - 1.

The norm of \| g \cdot Y \| , for a tuple of samples Y , can be expressed in terms of the sample
covariance matrix SY . Consider the tuple of four samples given by

Y =

\left[         

0 0 0 0
0 0 0 0
2 0 0 0

0 2
\surd 
2 0 0

0 0 0 2
\surd 
5

0 0 6
\surd 
5

5
8
\surd 
5

5

\right]         
, with SY =

\left[  0 0 0
0 S2 0
0 0 S2

1

\right]  .

The capacity problem can be rewritten as minimizing the trace tr(gTgSY ) over matrices
g \in G\pm 

\mathrm{S}\mathrm{L}, by (3.2), to give

inf
h\in G\pm 

\mathrm{S}\mathrm{L}

\| h \cdot Y \| 2 = 4 \cdot inf
M\in O2

\Bigl[ 
tr
\Bigl( 
(S1MS - 1

1 )T(S1MS - 1
1 )S2

\Bigr) 
+ tr

\Bigl( 
(S2MS - 1

2 )T(S2MS - 1
2 )S2

1

\Bigr) \Bigr] 
.
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We can parametrize the 2\times 2 special orthogonal matrices by P and the 2\times 2 orthogonal
matrices of determinant  - 1 by Q where

P =

\biggl[ 
a b
 - b a

\biggr] 
, Q =

\biggl[ 
 - a  - b
 - b a

\biggr] 
, with a, b \in \BbbR , and a2 + b2 = 1.

Then the minimization problems over G+
\mathrm{S}\mathrm{L} and G - 

\mathrm{S}\mathrm{L} can be rewritten as

inf
h\in G+

\mathrm{S}\mathrm{L}

1

4
\| h \cdot Y \| 2 = min

a2+b2=1

\biggl( 
13a2  - 44

3
ab+

419

12
b2
\biggr) 
,

inf
h\in G - 

\mathrm{S}\mathrm{L}

1

4
\| h \cdot Y \| 2 = min

a2+b2=1

\biggl( 
71

3
a2  - 28

3
ab+

97

4
b2
\biggr) 
.

Note that both infima can only be attained for a and b having the same sign because of
the negative coefficients of ab; we assume a, b \geq 0. Substituting b =

\surd 
1 - a2 in the latter

minimum, we see that

71

3
a2 +

97

4
(1 - a2) - 28

3
a
\sqrt{} 
1 - a2 \geq 97

4
+

\biggl( 
71

3
 - 97

4

\biggr) 
 - 28

3
\cdot 1
2
= 19.

In contrast, setting a = 1 and b = 0 in the former minimum gives a value of 13. Hence
infh\in G+

\mathrm{S}\mathrm{L}
\| h \cdot Y \| 2 < infh\in G - 

\mathrm{S}\mathrm{L}
\| h \cdot Y \| 2. Multiplying Y by a fixed matrix in G - 

\mathrm{S}\mathrm{L} gives a tuple

of samples where the strict inequality is reversed, and the minimum is attained only at the
negative component G - 

\mathrm{S}\mathrm{L}.

3.2. Relating stability to the MLE. We use Proposition 3.4 to prove the following cor-
respondence between stability notions and MLE existence.

Theorem 3.6. Consider a tuple Y \in V n of samples, and a group G \subseteq GL(V ) that is closed
under nonzero scalar multiples. The stability under the action of G\pm 

\mathrm{S}\mathrm{L} on V n is related to
maximum likelihood estimation for the Gaussian group model\scrM G as follows.

(a) Y unstable \leftrightarrow \ell Y not bounded from above,
(b) Y semistable \leftrightarrow \ell Y bounded from above,
(c) Y polystable \Rightarrow MLE exists.

Proof. If Y is unstable, then C := infh\in G\pm 
\mathrm{S}\mathrm{L}
\| h \cdot Y \| 2 = 0. Hence the outer infimum from

Proposition 3.4 equals  - \infty , so the supremum of \ell Y is infinite. Conversely, if Y is semistable,
then C > 0, and thus the outer infimum from Proposition 3.4 is some real number and \ell Y is
bounded from above. This gives parts (a) and (b).

If Y is polystable, then the infimum C > 0 is attained for some h \in G\pm 
\mathrm{S}\mathrm{L} and \lambda hTh is an

MLE, where \lambda \in \BbbR >0 minimizes the outer infimum in Proposition 3.4.

Remark 3.7. Assume that G contains an orthogonal matrix of determinant  - 1, say o \in G.
Then minimizing the norm \| h \cdot Y \| over G\pm 

\mathrm{S}\mathrm{L} is equivalent to minimizing it over G+
\mathrm{S}\mathrm{L}. Hence,

in this case, Proposition 3.4 and Theorem 3.6 both hold for G+
\mathrm{S}\mathrm{L} as well as G\pm 

\mathrm{S}\mathrm{L}. This is
because we can write g \in G as g = \tau oh, where \tau \in \BbbR >0 and h \in G+

\mathrm{S}\mathrm{L}, and then follow the
computations in the proof of Proposition 3.4.D
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If we assume that our group G is Zariski closed and self-adjoint, we can strengthen The-
orem 3.6 using the Kempf--Ness theorem over \BbbR . These additional assumptions hold for
Examples 3.1, 3.2, and 3.3. On the statistics side, self-adjointness implies that the set of
concentration matrices in\scrM G is equal to the set of covariance matrices in the model.

Lemma 3.8. Let G \subseteq GL(V ) be a Zariski closed self-adjoint group, closed under nonzero
scalar multiples. If there is an element of G with negative determinant, then G contains an
orthogonal matrix of determinant  - 1. In particular, Proposition 3.4 and Theorem 3.6 still
hold after replacing G\pm 

\mathrm{S}\mathrm{L} by G+
\mathrm{S}\mathrm{L}.

Proof. Pick g \in G with det(g) < 0. Since G is Zariski closed and self-adjoint, the polar
decomposition can be carried out in G, by [37, Theorem 2.16]. In particular, there are an
orthogonal o \in G and a positive definite p \in G such that g = op. Then det(g) < 0 implies
det(o) < 0, i.e., det(o) =  - 1. The second part of the claim follows from Remark 3.7.

As a consequence of Lemma 3.8 we work with G+
\mathrm{S}\mathrm{L} (instead of G\pm 

\mathrm{S}\mathrm{L}) in the following.

Proposition 3.9. Let Y \in V n be a tuple of samples, and let G \subseteq GL(V ) be a Zariski closed
self-adjoint group which is closed under nonzero scalar multiples. If \lambda hTh is an MLE given
Y , with h \in G+

\mathrm{S}\mathrm{L} and \lambda \in \BbbR >0, then all MLEs given Y are of the form gT(\lambda hTh)g, where g is
in the G+

\mathrm{S}\mathrm{L}-stabilizer of Y .

Proof. By Proposition 3.4 for G+
\mathrm{S}\mathrm{L}, the matrix h minimizes the norm of Y under the action

of G+
\mathrm{S}\mathrm{L}, and hence so does hg for any g in the G+

\mathrm{S}\mathrm{L}-stabilizer of Y . Therefore, \lambda (hg)Thg =
gT(\lambda hTh)g is another MLE. Conversely, by Proposition 3.4 any MLE is of the form \lambda (h\prime )Th\prime 

with h\prime \in G+
\mathrm{S}\mathrm{L} such that

\| h\prime \cdot Y \| 2 = inf
\~h\in G+

\mathrm{S}\mathrm{L}

\| \~h \cdot Y \| 2 = \| h \cdot Y \| 2.

Since G \subseteq GL(V ) is Zariski closed and self-adjoint, G+
\mathrm{S}\mathrm{L} \subseteq GL(V ) is Zariski closed and self-

adjoint, and so is its diagonal embedding into GL(V n). Thus we can apply Kempf--Ness,
Theorem 2.2(b). For the G+

\mathrm{S}\mathrm{L} action on V n, there is an orthogonal matrix o \in G+
\mathrm{S}\mathrm{L} with

o \cdot (h \cdot Y ) = h\prime \cdot Y . Hence, g := h - 1 o - 1 h\prime is in the G+
\mathrm{S}\mathrm{L}-stabilizer of Y , and using h\prime = ohg we

deduce that \lambda (h\prime )Th\prime = gT(\lambda hTh)g.

With these extra assumptions on the groupG, we obtain a stronger version of Theorem 3.6.
Moreover, with these assumptions we are in the setting of [8], so we can use their algorithmic
methods to compute the capacity in order to find an MLE. We discuss these connections to
algorithms for matrix normal models in section 4.

Theorem 3.10. Let Y \in V n be a tuple of samples, and let G \subseteq GL(V ) be a Zariski closed
self-adjoint group that is closed under nonzero scalar multiples. The stability under the action
of G+

\mathrm{S}\mathrm{L} on V n is related to maximum likelihood estimation for the Gaussian group model\scrM G

as follows:

(a) Y unstable \leftrightarrow \ell Y not bounded from above,
(b) Y semistable \leftrightarrow \ell Y bounded from above,
(c) Y polystable \leftrightarrow MLE exists,
(d) Y stable \Rightarrow finitely many MLEs exist \leftrightarrow unique MLE exists.D
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Proof. We recall that the action of G+
\mathrm{S}\mathrm{L} on V n is given by the diagonal embedding into

GL(V n), and that this turns G+
\mathrm{S}\mathrm{L} into a Zariski closed self-adjoint subgroup of GL(V n) by the

assumptions on G \subseteq GL(V ).
By Theorem 3.6, it remains to prove the converse implication in (c) and condition (d). If

an MLE given Y exists, then the log-likelihood function \ell Y is bounded from above and attains
its maximum. Hence the double infimum from Proposition 3.4 is attained, and there exists
h \in G+

\mathrm{S}\mathrm{L} such that h \cdot Y has minimal norm in the orbit of Y under G+
\mathrm{S}\mathrm{L}. Hence the orbit is

closed by Kempf--Ness, Theorem 2.2(d), and Y is polystable.
We now prove condition (d). If Y is stable, its stabilizer StabY is finite. Then there are

only finitely many MLEs given Y , by Proposition 3.9. It remains to show that a tuple Y
cannot have finitely many MLEs unless it has a unique MLE. A tuple Y with finitely many
MLEs is polystable, by condition (c). Moreover, we can relate the stabilizers of Y and h \cdot Y by
Stabh\cdot Y = hStabY h

 - 1. Combining Propositions 3.4 and 3.9, we can relate the MLEs given
Y to the MLEs given h \cdot Y via

\{ MLEs given h \cdot Y \} =
\bigl( 
h - 1

\bigr) T \{ MLEs given Y \} h - 1.

Hence, to study the stabilizer and MLE of a polystable Y we can assume that Y is of minimal
norm in its orbit under G+

\mathrm{S}\mathrm{L}. One of the MLEs given Y is then \lambda I, where \lambda > 0 minimizes
the outer infimum in Proposition 3.4, and I is the identity matrix of size dim(V ).

We show that the set \{ gTg | g \in StabY \} is either the identity matrix or infinite. This
implies that Y has either a unique MLE or infinitely many MLEs, because the MLEs given Y
are the matrices gT(\lambda ITI)g = \lambda gTg, where g \in StabY , by Proposition 3.9. The group StabY
is self-adjoint by [37, Corollary 2.25]. If it is contained in the set of orthogonal matrices,
then \{ gTg | g \in StabY \} consists only of the identity matrix. Otherwise, let h \in StabY be
nonorthogonal. Then hT \in StabY and hence hTh \in StabY , and this positive definite matrix
is not equal to the identity matrix. The matrix hTh has infinite order, since the eigenvalues
of (hTh)N are the Nth powers of the eigenvalues of hTh, and there exist eigenvalues that
are not equal to one. Since (hTh)N \in StabY and ((hTh)N )T((hTh)N ) = (hTh)2N , the set
\{ gTg | g \in StabY \} is infinite.

Remark 3.11. In the setting of a Zariski closed self-adjoint group G closed under nonzero
scalar multiples, the results in Proposition 3.4, Proposition 3.9, and Theorem 3.10 are un-
changed if we replace G+

\mathrm{S}\mathrm{L} by the larger subgroup G\pm 
\mathrm{S}\mathrm{L}, by the same argument as in Lemma 3.8.

In fact, we can also replace G+
\mathrm{S}\mathrm{L} by the smaller group G\circ 

\mathrm{S}\mathrm{L}, the identity component of G+
\mathrm{S}\mathrm{L}.

This is because the quotient group G+
\mathrm{S}\mathrm{L}/G

\circ 
\mathrm{S}\mathrm{L} is finite and every equivalence class has an or-

thogonal matrix representative, by the polar decomposition [37, Theorem 2.16]. The same
argument holds for any Zariski closed self-adjoint subgroup H of G with the same identity
component as G+

\mathrm{S}\mathrm{L}. We may not have such choices for groups that are not Zariski closed and
self-adjoint; see Example 3.5.

We note that the converse of Theorem 3.10(d) does not hold by Example 4.2 from the next
section. We also stress the importance of the assumption that the group G is self-adjoint for
condition (d). This assumption is needed to conclude that the MLE is unique from the fact
that there are finitely many MLEs. Indeed, the following example exhibits a Zariski closedD
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group G, closed under nonzero scalar multiples, for which there exist samples Y with a finite
number of MLEs in the Gaussian group model given by G, but not a unique MLE.

Example 3.12. Let G be generated by  - I and all nonzero scalar multiples of a non-
orthogonal matrix M with M2 = I. For example, we can take

M =

\biggl[ 
1/2 3
1/4  - 1/2

\biggr] 
.

The group consists of nonzero scalar multiples of the matrices M and I2. The MLEs to
the Gaussian group model \scrM G given samples Y are given by group elements h \in G\pm 

\mathrm{S}\mathrm{L} that
minimize the norm \| h \cdot Y \| , by Proposition 3.4. Since scaling the matrix by some \lambda scales its
determinant by \lambda 2, the subset G+

\mathrm{S}\mathrm{L} consists of \pm I2, and the subset G - 
\mathrm{S}\mathrm{L} consists of the matrices

\pm M . Consider the single sample

Y =

\biggl[ 
6
1

\biggr] 
.

Then \| M \cdot Y \| 2 = \| Y \| 2, and the sample Y has exactly two distinct MLEs.

3.3. Complex Gaussian models. Invariant theory is more classical over the field of com-
plex numbers than over the real numbers. We see in this section that several of our results can
be simplified and strengthened when working over \BbbC . The statistical consequences concern
statistical models over the complex numbers, as in [3, 21, 38].

We consider a complex vector space V and a subgroup G \subseteq GL\BbbC (V ) of the complex
general linear group on V . To view the group elements in G as invertible matrices, we fix an
isomorphism V \sim = \BbbC m. The complex Gaussian group model \scrM G consists of all multivariate
distributions of mean zero whose concentration matrix is of the form g\ast g for some g \in G. The
log-likelihood function becomes

(3.4) \ell Y (\Psi ) = log det(\Psi ) - tr(\Psi SY ), where SY :=
1

n

n\sum 
i=1

YiY
\ast 
i .

For the action of the group G on a tuple Y = (Y1, . . . , Yn) \in V n given by g \cdot Y = (gY1, . . . , gYn),
the norm becomes

\| g \cdot Y \| 2 =
n\sum 

i=1

(gYi)
\ast gYi = n tr(g\ast gSY ).

Hence, as before, maximizing the log-likelihood over concentration matrices in the complex
Gaussian group model\scrM G is equivalent to minimizing

 - \ell Y (g\ast g) =
1

n
\| g \cdot Y \| 2  - log det(g\ast g).

Analogously to Proposition 3.4, this can be done in two steps. Since we now work over \BbbC , we
only need to compute the capacity under the subgroup G+

\mathrm{S}\mathrm{L} \subseteq G of matrices with determinant
one, instead of using G\pm 

\mathrm{S}\mathrm{L}. In particular, the situation described in Example 3.5 cannot happen
over \BbbC , and we do not need to consider the extra assumptions in Remark 3.7.D
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Proposition 3.13. Let Y \in V n be a tuple of complex samples. If the group G is closed under
nonzero complex scalar multiples, the supremum of the log-likelihood (3.4) over the model\scrM G

is the double infimum

 - inf
\lambda \in \BbbR >0

\Biggl( 
\lambda 

n

\Biggl( 
inf

h\in G+
\mathrm{S}\mathrm{L}

\| h \cdot Y \| 2
\Biggr) 
 - dim(V ) log \lambda 

\Biggr) 
.

The MLEs, if they exist, are the matrices \lambda h\ast h, where h minimizes \| h \cdot Y \| under the action
of G+

\mathrm{S}\mathrm{L} on V n, and \lambda \in \BbbR >0 is the unique value minimizing the outer infimum.

Proof. The proof is analogous to the proof of Proposition 3.4. The only difference is that
we can write g \in G as g = \tau h, where \tau \in \BbbC \setminus \{ 0\} and h \in G+

\mathrm{S}\mathrm{L}. Then we see that

 - \ell Y (g\ast g) =
| \tau | 2

n
\| h \cdot Y \| 2  - dim(V ) log(| \tau | 2).

Setting \lambda = | \tau | 2 and continuing as in the proof of Proposition 3.4 shows the claim.

Using the same assumptions as in Proposition 3.13, we see that Theorem 3.6 holds over
\BbbC after replacing G\pm 

\mathrm{S}\mathrm{L} by G+
\mathrm{S}\mathrm{L}. The most important difference between the real and the

complex settings is that Theorem 3.10(d) is an equivalence over \BbbC . In Example 4.2, we will
see that this is not true over \BbbR . In the remainder of this section, we prove this equivalence
for complex Gaussian group models given by self-adjoint groups G. We first give an analogue
of Proposition 3.9 over \BbbC .

Proposition 3.14. Let Y \in V n be a tuple of complex samples, and let G \subseteq GL\BbbC (V ) be a
Zariski closed self-adjoint group, which is closed under nonzero complex scalar multiples. If
\lambda h\ast h is an MLE given Y , with h \in G+

\mathrm{S}\mathrm{L} and \lambda \in \BbbR >0, then all MLEs given Y are of the form
g\ast (\lambda h\ast h)g, where g is in the G+

\mathrm{S}\mathrm{L}-stabilizer of Y .

Proof. This is proven analogously as Proposition 3.9 using the complex version of Kempf--
Ness, Theorem 2.2, and Proposition 3.13 instead of Proposition 3.4.

Theorem 3.15. Consider a tuple Y \in V n of complex samples, and let G \subseteq GL\BbbC (V ) be a
Zariski closed self-adjoint group, which is closed under nonzero complex scalar multiples. The
stability under the action of G+

\mathrm{S}\mathrm{L} on V n is related to maximum likelihood estimation for the
complex Gaussian group model\scrM G as follows:

(a) Y unstable \leftrightarrow \ell Y not bounded from above,
(b) Y semistable \leftrightarrow \ell Y bounded from above,
(c) Y polystable \leftrightarrow MLE exists,
(d) Y stable \leftrightarrow finitely many MLEs exist \leftrightarrow unique MLE exists.

Proof. We prove that uniqueness of the MLE given Y implies that Y is stable. The proofs
of the other parts of the theorem are the same as in the real setting in Theorems 3.6 and 3.10.

Let us assume that the MLE given Y exists uniquely. We see from (c) that Y is polystable.
Hence, we need to show that the G+

\mathrm{S}\mathrm{L}-stabilizer of Y , denoted by StabY , is finite. For h \in G+
\mathrm{S}\mathrm{L}D
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we have Stabh\cdot Y = hStabY h
 - 1 and, from Proposition 3.14, we have

\{ MLEs given h \cdot Y \} =
\bigl( 
h - 1

\bigr) \ast \{ MLEs given Y \} h - 1.

As in the real setting, this allows us to assume that Y is of minimal norm in its orbit underG+
\mathrm{S}\mathrm{L}.

Then \lambda I is the MLE given Y , where \lambda \in \BbbR >0 minimizes the outer infimum in Proposition 3.13.
Since the matrix \lambda I is the unique MLE, the stabilizer StabY is contained in the group of unitary
matrices in G, by Proposition 3.14. In particular, StabY is \BbbC -compact. As the subgroup StabY
is also Zariski closed (defined by the equations gY = Y ), we conclude that StabY is finite.

4. Matrix normal models. In this section we study matrix normal models, which we have
already seen in Example 3.3. Consider the multivariate Gaussian of dimension m = m1m2. A
matrix normal model is a submodel consisting of covariance matrices that factor as a Kronecker
product \Sigma 1 \otimes \Sigma 2 where \Sigma i \in PDmi . Setting \Psi 1 := \Sigma  - 1

1 and \Psi 2 := \Sigma  - 1
2 , we can write the

log-likelihood function (2.2) for the matrix normal model as

(4.1) \ell Y (\Psi 1,\Psi 2) = m2 log det(\Psi 1) + m1 log det(\Psi 2) - 
1

n
tr

\Biggl( 
\Psi 1

n\sum 
i=1

Yi\Psi 2Y
T
i

\Biggr) 
.

An MLE is a concentration matrix \^\Psi 1\otimes \^\Psi 2 \in PDm1\otimes PDm2 that maximizes the log-likelihood.
Unless specified, we refer to matrix normal models over the real numbers and abbreviate
GLm(\BbbR ) and SLm(\BbbR ) to GLm and SLm, respectively.

4.1. Relating norm minimization to maximum likelihood estimation. We describe how
to specialize our results for Gaussian group models from section 3 to matrix normal models.
For this, consider the left-right action of GLm1 \times GLm2 on (\BbbR m1\times m2)n given by

(4.2) g \cdot Y := (g1Y1g
T
2 , . . . , g1Yng

T
2 ),

where Y = (Y1, . . . , Yn) is a sample tuple in (\BbbR m1\times m2)n and g = (g1, g2) \in GLm1 \times GLm2 .
The left-right action induces the representation

\varrho : GLm1 \times GLm2 \rightarrow GLm1m2 , (g1, g2) \mapsto \rightarrow g1 \otimes g2,

and the matrix normal model arises as the Gaussian group model of G := \varrho (GLm1 \times GLm2).
The subgroup G \subseteq GLm1m2 is Zariski closed, self-adjoint, and closed under nonzero scalar

multiples. Therefore, our results from the previous section apply to the action of G+
\mathrm{S}\mathrm{L}.

However, it is possible and more convenient to directly work with the left-right action of
SLm1 \times SLm2 . The following theorem makes this precise.

Theorem 4.1. Let Y \in (\BbbR m1\times m2)n be a matrix tuple. The supremum of the log-likelihood
\ell Y in (4.1) over PDm1 \times PDm2 is given by the double infimum

(4.3)  - inf
\lambda \in \BbbR >0

\biggl( 
\lambda 

n

\biggl( 
inf

h\in \mathrm{S}\mathrm{L}m1 \times \mathrm{S}\mathrm{L}m2

\| h \cdot Y \| 2
\biggr) 
 - m1m2 log \lambda 

\biggr) 
.

The MLEs, if they exist, are the matrices of the form \lambda hT1 h1 \otimes hT2 h2, where h = (h1, h2)
minimizes \| h \cdot Y \| under the left-right action of SLm1 \times SLm2, and \lambda \in \BbbR >0 is the unique value
that minimizes the outer infimum.D
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If there are several MLEs given Y , they are related via the stabilizer of Y in SLm1 \times SLm2.
More precisely, every (g1, g2) in the stabilizer of Y yields an MLE \lambda gT1 h

T
1 h1g1 \otimes gT2 hT2 h2g2,

and, conversely, every MLE given Y is of this form.
The stability under the left-right action of SLm1 \times SLm2 is related to ML estimation via

(a) Y unstable \leftrightarrow \ell Y not bounded from above,
(b) Y semistable \leftrightarrow \ell Y bounded from above,
(c) Y polystable \leftrightarrow MLE exists,
(d) Y stable \Rightarrow MLE exists uniquely.

Proof. The subgroup H := \varrho (SLm1 \times SLm2) \subseteq G is Zariski closed and self-adjoint and
shares the same identity component as G+

\mathrm{S}\mathrm{L}. Thus Propositions 3.4 and 3.9, and Theo-
rem 3.10 apply to H as well, by Remark 3.11. Furthermore, the kernel of \varrho when restricted
to SLm1 \times SLm2 is finite. Hence, the stability notions in Definition 2.1(a)--(d) coincide for
SLm1 \times SLm2 and H, so we can consider SLm1 \times SLm2 instead of its image H under \varrho .

We have seen in Theorem 3.15 that over the complex numbers, the converse of Theo-
rem 4.1(d) also holds. However, over the reals there exist matrix tuples Y with a unique MLE
but an infinite stabilizer, as the following example shows.

Example 4.2. We set m1 = m2 = n = 2 and take Y \in (\BbbR 2\times 2)2, where

Y1 =

\biggl( 
1 0
0 1

\biggr) 
, Y2 =

\biggl( 
0  - 1
1 0

\biggr) 
.

We prove that the MLE given Y is unique although the stabilizer of Y is infinite.
We first show that Y is polystable under the left-right action of SL2\times SL2. Note that any

matrix in SL2 has Frobenius norm at least
\surd 
2. Indeed, if \sigma 1 and \sigma 2 are the singular values of

g, then \| g\| 2 = \sigma 21 + \sigma 22, where \sigma 1\sigma 2 = 1. By the arithmetic mean--geometric mean inequality,
we have \| g\| 2 \geq 2. Therefore, Y1 and Y2 have minimal Frobenius norm in SL2, and thus Y is of
minimal norm in its orbit. By Kempf--Ness, Theorem 2.2(d), the matrix tuple Y is polystable.

The stabilizer of Y consists of matrices (g1, g2) \in SL2\times SL2 with g1Yig
T
2 = Yi. For Y1,

this gives g1g
T
2 = I2, i.e., g

T
2 = g - 1

1 . Then, from Y2, we obtain g1Y2 = Y2g1, and so

g1 =

\biggl( 
a b
 - b a

\biggr) 
with a2 + b2 = 1;

i.e., g1 \in SO2(\BbbR ) and hence g2 = g - T
1 = g1. Thus the stabilizer of Y is contained in the infinite

set \{ (g, g) | g \in SO2\} . In fact, we have equality, as SO2 is commutative and Y1, Y2 \in SO2.
Since Y is of minimal norm in its orbit, we use Theorem 4.1 to conclude that \lambda I2 \otimes I2 is

an MLE. Any other MLE is given by \lambda gT1 I2g1\otimes gT2 I2g2 for some (g1, g2) in the stabilizer of Y .
Since the stabilizer is contained in SO2\times SO2, the MLE is unique.

We remark that for the complex matrix normal model the MLEs involve g\ast g rather than
gTg, by Proposition 3.14; hence from the complex stabilizer \{ (g, g) | g \in SO2(\BbbC )\} we obtain
infinitely many MLEs.

The following example shows that all stability conditions in Theorem 4.1(a)--(d) can occur.D
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Example 4.3. We set m1 = m2 = 2 and study stability under SL2\times SL2 on (\BbbR 2\times 2)n. We
use the matrices

Y1 =

\biggl( 
1 0
0 1

\biggr) 
, Y2 =

\biggl( 
0  - 1
1 0

\biggr) 
, Y3 =

\biggl( 
0 1
1 0

\biggr) 
, Y4 =

\biggl( 
0 1
0 0

\biggr) 
.

(a) The matrix Y4 is unstable, and the matrix tuple (Y4, Y4) is unstable as well.
(b) The orbit of the matrix tuple (Y1, Y4) is contained in \{ (g,M) | g \in SL2, M \not = 0\} .

In particular, (Y1, Y4) is semistable as SL2 is closed. Moreover, for any g \in SL2 and
M \in \BbbR 2\times 2 \setminus \{ 0\} we have

\| (g,M)\| 2 = \| g\| 2 + \| M\| 2 \geq 2 + \| M\| 2 > 2,

where we used \| g\| 2 \geq 2; see Example 4.2. On the other hand, we have\biggl( \biggl( 
\varepsilon 0
0 \varepsilon  - 1

\biggr) 
,

\biggl( 
\varepsilon  - 1 0
0 \varepsilon 

\biggr) \biggr) 
\cdot (Y1, Y4) =

\biggl( \biggl( 
1 0
0 1

\biggr) 
,

\biggl( 
0 \varepsilon 2

0 0

\biggr) \biggr) 
,

which tends to (Y1, 0) as \varepsilon \rightarrow 0. Since \| (Y1, 0)\| 2 = 2, the capacity of (Y1, Y4) is not
attained by an element in the orbit of (Y1, Y4), and Y is not polystable.

(c) The matrix Y1 = I2 is polystable by Kempf--Ness, Theorem 2.2(d), as it is an SL2

matrix of minimal norm. An MLE is given by \lambda I2 \otimes I2, where \lambda is the minimizer
of the outer infimum in (4.3). Furthermore, Y1 is not stable, because its stabilizer is
\{ (g, g - T) | g \in SL2\} . There are infinitely many MLEs given Y , of the form \lambda gTg \otimes 
g - 1g - T for g \in SL2; see Theorem 4.1.

(d) We show that Y = (Y1, Y2, Y3) is stable. First, any tuple (M1,M2,M3) in the orbit of
Y satisfies M1,M2 \in SL2 and det(M3) =  - 1. Any 2\times 2 matrix of determinant \pm 1 has
Frobenius norm at least

\surd 
2, by the same argument as in Example 4.2. Therefore, Y

is of minimal norm in its orbit and hence polystable by Theorem 2.2(d). It remains to
show that the stabilizer of Y is finite. The discussion from Example 4.2 ensures that
the stabilizer of Y is contained in \{ (g, g) | g \in SO2\} . Given g \in SO2, the condition
gY3g

T = Y3 implies gY3 = Y3g. This holds exactly for g = \pm I2. Therefore, the
stabilizer of Y is the finite set \{ (I2, I2), ( - I2, - I2)\} .

4.2. Boundedness of the likelihood via semistability. We give new conditions that guar-
antee the boundedness of the likelihood in a matrix normal model. To do this, we use the
equivalence of the boundedness of the likelihood with the semistability of a matrix tuple un-
der left-right action; see Theorem 4.1(b). We consider matrix tuples in (\BbbR m1\times m2)n, where
we may assume by duality that m1 \geq m2. The null cone of the complex left-right action
of SLm1(\BbbC ) \times SLm2(\BbbC ) on matrix tuples was described in [7, Theorem 2.1]. We prove the
real analogue of this result and, with this, give a characterization of the matrix tuples with
unbounded log-likelihood in Theorem 4.4. This has been derived in [16, Theorems 3.1(i) and
3.3(i)] using a different method.

The dimension of the complex null cone is given in [7]. By translating this result to the
real numbers, we derive a new upper bound on the maximum likelihood threshold mlt\mathrm{b}, the
minimum number of samples needed for the likelihood function to be generically boundedD
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from above; see Corollary 4.9. This translates in invariant theory to finding the minimum
sample size n such that the null cone does not fill its ambient space. In addition, we recover
lower and upper bounds from the literature in Corollaries 4.5, 4.10, and 4.11.

Theorem 4.4. Consider Y \in (\BbbR m1\times m2)n, a tuple of n samples from a matrix normal model.
The log-likelihood function \ell Y is not bounded from above if and only if there exist subspaces
V1 \subseteq \BbbR m1 and V2 \subseteq \BbbR m2 with m1 dimV2 > m2 dimV1 such that YiV2 \subseteq V1 for all i = 1, . . . , n.

Proof. The log-likelihood \ell Y is bounded from above if and only if Y is not in the complex
null cone under the left-right action of SLm1(\BbbC ) \times SLm2(\BbbC ), by Theorem 4.1(b) and Propo-
sition 2.3. The latter is equivalent to the existence of subspaces W1 \subseteq \BbbC m1 and W2 \subseteq \BbbC m2

with m1 dim\BbbC W2 > m2 dim\BbbC W1 such that YiW2 \subseteq W1 for all i = 1, . . . , n, by [7, Theorem
2.1]. This is the same condition as in the statement, except with complex subspaces. The real
condition directly implies the complex one. We now show the reverse implication, following
an argument thanks to Jan Draisma.

Given complex subspaces W1 \subseteq \BbbC m1 and W2 \subseteq \BbbC m2 as above, let Vj be the intersection of
Wj with \BbbR mj , and let V \prime 

j be the image ofWj under the map that sends a complex vector to its

real part. Since iVj is the kernel of that map, where i2 =  - 1, we have 2 dim\BbbC Wj = dim\BbbR Vj +
dim\BbbR V

\prime 
j . In particular, we have either m1 dimV2 > m2 dimV1 or m1 dimV \prime 

2 > m2 dimV \prime 
1 .

Since both inclusions YiV2 \subseteq V1 and YiV
\prime 
2 \subseteq V \prime 

1 hold for all i = 1, . . . , n, either (V1, V2) or
(V \prime 

1 , V
\prime 
2) are real subspaces as in the statement.

We now come to statistical implications of Theorem 4.4.

Corollary 4.5. If n < m1
m2

, then the log-likelihood function \ell Y is unbounded from above for

every tuple of samples Y \in (\BbbR m1\times m2)n. In particular, mlt\mathrm{b}(m1,m2) \geq \lceil m1
m2
\rceil .

Proof. For any one-dimensional subspace V2 \subseteq \BbbR m2 , the dimension of V1 :=
\sum n

i=1 YiV2 is
at most n. If n < m1

m2
, Theorem 4.4 implies that the log-likelihood \ell Y is unbounded.

The result in this corollary also follows from [16, Lemma 1.2]. We now characterize when
the null cone fills the space of matrix tuples, which extends [7, Proposition 2.4] from the
space of complex matrix tuples to real matrix tuples. For this, we begin by defining the
cut-and-paste rank from [7, Definition 2.2] over the real numbers.

Definition 4.6. The cut-and-paste rank cp(n)(a, b, c, d) of a tuple of positive integers a, b,
c, d, and n is the maximum rank of the ab\times cd matrix

\sum n
i=1Xi\otimes Yi, as Xi and Yi range over

real matrices of sizes c\times a and d\times b, respectively.

Remark 4.7. Analogously to Definition 4.6, one can define cp
(n)
\BbbC (a, b, c, d) by letting the

Xi and Yi range over complex matrices; see [7, Definition 2.2]. The real and complex ranks
agree, as follows. The condition for the rank of the matrix

\sum n
i=1Xi \otimes Yi to drop is given by

minors. Thus, cp
(n)
\BbbC (a, b, c, d) is witnessed on a Zariski open subset ofW := (\BbbC c\times a)n\times (\BbbC d\times b)n

and hence witnessed by some element in (\BbbR c\times a)n \times (\BbbR d\times b)n, as the latter is Zariski dense in
W .

We use the cut-and-paste rank to give a necessary and sufficient condition for the null cone
under left-right action to fill the space of matrix tuples (\BbbR m1\times m2)n, i.e., for the log-likelihood
to be always unbounded from above. As above, we take m1 \geq m2. Moreover, since we sawD
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in Corollary 4.5 that the likelihood is unbounded for m2n < m1, it suffices to restrict to the
range m2 \leq m1 \leq nm2.

Theorem 4.8. Let 0 < m2 \leq m1 \leq nm2. The log-likelihood \ell Y is unbounded from above for
every tuple of samples Y \in (\BbbR m1\times m2)n if and only if there exists k \in \{ 1, . . . ,m2\} such that
l = \lceil m1

m2
k\rceil  - 1 satisfies both

m1  - l \leq n(m2  - k) and

cp(n)(a, b, c, d) = cd, where (a, b, c, d) = (m2  - k, k,m1  - l, nk  - l).

Proof. Let \scrN \BbbK be the null cone under the left-right action of SLm1(\BbbK ) \times SLm2(\BbbK ) on
(\BbbK m1\times m2)n, where \BbbK \in \{ \BbbR ,\BbbC \} . We note that \scrN \BbbC is Zariski closed and that (\BbbR m1\times m2)n is
Zariski dense in (\BbbC m1\times m2)n. Thus, \scrN \BbbR fills the space (\BbbR m1\times m2)n if and only if\scrN \BbbC fills the space
(\BbbC m1\times m2)n, by Proposition 2.3. It therefore suffices to characterize when \scrN \BbbC = (\BbbC m1\times m2)n.
For this, define for natural numbers k and l

Qk,l :=

\Biggl\{ 
(Y1, . . . , Yn) \in (\BbbC m1\times m2)n | \exists V \subseteq \BbbC m2 : dim\BbbC V = k,dim\BbbC 

\biggl( n\sum 
i=1

YiV

\biggr) 
\leq l

\Biggr\} 
.

The null cone \scrN \BbbC is the union of the Qk,l over 1 \leq k \leq m2 and 0 \leq l < m1
m2
k, by [7,

Theorem 2.1], which is the complex analogue of Theorem 4.4. We observe that the algebraic
sets Qk,l get larger as l increases. Hence, it suffices to consider whether any of the Qk,l fills
(\BbbC m1\times m2)n as k ranges over 1 \leq k \leq m2, where the corresponding l is the largest integer
strictly smaller than m1

m2
k, i.e., l = \lceil m1

m2
k\rceil  - 1.

The assumption m1 \leq nm2 yields l < nk. Therefore, [7, Proposition 2.4] shows that

dim\BbbC Qk,l = nm1m2  - 
\Bigl( 
(m1  - l)(kn - l) - cp

(n)
\BbbC (a, b, \~c, d)

\Bigr) 
,

where a = m2  - k, b = k, \~c = min\{ m1  - l, n(m2  - k)\} , and d = kn  - l. By Remark 4.7,

cp
(n)
\BbbC (a, b, \~c, d) = cp(n)(a, b, \~c, d). Thus, Qk,l equals (\BbbC m1\times m2)n if and only if

cp(n)(a, b, \~c, d) = (m1  - l)(kn - l).

Finally, the latter equation is equivalent to

m1  - l \leq n(m2  - k) and cp(n)(a, b, \~c, d) = \~cd,

since \~c = min\{ m1  - l, n(m2  - k)\} , d = kn - l \geq 1, and cp(n)(a, b, \~c, d) \leq \~cd.

In principle, Theorem 4.8 solves the problem of determining the maximum likelihood
threshold mlt\mathrm{b}, although in terms of the cut-and-paste rank. Hence, this gives statistical
motivation for better understanding the cut-and-paste rank, e.g., by obtaining a general closed
formula.

We use the above theorem to give a new upper bound for mlt\mathrm{b}.D
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Corollary 4.9. Let 0 < m2 \leq m1. If

(4.4) n > max
1\leq k\leq m2

\biggl( 
l

k
+
m2  - k
m1  - l

\biggr) 
, where l =

\biggl\lceil 
m1

m2
k

\biggr\rceil 
 - 1,

the log-likelihood \ell Y for a generic matrix tuple Y \in (\BbbR m1\times m2)n is bounded from above. In
other words, mlt\mathrm{b} \leq \lfloor max1\leq k\leq m2(

l
k + m2 - k

m1 - l )\rfloor + 1.

Proof. First, we observe that (4.4) with k = m2 yields n > m1 - 1
m2

. The latter is equivalent
to nm2 \geq m1, so we are in the setting of Theorem 4.8. Using the notation in that theorem,
we see that (4.4) is equivalent to every k \in \{ 1, . . . ,m2\} satisfying cd > ab. In particular,
for every such k we have cp(n)(a, b, c, d) \leq ab < cd, so by Theorem 4.8 the log-likelihood \ell Y
cannot be unbounded from above for every tuple Y .

Two simpler upper bounds, which are known in the statistics literature [16, Proposi-
tion 1.3, Theorem 1.4], are obtained as follows.

Corollary 4.10. If n \geq m1
m2

+ m2
m1

, then the log-likelihood \ell Y for a generic matrix tuple Y \in 
(\BbbR m1\times m2)n is bounded from above. In other words, mlt\mathrm{b} \leq \lceil m1

m2
+ m2

m1
\rceil .

Proof. For every k \in \{ 1, . . . ,m2\} we have l < m1k
m2

, which implies that

m1

m2
+
m2

m1
>
l

k
+
m2  - k
m1  - l

.

Thus, the assertion follows from Corollary 4.9.

Corollary 4.11. Let m2 divide m1. The log-likelihood \ell Y for a generic matrix tuple Y \in 
(\BbbR m1\times m2)n is bounded from above if and only if n \geq m1

m2
. In other words, mlt\mathrm{b} = m1

m2
.

Proof. If n < m1
m2

, the log-likelihood is always unbounded from above by Corollary 4.5.
So we write m1 = \gamma m2 and assume n \geq \gamma . For every k \in \{ 1, . . . ,m2\} , using the notation
from Theorem 4.8, we see that l = \gamma k  - 1 and a < c. If n > \gamma , we also have that b < d, so
cp(n)(a, b, c, d) \leq ab < cd. If n = \gamma , then m1  - l > n(m2  - k). In either case, one of the two
conditions in Theorem 4.8 is not satisfied, so \ell Y is generically bounded from above.

In Table 1 we list the maximum likelihood threshold mlt\mathrm{b} for boundedness of the log-
likelihood for small values of m1,m2 and compare with the bounds discussed above. We
observe that there are cases where our upper bound

\alpha =

\biggl\lfloor 
max

1\leq k\leq m2

\biggl( 
l

k
+
m2  - k
m1  - l

\biggr) \biggr\rfloor 
+ 1, where l =

\biggl\lceil 
m1

m2
k

\biggr\rceil 
 - 1,

is strictly better than the simple upper bound U = \lceil m1
m2

+ m2
m1
\rceil , e.g., when (m1,m2) = (3, 2).

In most cases our bound \alpha matches the lower bound L = \lceil m1
m2
\rceil , so that we can determine mltb.

In addition, when m2| m1, one can use Corollary 4.11 to determine mlt\mathrm{b} even if the bounds L
and \alpha do not coincide, such as in (m1,m2) = (8, 4) or in the square casesm1 = m2. The rest of
the values of mlt\mathrm{b} can be filled in from [16, Table 1]. We highlight the case (m1,m2) = (8, 3):
the maximum likelihood threshold mlt\mathrm{b} = 3 was computed in [16] via Gr\"obner bases, but it
is not covered by the general bounds in [16]. Nevertheless, our bound \alpha determines this case.D
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Table 1
Bounds for the maximum likelihood threshold mlt\mathrm{b}. L = \lceil m1

m2
\rceil is the lower bound from Corollary 4.5,

U = \lceil m1
m2

+ m2
m1

\rceil is the upper bound from Corollary 4.10, and \alpha is our new upper bound from Corollary 4.9.

m1 m2 L mltb \alpha U
2 2 1 1 1 2
3 2 2 2 2 3
3 3 1 1 2 2
4 2 2 2 2 3
4 3 2 2 2 3
4 4 1 1 2 2
5 2 3 3 3 3
5 3 2 3 3 3
5 4 2 2 2 3
5 5 1 1 2 2
6 2 3 3 3 4
6 3 2 2 2 3
6 4 2 2 2 3
6 5 2 2 2 3
6 6 1 1 2 2

m1 m2 L mltb \alpha U
7 2 4 4 4 4
7 3 3 3 3 3
7 4 2 3 3 3
7 5 2 3 3 3
7 6 2 2 2 3
7 7 1 1 2 2
8 2 4 4 4 5
8 3 3 3 3 4
8 4 2 2 3 3
8 5 2 3 3 3
8 6 2 2 2 3
8 7 2 2 2 3
8 8 1 1 2 2
9 2 5 5 5 5
9 3 3 3 3 4

m1 m2 L mltb \alpha U
9 4 3 3 3 3
9 5 2 3 3 3
9 6 2 2 2 3
9 7 2 3 3 3
9 8 2 2 2 3
9 9 1 1 2 2
10 2 5 5 5 6
10 3 4 4 4 4
10 4 3 3 3 3
10 5 2 2 3 3
10 6 2 3 3 3
10 7 2 3 3 3
10 8 2 2 2 3
10 9 2 2 2 3
10 10 1 1 2 2

4.3. Uniqueness of the MLE via stability. We compare conditions for stability with
conditions for the uniqueness of the MLE. We saw in Example 4.2 that stability of a real
matrix tuple Y under left-right action of SLm1(\BbbR )\times SLm2(\BbbR ) is not equivalent to uniqueness
of the MLE given Y . However, such an equivalence holds for complex Gaussian models, by
Theorem 3.15. Matrix normal models over the complex numbers are induced by the left-right
action of SLm1(\BbbC )\times SLm2(\BbbC ) on (\BbbC m1\times m2)n. Hence we obtain conditions for the uniqueness
of the MLE given Y \in (\BbbC m1\times m2)n from characterizing the stability of Y under the left-right
action by SLm1(\BbbC ) \times SLm2(\BbbC ). Characterizing this stability is a special case of the setting
studied in [26]. From this, we obtain the following theorem, which we prove in Appendix A.

Theorem 4.12. Consider the left-right action of SLm1(\BbbC )\times SLm2(\BbbC ) on (\BbbC m1\times m2)n, and a
tuple Y \in (\BbbC m1\times m2)n of n samples from a complex matrix normal model. The following are
equivalent:

(a) the complex MLE given Y exists uniquely;
(b) the matrix tuple Y is stable;
(c) the matrix (Y1| . . . | Yn) \in \BbbC m1\times nm2 has rank m1, and m2 dimV1 > m1 dimV2 holds for

all subspaces V1 \subseteq \BbbC m1, \{ 0\} \subsetneq V2 \subsetneq \BbbC m2 that satisfy YiV2 \subseteq V1 for all i = 1, . . . , n.

We note the similarity with the conditions that characterize semistability in Theorem 4.4.
However, while Theorem 4.4 holds both over \BbbR and \BbbC , the same cannot be true for Theo-
rem 4.12. In fact, the real analogue of Theorem 4.12(c) is shown to characterize uniqueness
of the MLE in [16, Theorems 3.1(ii) and 3.3(ii)], which is not equivalent to stability by Ex-
ample 4.2.

4.4. The moment map. In this section we recall the condition for the moment map for
the action of SLm1 \times SLm2 to vanish at a matrix tuple. By Kempf--Ness, Theorem 2.2(a), thisD
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gives the condition to be at a point of minimal norm in the orbit.
The tangent space of SLmi at the identity matrix consists of all matrices with trace zero.

The moment map at Y \in (\BbbR m1\times m2)n is the differential of (g1, g2) \mapsto \rightarrow \| (g1, g2) \cdot Y \| 2 at the pair
(Im1 , Im2) of identity matrices, i.e.,

\mu (Y ) : TIm1
SLm1 \times TIm2

SLm2  - \rightarrow \BbbR ,

( \.g1, \.g2) \mapsto  - \rightarrow 2
n\sum 

i=1

tr
\Bigl( 
( \.g1Yi + Yi \.g

T
2 )Y

T
i

\Bigr) 
.

(4.5)

Theorem 4.13 (Kempf--Ness theorem for SL\times SL action). Consider the left-right action of
SLm1 \times SLm2 on the space of matrix tuples (\BbbR m1\times m2)n. A matrix tuple is semistable (resp.,
polystable) if and only if there is a nonzero matrix tuple Y in its orbit closure (resp., orbit)
where the moment map \mu vanishes, i.e.,

\exists c1, c2 > 0 :

n\sum 
i=1

YiY
T
i = c1Im1 and

n\sum 
i=1

Y T
i Yi = c2Im2 .

Proof. This follows from rewriting (4.5) as

( \.g1, \.g2) \mapsto  - \rightarrow 2 tr

\Biggl( 
\.g1

n\sum 
i=1

YiY
T
i

\Biggr) 
+ 2 tr

\Biggl( 
\.gT2

n\sum 
i=1

Y T
i Yi

\Biggr) 
.

4.5. Scaling algorithms for the MLE. In this section, we describe algorithmic conse-
quences of the connection between invariant theory and maximum likelihood estimation. We
present an algorithm for maximum likelihood estimation that is well known in statistics and
connect it to an algorithm in invariant theory; see the left-hand side of Figure 1. The con-
nection allows us to give a complexity analysis of the statistics algorithm. The algorithm in
statistics is the flip-flop algorithm, which involves the group GLm1 \times GLm2 , while the invari-
ant theory algorithm is operator scaling for the left-right action of SLm1 \times SLm2 . We begin
by recalling these algorithms.

4.5.1. Operator scaling and the flip-flop algorithm. Operator scaling (see the top left in
Figure 1) solves the norm minimization problem for the left-right action of SLm1(\BbbC )\times SLm2(\BbbC )
on the space of matrix tuples (\BbbC m1\times m2)n. From an invariant theory perspective, operator
scaling was first studied in [22], and [20] showed that it yields a polynomial time algorithm for
null cone membership. The method was generalized to tuples of tensors in [9, Algorithm 1].

The flip-flop algorithm [17, 29] (see the bottom left of Figure 1) is an alternating max-
imization procedure to find an MLE in a matrix normal model. It can be thought of as a
Gaussian version of IPS for matrix normal models, since one alternately updates the estimates
in each marginal. If we consider \Psi 2 to be fixed, the log-likelihood in (4.1) becomes, up to
constants,

\ell Y (\Psi 1) = m2

\Biggl[ 
log det(\Psi 1) - tr

\Biggl( 
\Psi 1 \cdot 

1

nm2

n\sum 
i=1

Yi\Psi 2Y
T
i

\Biggr) \Biggr] 
.

D
ow

nl
oa

de
d 

10
/1

9/
22

 to
 1

40
.2

47
.1

2.
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

326 C. AM\'ENDOLA, K. KOHN, P. REICHENBACH, AND A. SEIGAL

Maximizing the log-likelihood with respect to \Psi 1 reduces to the case of a standard multivariate
Gaussian model as in (2.2). The unique maximizer over the positive definite cone is the inverse,
if it exists, of the matrix 1

nm2

\sum n
i=1 Yi\Psi 2Y

T
i . In the same way, we can fix \Psi 1 and maximize

the log-likelihood with respect to \Psi 2. Iterating these two steps gives the algorithm.

Algorithm 4.1 Flip-flop

Input: Y1, . . . , Yn \in \BbbR m1\times m2 , N \in \BbbZ >0.
Output: an approximation of an MLE, if it exists.
1: Initialize \Psi 2 := Im2 .
2: for k = 1 to N do
3: the following pair of updates:

\Psi 1 :=

\Biggl( 
1

nm2

n\sum 
i=1

Yi\Psi 2Y
T
i

\Biggr)  - 1

,

\Psi 2 :=

\Biggl( 
1

nm1

n\sum 
i=1

Y T
i \Psi 1Yi

\Biggr)  - 1

.

(4.6)

4: end for
5: return \Psi 1 \otimes \Psi 2.

We now compare operator scaling with the flip-flop algorithm. The scaling algorithm
in [9, Algorithm 1] gives, when specializing from tensors to matrices, the same procedure
as Algorithm 4.1, up to scaling with different constants in the update steps (4.6). In [9,
Algorithm 1], the matrices \Psi 1 and \Psi 2 in (4.6) are restricted to have determinant one, in order
to stay in the SLm1 \times SLm2 orbit of Y . In comparison, Algorithm 4.1 has constants chosen to
minimize the outer infimum in (4.3).

Although the algorithm in [9] is defined over the complex numbers, when restricting to
real inputs, operator scaling only involves computations over the reals. This allows the com-
putation of MLEs (if they exist) in the real matrix normal model via (4.3), since the capacity
of a real matrix tuple is the same under the action of SLm1(\BbbR )\times SLm2(\BbbR ) as under the action
of SLm1(\BbbC )\times SLm2(\BbbC ); see Proposition 2.3.

4.5.2. Convergence. In [9], the authors give conditions for being in the null cone, based
on the convergence of their Algorithm 1. Specializing to a matrix tuple, to connect to the flip-
flop algorithm, their results combine with ours to show the following. If an update step cannot
be computed because one of the matrices in (4.6) cannot be inverted, then the matrix tuple Y
is unstable under the action of SLm1(\BbbC )\times SLm2(\BbbC ), and therefore also under the real action of
SLm1(\BbbR )\times SLm2(\BbbR ), by Proposition 2.3. This implies that the log-likelihood \ell Y is unbounded,

by Theorem 4.1(a). Otherwise, the sequence of terms (\Psi 
1/2
1 ,\Psi 

1/2
2 ) \cdot Y converges, possibly to

infinity. We now consider the possible cases that can arise in this limit, by comparing to
operator scaling, using the fact that the constants in the flip-flop algorithm minimize the
outer infimum in (4.3).

If the sequence (\Psi 
1/2
1 ,\Psi 

1/2
2 ) \cdot Y converges to zero or infinity, then the log-likelihood \ell YD
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is unbounded. Otherwise, the sequence converges to a matrix tuple of positive norm in the
orbit closure, where the moment map (4.5) vanishes, and Y is semistable. Here, two further
possibilities can arise. The first possibility occurs when the matrix tuple Y is polystable.
Then the minimal norm is attained at an element of the group SLm1 \times SLm2 , and the flip-flop
algorithm converges to an MLE; see (4.3). The second possibility occurs when Y is semistable
but not polystable. Then, the flip-flop algorithm diverges by the following remark.

Remark 4.14. If the matrix tuple Y is semistable but not polystable under the left-right
action of SLm1 \times SLm2 , then the likelihood LY (equivalently the log-likelihood \ell Y ) is bounded
from above but does not attain its supremum. In this case, any sequence \Psi N := (\Psi 1,N\otimes \Psi 2,N )
of concentration matrices with

lim
N\rightarrow \infty 

LY (\Psi 1,N \otimes \Psi 2,N ) = supLY > 0

diverges. Indeed, otherwise the limit \Psi \infty would be rank-deficient, as the matrix normal model
is closed in PDm1m2 . Then det(\Psi \infty ) = 0 yields the contradiction supLY = LY (\Psi \infty ) = 0.

4.5.3. Complexity. We use known results to derive a complexity analysis for the flip-flop
algorithm. In [9], the authors prove convergence of their Algorithm 1, which solves the null
cone membership problem up to an approximation parameter \varepsilon > 0. For tuples of tensors,
choosing \varepsilon exponentially small in the dimension of the tensor space yields a deterministic
test for null cone membership with exponential running time; see [9, Theorem 3.8]. When
specializing to tuples of matrices, i.e., to operator scaling, it suffices to choose \varepsilon polynomially
small. Thus for operator scaling, [9, Algorithm 1] recovers the polynomial time algorithm for
the null cone membership problem from [20]. We adapt [9, Theorem 1.1] to our notation to
derive the following.

Theorem 4.15. Given \varepsilon > 0 and a matrix tuple Y \in (\BbbZ m1\times m2)n with matrix entries of
bit size bounded by b, after a number of steps that is polynomial in (nm1m2, b, 1/\varepsilon ), the flip-
flop algorithm either identifies that the log-likelihood \ell Y is unbounded or finds (\Psi 1,\Psi 2) \in 
PDm1 \times PDm2 such that the matrix tuple (\Psi 

1/2
1 ,\Psi 

1/2
2 ) \cdot Y is \varepsilon -close to a matrix tuple where the

moment map (4.5) vanishes.

In the case where the log-likelihood \ell Y is bounded, taking the limit \varepsilon \rightarrow 0 in Theorem 4.15
gives rise to two possibilities. Either the MLE exists and is the limit of the \Psi 1\otimes \Psi 2 as \varepsilon \rightarrow 0,
or the sequence \Psi 1\otimes \Psi 2 diverges as \varepsilon \rightarrow 0, by Remark 4.14. Because of this divergence, there
is no meaningful notion of approximate MLE in the latter scenario.

4.5.4. Outlook. We briefly comment on extensions of the above to general groups; see
the right-hand side of Figure 1. In its full generality, the algorithm in [9] is an alternating
minimization procedure to find the capacity of a tuple of d-dimensional tensors of formatm1\times 
\cdot \cdot \cdot \times md under the action of SLm1 \times \cdot \cdot \cdot \times SLmd

. It can therefore be used for maximum likelihood
estimation in (real and complex) tensor normal models. More generally, the algorithms in [8]
can be used for geodesically convex algorithms for maximum likelihood estimation in complex
Gaussian group models as in Theorem 3.15. Many scaling algorithms are designed to optimize
over the complex orbit, but often each update is defined over \BbbR if the input is real, and hence
they can also be used for real Gaussian group models.D
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5. Transitive DAGs. In this section we study graphical models that fit into the Gaussian
group model framework. We study MLE existence via a corresponding null cone problem.
We focus on directed graphs, although our results also cover undirected graphical models, as
explained in Remark 5.9.

Let \scrG be a directed acyclic graph (DAG) with m nodes. We denote an edge from j to i
by j \rightarrow i; otherwise, if there is no such edge, we write j \not \rightarrow i. We note that edges i \rightarrow i do
not appear in a DAG, because they give cycles of length one. Consider the statistical model
represented by the linear structural equation

Y = \Lambda Y + \varepsilon ,

where Y \in \BbbR m, the matrix \Lambda \in \BbbR m\times m satisfies \Lambda ij = 0 for j \not \rightarrow i in \scrG , and \varepsilon \sim N(0,\Omega ) with
\Omega \in \BbbR m\times m diagonal and positive definite. The model expresses each coordinate Yi as a linear
combination of all Yj such that j \rightarrow i, up to Gaussian error. Solving for Y , we have

Y = (I  - \Lambda ) - 1\varepsilon ,

where the acyclicity of \scrG implies that (I  - \Lambda ) is invertible. We see that Y is Gaussian with
covariance matrix and concentration matrix

(5.1) \Sigma = (I  - \Lambda ) - 1\Omega (I  - \Lambda ) - T, \Psi = (I  - \Lambda )T\Omega  - 1(I  - \Lambda ).

The Gaussian graphical model\scrM \rightarrow 
\scrG consists of the set of concentration matrices \Psi of the form

in (5.1), for \Lambda and \Omega defined in terms of \scrG as above.
We now put these models in the context of Gaussian group models. Given a DAG \scrG , we

define the set of matrices

(5.2) G(\scrG ) = \{ g \in GLm | gij = 0 for i \not = j with j \not \rightarrow i in \scrG \} .

We have a transitive DAG (TDAG) \scrG if k \rightarrow j and j \rightarrow i in \scrG imply k \rightarrow i in \scrG .
Proposition 5.1. The set of matrices G(\scrG ) is a group if and only if \scrG is a TDAG. In this

case, the Gaussian graphical model given by \scrG is the Gaussian group model given by G(\scrG ):

\scrM \rightarrow 
\scrG =\scrM G(\scrG ).

Proof. If \scrG is not a TDAG, then there exist pairwise distinct indices i, j, k such that j \rightarrow i
and k \rightarrow j but k \not \rightarrow i. Take the elementary matrices g = Eij (with ones on the diagonal and
at the (i, j) entry, and zero elsewhere) and h = Ejk. We see that g, h \in G(\scrG ), but gh /\in G(\scrG )
since (gh)ik = 1; hence G(\scrG ) is not a group.

Conversely, we assume that \scrG is a TDAG. Any invertible diagonal matrix, in particular
the identity I, is in G(\scrG ). Suppose g, h \in G(\scrG ) and that (gh)ik \not = 0 for i \not = k. This means
that there must exist some index j such that gijhjk \not = 0. In particular, gij \not = 0 and hjk \not = 0,
so that we have either j \rightarrow i or j = i, and either k \rightarrow j or k = j. In all of these cases, we have
k \rightarrow i, since \scrG is a TDAG. Therefore, gh \in G(\scrG ), as required for G(\scrG ) to be a group. Now if
g \in G(\scrG ), we show that g - 1 \in G(\scrG ). We can write g = D(I  - N), where D is diagonal with
the same diagonal entries as g and N is nilpotent with the same zero pattern (outside of theD
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diagonal) as g. In fact, since the TDAG \scrG does not contain any path of length m, we have
Nm = 0. Then

g - 1 = (I +N +N2 + \cdot \cdot \cdot +Nm - 1)D - 1 \in G(\scrG ),

since supp(N j) \subseteq supp(N) for j \geq 1, as \scrG is a TDAG. We have shown that G(\scrG ) is a
group. The equality of models follows from reparametrizing (I  - \Lambda )T\Omega  - 1(I  - \Lambda ) by gTg,

where g = \Omega  - 1
2 (I  - \Lambda ) \in G(\scrG ).

Example 5.2. Let \scrG be the TDAG 1 \leftarrow 3 \rightarrow 2. The corresponding group G(\scrG ) \subseteq GL3

consists of invertible matrices g of the form

g =

\left[  \ast 0 \ast 
0 \ast \ast 
0 0 \ast 

\right]  .
By Proposition 5.1, we have that the Gaussian graphical model\scrM \rightarrow 

\scrG is a 5-dimensional linear
slice of the cone of symmetric positive definite 3\times 3 matrices:

\scrM \rightarrow 
\scrG = \{ gTg | g \in G(\scrG )\} = \{ \Psi \in PD3 | \psi 12 = \psi 21 = 0\} .

The group G(\scrG ) associated to a TDAG \scrG is Zariski closed and closed under nonzero scalar
multiples, but not self-adjoint. Hence we are not in the setting of Theorem 3.10. However,
we can apply Theorem 3.6 to derive our main result of this section. Since the group G(\scrG )
contains orthogonal matrices of determinant  - 1 (e.g., the diagonal matrix whose first entry
is  - 1 and all other entries are 1), Theorem 3.6 holds for G(\scrG )+\mathrm{S}\mathrm{L} by Remark 3.7.

We characterize boundedness of the likelihood and MLE existence in terms of the stability
of a tuple of samples. When the MLE exists generically (i.e., when the number of samples
is at least the maximum likelihood threshold), it is known to be generically unique [27, sec-
tion 5.4.1]. We show that the log-likelihood given Y is bounded from above if and only if
the MLE given Y exists, by ruling out the possibility that a tuple can be semistable but not
polystable. We provide an exact condition for the MLE given Y to exist, based on linear
dependence of the rows of Y . A parent of a node i is a node j with edge j \rightarrow i in \scrG .

Theorem 5.3. Consider a TDAG \scrG and a tuple of n samples Y \in \BbbR m\times n. If some row of
Y , corresponding to node i, is a linear combination of the rows corresponding to the parents of
i, then Y is unstable under the action by G(\scrG )+\mathrm{S}\mathrm{L}, and the likelihood is unbounded from above.
Otherwise, Y is polystable and the MLE exists.

Remark 5.4. If Y has a row of zeros, it is unstable, and the likelihood is unbounded from
above. This satisfies the criterion in the above theorem, because a row of zeros at row i is
interpreted as a trivial linear combination, independently of whether node i has parents in \scrG .

Proof of Theorem 5.3. Without loss of generality, we label the nodes of \scrG such that j \rightarrow i
implies j < i. Suppose the ith node of \scrG has the first s nodes as parents, and that the ith
row of Y is a linear combination of the first s rows,

ri = \lambda 1r1 + \cdot \cdot \cdot + \lambda srs.D
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We show that Y is unstable under G(\scrG )+\mathrm{S}\mathrm{L}. Let \varepsilon > 0, and consider the matrix g\varepsilon , which is
equal to \varepsilon I except for the ith row, which equals

(g\varepsilon )ik =

\left\{     
 - \varepsilon  - (m - 1)\lambda k, k = 1, . . . , s,

\varepsilon  - (m - 1), k = i,

0 otherwise.

We have that g\varepsilon \in G(\scrG )+\mathrm{S}\mathrm{L}, since det(g\varepsilon ) = 1 and there are nonzero off-diagonal entries only
when j \rightarrow i. Moreover, the ith row of g\varepsilon Y is the zero vector. Letting \varepsilon \rightarrow 0, we have that
g\varepsilon Y \rightarrow 0, so we conclude that Y is unstable. The log-likelihood is unbounded from above, by
Theorem 3.6.

For the second claim, let Y be such that no row is a linear combination of the rows
corresponding to its parents. We show by induction on m that Y is polystable. This implies
that the MLE given Y exists, by Theorem 3.6. If m = 1, then G(\scrG )+\mathrm{S}\mathrm{L} = \{ 1\} , and Y is a
single nonzero row, so the statement holds. Now for the induction step, m > 1, we assume
the claim holds for TDAGs with m - 1 nodes.

We prove that the orbit G(\scrG )+\mathrm{S}\mathrm{L} \cdot Y is closed, and hence Y is polystable. For this, let Y0 be
an element of the orbit closure of Y . Then there exists g\varepsilon \in G(\scrG )+\mathrm{S}\mathrm{L} with g\varepsilon Y \rightarrow Y0 as \varepsilon \rightarrow 0.
We may assume without loss of generality that \alpha \varepsilon := (g\varepsilon )mm > 0, by using an appropriate
subsequence of the sequence (g\varepsilon ) and multiplying the last row and another row of both g\varepsilon 
and Y0 by  - 1 if needed. Let g\prime \varepsilon be obtained from g\varepsilon by dropping the last row and column

and multiplying by \alpha 
1/m - 1
\varepsilon . Then g\prime \varepsilon \in G(\scrG \prime )+\mathrm{S}\mathrm{L}, where the TDAG \scrG \prime is obtained from \scrG by

removing the last node (and all edges pointing to it). Similarly, let Y \prime and Y \prime 
0 be obtained

from Y and Y0, respectively, by dropping the last row. Since g\varepsilon Y \rightarrow Y0, we have that

(5.3) \alpha 
 - 1/m - 1
\varepsilon g\prime \varepsilon Y

\prime \rightarrow Y \prime 
0 as \varepsilon \rightarrow 0.

Since no row of Y is a linear combination of the rows corresponding to its parents, the same
is true of Y \prime , and we apply the induction hypothesis to see that Y \prime is polystable. We will use
this to construct a group element that sends Y to Y0.

Without loss of generality, assume m  - s, . . . ,m  - 1 are the parents of the last node m.
Then the last row of g\varepsilon is [0, . . . , 0, \beta s\varepsilon , . . . , \beta 1\varepsilon , \alpha \varepsilon ], and therefore the last row of g\varepsilon Y is

\beta s\varepsilon rm - s + \cdot \cdot \cdot + \beta 1\varepsilon rm - 1 + \alpha \varepsilon rm.

Now, let t \leq s be the dimension of the vector space spanned by rm - s, . . . , rm - 1, and assume,
without loss of generality, that the rows rm - t, . . . , rm - 1 are linearly independent. Then we
can rewrite the last row of g\varepsilon Y as

(5.4) \gamma t\varepsilon rm - t + \cdot \cdot \cdot + \gamma 1\varepsilon rm - 1 + \alpha \varepsilon rm

for some \gamma i\varepsilon \in \BbbR . Since rm is not a linear combination of its parents, the rows rm - t, . . . , rm are
linearly independent; i.e., the matrixM \in \BbbR (t+1)\times n formed by these rows has rank t+1. Thus,
any standard basis vector in \BbbR t+1 can be expressed as a linear combination of the columns of
M . Applying these linear combinations to (5.4), which is the last row of g\varepsilon Y and convergesD
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to the last row of Y0, we conclude convergence of each \gamma i\varepsilon (1 \leq i \leq t) and of \alpha \varepsilon as \varepsilon \rightarrow 0. We
denote the corresponding limits by \gamma i0 \in \BbbR and \alpha 0 \geq 0, respectively.

If \alpha 0 = 0, we get from (5.3) that g\prime \varepsilon Y
\prime = \alpha 

1/m - 1
\varepsilon (\alpha 

 - 1/m - 1
\varepsilon g\prime \varepsilon Y

\prime ) \rightarrow 0 as \varepsilon \rightarrow 0. So Y \prime is
unstable, in particular not polystable, which contradicts the induction hypothesis.

Therefore, \alpha 0 > 0 and we have g\prime \varepsilon Y
\prime = \alpha 

1/m - 1
\varepsilon (\alpha 

 - 1/m - 1
\varepsilon g\prime \varepsilon Y

\prime ) \rightarrow \alpha 
1/m - 1

0 Y \prime 
0 as \varepsilon \rightarrow 0. Ap-

plying the induction hypothesis to Y \prime , we obtain that \alpha 
1/m - 1

0 Y \prime 
0 lies in the orbit of Y \prime under

the action by G(\scrG \prime )+\mathrm{S}\mathrm{L}. This means there exists h\prime \in G(\scrG \prime )+\mathrm{S}\mathrm{L} such that \alpha 
1/m - 1

0 Y \prime 
0 = h\prime Y \prime , and

therefore

h :=

\Biggl[ 
\alpha 

 - 1/m - 1

0 h\prime 0
0 \cdot \cdot \cdot 0 \gamma t0 \cdot \cdot \cdot \gamma 10 \alpha 0

\Biggr] 
\in G(\scrG )+\mathrm{S}\mathrm{L}

satisfies hY = Y0 as desired.

Our approach characterizes MLE existence for any tuple Y---not just generic existence. We
derive an immediate corollary for generic tuples, regarding the maximum likelihood thresholds
mlt and mlt\mathrm{b} defined in section 2.1. This is known for general DAGs in the graphical models
literature; see [27, section 5.4.1] and [15, Theorem 1]. The in-degree of a DAG \scrG is the
maximum number of parents of any node in \scrG .

Corollary 5.5. For the model\scrM \rightarrow 
\scrG of a TDAG \scrG , we have

mlt\mathrm{b}(\scrG ) = mlt(\scrG ) = in-degree(\scrG ) + 1.

Proof. The equivalence of the two maximum likelihood thresholds follows from Theo-
rem 5.3, where we also see that for the MLE to exist generically we need that every row in a
generic matrix of samples Y \in \BbbR m\times n is not a linear combination of its parent rows. Generic
linear independence is guaranteed if and only if the number of columns n is at least the number
of rows involved in a node plus its parents.

Example 5.6. Let \scrG be the TDAG 1\leftarrow 3\rightarrow 2 from Example 5.2. We apply Theorem 5.3
to show when the MLE given a sample matrix Y \in \BbbR 3\times n exists. Node 3 has no parents, while
nodes 1 and 2 both have the node 3 as their parent. Hence the log-likelihood \ell Y is unbounded
from above if the first or second row is a scalar multiple of the third row, or if the third row
is zero, and otherwise the MLE given Y exists.

When n = 1, the first and second rows are always scalar multiples of the third row; hence
the null cone fills the space, and the log-likelihood is always unbounded from above. With
n = 2 samples, the null cone has two components, with vanishing ideal

\langle y11y32  - y12y31\rangle \cap \langle y21y32  - y22y31\rangle .

For generic Y \in \BbbR 3\times 2, these equations do not vanish, and the MLE given Y exists. As in
Corollary 5.5, the maximum likelihood threshold is mlt(\scrG ) = mlt\mathrm{b}(\scrG ) = 2.

In the previous example the null cone is Zariski closed, but this is not always the case.
We now give a precise criterion for when this happens. An unshielded collider of a directed
graph \scrG is a subgraph j \rightarrow i\leftarrow k with no edge between j and k.D
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Corollary 5.7. Let \scrG be a TDAG, and consider the action of G(\scrG )+\mathrm{S}\mathrm{L} on tuples of n samples.
The irreducible components of the Zariski closure of the null cone are determinantal varieties:
each component is defined by the maximal minors of the submatrix whose rows are a childless
node and its parents. For n \geq mlt(\scrG ), the null cone is Zariski closed if and only if \scrG has no
unshielded colliders.

Proof. By Theorem 5.3, the null cone is the union

(5.5)
m\bigcup 
i=1

\scrL (i),

where \scrL (i) consists of all m \times n matrices whose ith row is a linear combination of rows
corresponding to the parents of node i. Since the closure of a finite union is the union of the

closures, the Zariski closure of (5.5) is a union of determinantal varieties \scrL (i)Z , each given by
the maximal minors of the submatrix formed by node i and its parents. If node i has a child

c, then \scrL (i)Z \subset \scrL (c)Z , because of the transitivity of \scrG . The first part of the assertion follows.
For the second part, we assume without loss of generality that the labels are ordered such

that j \rightarrow i implies j < i. We start by assuming that \scrG has no unshielded colliders. Let
Y be a matrix in the Zariski closure of the null cone; i.e., there is some node i with parents
p1 < \cdot \cdot \cdot < ps such that the corresponding s+1 rows ri, rp1 , . . . , rps of Y are linearly dependent.
So there is a nontrivial linear combination \lambda 1rp1 + \cdot \cdot \cdot +\lambda srps +\lambda s+1ri = 0. We pick the largest
index \ell such that \lambda \ell \not = 0. If \ell = s+1, the ith row is a linear combination of its parents, and Y
is in the null cone. Otherwise, the row rp\ell is a linear combination of rp1 , . . . , rp\ell  - 1

. We claim
that these are all parents of pl, and therefore that Y is in the null cone. Indeed, if some pj
for 1 \leq j \leq \ell  - 1 was not a parent of p\ell , we would have the unshielded collider pj \rightarrow i\leftarrow p\ell .

Conversely, we assume that some node i has two parents j < k that are not connected.
If i has several such pairs of parents, we consider a pair (j, k) such that k is minimal. This
ensures that every parent p of k must also be a parent of j. Indeed, by transitivity of the
DAG \scrG , we have that p \rightarrow i and that j \not \rightarrow p (since j \not \rightarrow k). Moreover, by minimality of k, it
cannot be that there is no edge between p and j, so p\rightarrow j.

We will now construct a matrix Y which is not in the null cone but in its Zariski closure.
We assign the rows 1, . . . ,m in order, according to the following rules. Each row, except for
k, is assigned so that it is linearly independent of its parents. We note that this is possible
due to n \geq mlt(\scrG ). In particular, the jth row is assigned such that it is linearly independent
of its parents, which include the parents of k as observed above. We pick the kth row equal
to the jth row. Since now the parents j and k of i are linearly dependent, we see that the
matrix Y is in the Zariski closure of the null cone. However, by our construction, no node in
\scrG is a linear combination of its parents, so Y does not lie in the null cone.

Example 5.8. Let \scrG be the TDAG 1 \rightarrow 3 \leftarrow 2, with an unshielded collider. The corre-
sponding group G(\scrG ) consists of invertible matrices

g =

\left[  \ast 0 0
0 \ast 0
\ast \ast \ast 

\right]  .
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This is the transpose of the group in Examples 5.2 and 5.6, but we observe differences between
the two models. Since node 3 has the nodes 1 and 2 as parents, Corollary 5.5 tells us that
mlt(\scrG ) = mlt\mathrm{b}(\scrG ) = 2 + 1 = 3 (as opposed to mlt = 2 in Example 5.6).

The null cone is not Zariski closed for n \geq 3, by Corollary 5.7. Note that the Zariski
closure of the null cone when n = 3 is generated by the single equation det(Y ). We see that
the null cone is also not closed for n = 2, using Theorem 5.3. Here, row 3 is generically a
linear combination of rows 1 and 2, and hence the Zariski closure of the null cone fills the
space of tuples. However, for special choices of tuple Y , the MLE does exist. For example, let

Y =

\left[  1 0
1 0
0 1

\right]  .
Rows 1 and 2 are nonzero, and row 3 is not a linear combination of rows 1 and 2; hence the
MLE given Y exists. Since Y is of minimal norm in its orbit, one MLE is 2I3, where \lambda = 2
minimizes 3

2\lambda  - 3 log(\lambda ); see Proposition 3.4. In fact, there are infinitely many MLEs, as
follows. For any g in the stabilizer of Y the vector g \cdot Y is also of minimal norm in the orbit.
Then \lambda gTg is also an MLE given Y , where \lambda = 2 as before. The stabilizer is\left\{   

\left[  1 0 0
0 1 0
t  - t 1

\right]  : t \in \BbbR 

\right\}   ; thus 2I3 + 2t

\left[  t  - t 1
 - t t  - 1
1  - 1 0

\right]  , t \in \BbbR , are also MLEs.

In fact, we can verify that these are all MLEs using Proposition 3.4.

We describe the implications of the above results for undirected Gaussian graphical models,
i.e., those coming from graphs with undirected edges; see [36, Chapter 13]. A Gaussian
graphical model on an undirected graph \scrG is given by all concentration matrices \Psi such that
\psi ij = 0 whenever the edge i - j is missing from \scrG . A natural question is to determine which
undirected Gaussian graphical models are Gaussian group models, i.e., of the form \scrM G for
some group G \subseteq GLm. For instance, note that the undirected model corresponding to 1 - 3 - 2
is the same as the directed model from Example 5.2. We argue that any undirected model
that is a Gaussian group model is covered by our study of TDAGs.

We first note that the directed model of any TDAG without unshielded colliders equals the
undirected model of its underlying undirected graph; see, e.g., [4, Proposition 4.1]. Conversely,
a necessary condition for an undirected graphical model to be a Gaussian group model can be
obtained from [28, Theorem 2.2]: an undirected Gaussian graphical model is a transformation
family if and only if the graph \scrG has neither 4-cycles nor 4-chains as induced subgraphs. There
are two consequences of these conditions. One is that there is a way to direct the edges in \scrG so
that there are no unshielded colliders. The other consequence is that this can be done in such
a way so that the undirected model coincides with the directed model\scrM \rightarrow 

\scrG , and the directed
graph must be a TDAG; see page 7 of the supplementary material of [14]. In summary, we
have the following equivalence.

Remark 5.9. The undirected graphical models that are Gaussian group models are the
TDAG models without unshielded colliders. They are exactly those models whose sets of
tuples of n samples with unbounded likelihood are Zariski closed for all n, by Corollary 5.7.D
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Appendix A. Connections to representations of quivers. We explain how to deduce
Theorem 4.12 from the general setting in [26] in terms of representations of quivers. We use
the Kronecker quiver Q with two vertices and n arrows:

1 2...

An element Y in V := (\BbbC m1\times m2)n is a finite dimensional representation of Q with dimension
vector \alpha = (m1,m2). We denote such a representation by (\BbbC m1 ,\BbbC m2 ;Y ). This identifies V
with the space R(Q,\alpha ) from [26]. The left-right action of G := GLm1(\BbbC )\times GLm2(\BbbC ) on V by
(g1, g2) \cdot (Yi)i = (g1Yig

 - 1
2 )i is the GL(\alpha ) action on R(Q,\alpha ) from [26]. The difference between

this action and our left-right action (with gT2 rather than g - 1
2 ) preserves all stability notions.

We consider two closely related group actions. First, we restrict to H := SLm1(\BbbC ) \times 
SLm2(\BbbC ). Second, we consider the action of G on V \times \BbbC by

g \cdot (X, z) := (g \cdot X,\chi  - 1
\theta (g)z), where \chi  - 1

\theta (g) = [det(g1)]
 - m2 [det(g2)]

m1 ,

for \theta := (m2, - m1). The two actions are related as follows.

Lemma A.1. Fix Y \in V = (\BbbC m1\times m2)n and z \in \BbbC \times , and set \^Y := (Y, 1) \in V \times \BbbC . Then

(a) (X, z) \in G \cdot \^Y \leftrightarrow z
1

m1m2X \in H \cdot Y,

(b) (X, z) \in G \cdot \^Y \leftrightarrow z
1

m1m2X \in H \cdot Y ,

(c) (\exists X \in V : (X, 0) \in G \cdot \^Y ) \leftrightarrow 0 \in H \cdot Y .

Proof. To prove (a), take g \in G with (X, z) = g \cdot \^Y . Then [det(g1)]
 - m2 [det(g2)]

m1 = z

and g \cdot Y = X. Set h :=
\bigl( 
det(g1)

 - 1
m1 g1, det(g2)

 - 1
m2 g2

\bigr) 
\in H to obtain h \cdot Y = z

1
m1m2X.

Conversely, given the latter for some h = (h1, h2) \in H, we define g :=
\bigl( 
z
 - 1

m1m2 h1, h2
\bigr) 
to

yield g \cdot \^Y = (X, z). Part (b) follows from applying (a) to a sequence in the respective orbit
that tends to a point in the orbit closure.

For Y = 0 we have (0, 0) \in G \cdot \^Y and 0 \in H \cdot Y . It remains to consider Y \not = 0. Take
X \in V , and let g(k) \in G be a sequence such that g(k) \cdot \^Y tends to (X, 0) as k \rightarrow \infty . Since

\chi  - 1
\theta (g(k)) \not = 0 for all k, we apply (a) to obtain Yk :=

\bigl[ 
\chi  - 1
\theta (g(k))

\bigr] 1
m1m2 g(k) \cdot Y \in H \cdot Y for all k.

With g(k) \cdot \^Y \rightarrow (X, 0) for k \rightarrow \infty we conclude that the sequence Yk tends to 0 \in V . On the
other hand, assume there exist Yk \in H \cdot Y with Yk \rightarrow 0 as k \rightarrow \infty . Since Y \not = 0, we have

Yk \not = 0, and hence ck := \| Yk\| 
m1m2

2 \not = 0 for all k. Thus, setting Xk := c
 - 1

m1m2
k Yk and applying

(a) gives (Xk, ck) \in G \cdot \^Y . The latter sequence tends to (0, 0) \in V \times \BbbC by the choice of ck.

With the help of Lemma A.1 we prove Theorem 4.12.

Proof of Theorem 4.12. The equivalence of (a) and (b) is Theorem 3.15. It remains to
prove the equivalence of (b) and (c). Recall that \theta = (m2, - m1). By [26, Proposition 3.1] the
matrix tuple Y = (Y1, . . . , Yn) is \chi \theta -stable if and only if the representation (\BbbC m1 ,\BbbC m2 ;Y ) is
\theta -stable. First, we show that the former is equivalent to being stable under the action of H.
Then we rephrase the latter as the shrunk subspace condition (c).

Set \Delta := \{ (tIm1 , tIm2) | t \in \BbbC \times \} , and let G \^Y denote the G-stabilizer of \^Y = (Y, 1). The

tuple Y is \chi \theta -stable if and only if the orbit G \cdot \^Y is closed and the group G \^Y /\Delta is finite,D
ow

nl
oa

de
d 

10
/1

9/
22

 to
 1

40
.2

47
.1

2.
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVARIANT THEORY AND SCALING FOR ML ESTIMATION 335

by [26, Lemma 2.2]. The group G \^Y /\Delta is finite if and only if HY is finite, since the group
morphism

\varphi : G \^Y \rightarrow HY , (g1, g2) \mapsto \rightarrow 
\Bigl( 
det(g1)

 - 1
m1 g1, det(g2)

 - 1
m2 g2

\Bigr) 
induces an isomorphism G \^Y /\Delta 

\sim = HY . For Y \not = 0, we show that G \cdot \^Y is closed if and only

if H \cdot Y is closed, as follows. If G \cdot \^Y is closed and X \in H \cdot Y , then (X, 1) \in G \cdot \^Y = G \cdot \^Y
using Lemma A.1(b), and hence X \in H \cdot Y by Lemma A.1(a). Conversely, if H \cdot Y is closed

with Y \not = 0, then 0 /\in H \cdot Y . Thus, Lemma A.1(c) yields G \cdot \^Y \cap 
\bigl( 
V \times \{ 0\} 

\bigr) 
= \emptyset . Hence any

(X, z) \in G \cdot \^Y must satisfy z \in \BbbC \times , and we conclude that (X, z) \in G \cdot \^Y using Lemma A.1.
For \theta -stability, (\BbbC m1 ,\BbbC m2 ;Y ) is viewed as an element of the category of finite dimensional

representations of the Kronecker quiver Q. We note that \langle \theta , (m1,m2)\rangle = 0 is satisfied by our
choice \theta = (m2, - m1). We specialize [26, Definition 1.1] to our representation (\BbbC m1 ,\BbbC m2 ;Y )
of the Kronecker quiver Q. The representation is \theta -semistable if and only if for all subrepre-
sentations of (\BbbC m1 ,\BbbC m2 ;Y ), i.e., all subspaces V1 \subseteq \BbbC m1 , V2 \subseteq \BbbC m2 such that YiV2 \subseteq V1 for
all i, we have

(A.1) \langle \theta , (dimV1,dimV2)\rangle = m2 dimV1  - m1 dimV2 \geq 0.

The representation (\BbbC m1 ,\BbbC m2 ;Y ) is \theta -stable if and only if, in addition, the inequality in (A.1)
is strict for all nonzero proper subrepresentations. Here, ``nonzero"" means V1 \not = 0 or V2 \not = 0,
while ``proper"" means V1 \subsetneq \BbbC m1 or V2 \subsetneq \BbbC m2 . Since V1 \not = 0 and V2 = 0 give strict inequality
in (A.1), it is enough to consider V2 \not = 0. On the other hand, strict inequality in (A.1) holds
for all proper subrepresentations satisfying V1 \subsetneq \BbbC m1 and V2 = \BbbC m2 if and only if there is no
proper subrepresentation of this form, i.e., if and only if rank(Y1, . . . , Yn) = m1. Hence, by
requiring the latter condition we can restrict to the case V2 \subsetneq \BbbC m2 . Altogether, we rephrased
the \theta -stability of (\BbbC m1 ,\BbbC m2 ;Y ) as in the statement.

Remark A.2. Proposition 3.1 in [26] provides an alternative proof of the complex analogue
of Theorem 4.4, i.e., [7, Proposition 2.1]. It states that Y is \chi \theta -semistable if and only if
(\BbbC m1 ,\BbbC m2 ;Y ) is \theta -semistable. The former holds if and only if\bigl( 

V \times \{ 0\} 
\bigr) 
\cap G \cdot \^Y \not = \emptyset ,

i.e., if and only if Y is semistable under the action of H, by Lemma A.1. On the other hand,
the proof of Theorem 4.12 shows that (\BbbC m1 ,\BbbC m2 ;Y ) is \theta -semistable if and only if (A.1) holds
for all subspaces V1 \subseteq \BbbC m1 , V2 \subseteq \BbbC m2 satisfying YiV2 \subseteq V1 for all i = 1, . . . , n.
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