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TORIC INVARIANT THEORY
FOR MAXIMUM LIKELIHOOD ESTIMATION IN LOG-LINEAR MODELS

CARLOS AMÉNDOLA, KATHLÉN KOHN, PHILIPP REICHENBACH AND ANNA SEIGAL

We establish connections between invariant theory and maximum likelihood estimation for discrete
statistical models. We show that norm minimization over a torus orbit is equivalent to maximum
likelihood estimation in log-linear models. We use notions of stability under a torus action to characterize
the existence of the maximum likelihood estimate, and discuss connections to scaling algorithms.

1. Introduction

Fruitful, sometimes unexpected, connections between algebra and statistics are constantly being discovered
in the field of algebraic statistics. In this paper we unveil a connection between toric invariant theory and
maximum likelihood estimation for log-linear models. Log-linear models are widespread in statistics
and play a fundamental role in categorical data analysis, with a wide range of applications [5]. They
consist of discrete probability distributions whose coordinatewise logarithm lies in a fixed linear space
and include, for example, independence models and discrete graphical models [21]. There is a long
history of the study of log-linear models in statistics, with an emphasis on understanding their maximum
likelihood inference [13]. This concerns the existence of the maximum likelihood estimate (MLE), which
maximizes the likelihood function given sample data, and statistical procedures for its computation.

Log-linear models play a prominent role in algebraic statistics [27]. The key link to algebra is that
the Zariski closure of a log-linear model is a toric variety, defined by a monomial parametrization. Toric
varieties have a foundational place among the algebraic varieties studied in algebraic geometry [7].

In our companion work [1], we establish a connection between finding the MLE and norm minimization
along an orbit under a group action. We focus there on the setting of Gaussian group models, centered
multivariate Gaussian models whose concentration matrices are of the form gTg, where g lies in a group.
In this paper, we study the connection between invariant theory and maximum likelihood estimation in
the setting of discrete exponential families. We find remarkable similarities and differences between the
discrete and Gaussian settings.

The paper is organized as follows. We introduce maximum likelihood estimation and our toric
invariant theory setting in the expository Sections 2 and 3. Our main results are in Section 4. We give
a characterization of MLE existence in terms of the existence of a vector of minimal norm in an orbit
under a torus action (see Theorem 4.3), and an explicit way to compute the MLE from such a vector
(see Theorem 4.7). We provide an alternative characterization in terms of null cones in Propositions 4.4
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and 4.5. We compare iterative proportional scaling (IPS), a classical method to find the MLE for log-linear
models, with approaches to norm minimization in Section 5. We conclude the paper with a comparison
with the multivariate Gaussian setting of [1] in Section 6 and outline a possible generalization for future
research.

2. Maximum likelihood estimation

In this section we describe our statistical set-up: maximum likelihood estimation for discrete probability
distributions. A distribution on m states is determined by its probability mass function p, where p j is the
probability that the j -th state occurs. Such a probability mass function is a point in the (m−1)-dimensional
probability simplex:

1m−1 =

{
p ∈ Rm

∣∣∣ p j ≥ 0 for all j and
m∑

j=1

p j = 1
}
.

A statistical model M of distributions with m states is a subset of 1m−1.
The data for a discrete distribution is a vector of counts u ∈ Zm

≥0, where the coordinate u j is the number
of times that the j-th state occurs, and n = u+ :=

∑m
j=1 u j is the total number of observations. The

corresponding empirical distribution is ū = 1
n u ∈1m−1.

Maximum likelihood estimation in M given data u finds a point in the model most likely to give rise to
the observed data. That is, an MLE given u is a maximizer p̂ of the likelihood function over the model M.
The likelihood function is

Lu(p)= pu1
1 · · · p

um
m . (1)

For example, if the model fills 1m−1, the likelihood is maximized uniquely at p̂ = ū.
An MLE given u is, equivalently, a point in M that minimizes the Kullback-Leibler (KL) divergence

to the empirical distribution ū. The KL divergence from q ∈ Rm
>0 to p ∈ Rm

>0 is

KL(p‖q)=
m∑

j=1

p j log
p j

q j
.

Although the KL divergence is not a metric, for p, q ∈1m−1 it satisfies KL(p‖q)≥ 0, and KL(p‖q)= 0
if and only if p = q. The logarithm of the likelihood given u can be written, up to additive constant, as

`u(p)=−n
m∑

j=1

ū j log
ū j

p j
=−n KL(ū‖ p).

We see that maximizing the log-likelihood is equivalent to minimizing the KL divergence to the empirical
distribution.

3. Toric invariant theory

In this section we describe the invariant theory of a torus action that we will use. We begin by introducing
notions of stability under a group action.
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3A. Stability. Invariant theory studies actions of a group G and notions of stability with respect to this
action. In this article we work with linear actions on a complex vector space. Such a linear action assigns
to a group element g ∈ G an invertible matrix in GLm(C). The group element g ∈ G acts on Cm by left
multiplication with the matrix. The action of group element g on vector v is denoted by g ·v. For a vector
v ∈ Cm , we define the capacity to be

cap(v) := inf
g∈G
‖g · v‖2.

Here, and throughout the paper, ‖·‖ denotes the Euclidean norm for vectors and the Frobenius norm for
matrices. We now define the four notions of stability for such an action.

Definition 3.1. Let v ∈ Cm . We denote the orbit of v by G · v, the orbit closure with respect to the
Euclidean topology by G · v and the stabilizer {g ∈ G : g · v = v} by Gv. We say v is

(a) unstable, if 0 ∈ G · v, i.e., cap(v)= 0;

(b) semistable, if 0 /∈ G · v, i.e., cap(v) > 0;

(c) polystable, if v 6= 0 and G · v is closed;

(d) stable, if v is polystable and Gv is finite.

The set of unstable points is called the null cone of the group action.

3B. A torus action. We consider the d-dimensional complex torus, denoted GTd(C) or GTd . We some-
times consider the real analogue, denoted GTd(R). We consider the action of GTd on a complex projective
space Pm−1

C
, encoded by a d ×m matrix of integers A = (ai j ). The torus element λ= (λ1, . . . , λd) acts

on a point v in Pm−1
C

by multiplication by the diagonal matrix
λ

a11
1 λ

a21
2 · · · λ

ad1
d

λ
a12
1 λ

a22
2 · · · λ

ad2
d

. . .

λ
a1m
1 λ

a2m
2 · · · λ

adm
d

 , (2)

i.e., it acts on the coordinates of the point v via v j 7→ λ
a1 j
1 · · · λ

ad j
d v j .

Remark 3.2. An action of a group G on Cm induces an action on the polynomial ring C[x1, . . . , xm] by
g · f (x) := f (g−1

· x), where x = (x1, . . . , xm)
T. For the action of the torus GTd given by matrix A, the

map on indeterminates is x j 7→ λ
−a1 j
1 · · · λ

−ad j
d x j .

A linearization of the action of GTd on Pm−1 is a corresponding action on the underlying m-dimensional
vector space Cm . It is given by a character of the torus, b ∈ Zd . For the linearization given by matrix
A ∈ Zd×m and vector b ∈ Zd , the torus element λ acts on the vector v in Cm via

v j 7→ λ
a1 j−b1
1 · · · λ

ad j−bd
d v j . (3)

Remark 3.3. The name linearization comes from the setting of an algebraic group acting on a complex
variety X , as follows. We fix a line bundle over X , i.e., a map p : L→ X , with certain properties, whose



190 CARLOS AMÉNDOLA, KATHLÉN KOHN, PHILIPP REICHENBACH AND ANNA SEIGAL

fibers are copies of C. Given a group action on X , a linearization is an action on L that agrees with the
original action under projection under p, and that is a linear action on each fiber [10, Chapter 7]. For
example, the following projection map is a line bundle,

p : {(x, v) ∈ Pm−1
C
×Cm

| v ∈ `x} → Pm−1
C

,

where the fiber over each x ∈ Pm−1
C

corresponds to the line `x in Cm that the point represents. That way,
a linearization lifts an action on Pm−1

C
to an action on Cm .

We now consider the notions of stability in Definition 3.1 for this torus action. They specialize to give
polyhedral conditions. The convex hull of the columns a j ∈ Zd of the matrix A is the polytope

P(A) := conv{a1, . . . , am} ⊆ Rd .

The set P(A) consists of vectors in Rd of the form Au for some u ∈1m−1. We define subpolytopes that
depend on an indexing set J ⊆ [m]

PJ (A) := conv{a j | j ∈ J }.

For v ∈ Cm , let supp(v) := { j | v j 6= 0} ⊆ [m]. We abbreviate Psupp(v)(A) to Pv(A), i.e., we define

Pv(A) := conv{a j | j ∈ supp(v)}.

For a polytope P ⊆ Rd , we denote its interior by int(P) and its relative interior by relint(P).

Theorem 3.4 (Hilbert–Mumford criterion for a torus). Let v ∈ Cm and consider the action of the complex
torus GTd on Cm given by matrix A ∈ Zd×m with linearization b ∈ Zd . We have

(a) v unstable⇔ b /∈ Pv(A),

(b) v semistable⇔ b ∈ Pv(A),

(c) v polystable⇔ b ∈ relint(Pv(A)),

(d) v stable⇔ b ∈ int(Pv(A)).

We give an elementary proof of Theorem 3.4 in Appendix A. Alternative proofs can be found in [10,
Theorem 9.2] or [29, Theorem 1.5.1].

3C. The moment map. We introduce the moment map and state the Kempf–Ness theorem, for a torus
action. As before, GTd denotes the d-dimensional complex torus, and we consider its action on Cm via
the matrix A ∈ Zd×m . We first consider the trivial linearization b = 0 and later a general linearization
b ∈ Zd .

Fix v ∈ Cm and consider a torus element λ= (λ1, . . . , λd) in GTd . The j-th coordinate of the vector
λ · v ∈ Cm is

(λ · v) j = λ
a1 j
1 · · · λ

ad j
d v j .
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Next, we consider the map that sends λ to the squared norm of λ · v:

γv : GTd → R, λ 7→ ‖λ · v‖2 =

m∑
j=1

|λ1|
2a1 j · · · |λd |

2ad j |v j |
2.

The infimum of γv over λ ∈ GTd is the capacity of v.
More generally, for an algebraic group G acting linearly on a space V we can consider the map

γv :G→R that sends g 7→ ‖g ·v‖2, for fixed v ∈ V . The derivative is a map DI γv : TI G→R, where TI G
is the tangent space to G at I . The moment map µ assigns to v ∈ V the derivative of the map γv at I ∈ G.

For the group GTd , the tangent space at I is equal to Cd , and the derivative is a map Cd
→ R. Recall

that the map f : C → C, z 7→ |z|2 is not complex differentiable. We identify C with R2, writing
z = x + iy. Then the differential of f is given in terms of x and y, and their tangent directions ẋ and ẏ,
as ż 7→ 2x ẋ + 2y ẏ. In particular, the differential at z = 1 is the map ż 7→ 2<(ż), where <(·) denotes the
real part of a complex scalar. Extending to the multivariate setting, we obtain the derivative map

DIγv : C
d
→ R, λ̇ 7→

d∑
i=1

( m∑
j=1

2ai j |v j |
2
)
<(λ̇i )= 2<

( d∑
i=1

(Av(2))i λ̇i

)
,

where v(2) is the vector with j-th coordinate |v j |
2. We can identify Cd with the space of R-linear

functionals Hom(Cd ,R), by associating to u ∈Cd the map w 7→<
(∑d

i=1 uiwi
)
. Under this identification,

the linear map DIγv corresponds to the vector 2Av(2) ∈ Cd . Hence the moment map, for linearization
b = 0, is

µ : Cm
→ Cd , v 7→ 2Av(2).

For a general linearization b ∈ Zd , we replace the columns a j of A by a j − b. This replaces the vector
Av(2) by Av(2)− b‖v‖2, where ‖v‖2 =

∑m
j=1 |v j |

2. We obtain

µ : Cm
→ Cd , v 7→ 2(Av(2)−‖v‖2b).

The Kempf–Ness theorem relates points of minimal norm in an orbit, or orbit closure, to the vanishing of
the moment map. It was first proven in [19]. Nowadays, several statements are referred to as Kempf–Ness
theorem; see [1, Section 2] for a summary. For our torus action, we obtain the following.

Theorem 3.5 (Kempf–Ness theorem for a torus). Consider the torus action of GTd given by matrix
A ∈ Zd×m with linearization b ∈ Zd . A vector is semistable (resp. polystable) if and only if there is a
nonzero v in its orbit closure (resp. orbit) with Av(2) = ‖v‖2b. This v is a vector of minimal norm in the
orbit closure (resp. orbit).

We give two proofs of Theorem 3.5 in Appendix B. The first proof is a translation from the original
paper of Kempf and Ness [19]; the second proof uses Theorem 3.4.

3D. The null cone. The set of unstable points under a group action on a vector space is the null cone,
see Definition 3.1. In many settings of interest, the null cone is a Zariski closed set, the vanishing locus of
all homogeneous invariants of positive degree. It is a classical object of interest, studied by Hilbert [18].
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Figure 1. The maximal subpolytopes of P(A) not containing b, for four different b ∈Z2.
For example, the leftmost picture displays PJ (A) for J equal to {1, 2, 3}, {1, 2, 4}, and
{3, 4}. Each subpolytope corresponds to an irreducible component of the null cone, see
Proposition 3.6. For b on the boundary of P(A), all maximal subpolytopes intersect, see
Proposition 4.5.

We recall the setting of the action of the complex torus GTd on Cm given by a matrix A ∈ Zd×m with
linearization b ∈ Zd . The stability of v ∈ Cm is determined by its support supp(v); see Theorem 3.4. In
particular the null cone, as a set, is a union of coordinate linear spaces. We describe it in terms of the
standard basis vectors in Cm , denoted e1, . . . , em . The linear space spanned by {e j | j ∈ J } is denoted
〈e j | j ∈ J 〉.

A vector b in P(A) can be written as a convex combination of the m columns of A. We consider the
maximal subpolytope of P(A) that does not contain b, as well as the minimal subpolytope of P(A) that
contains b. Both minimality and maximality are taken with respect to inclusion in the set [m].

In Proposition 3.6, we see the connection between irreducible components of the null cone and maximal
subpolytopes of P(A) not containing b, see Figure 1. Then, in Proposition 3.7, we see that minimal
subpolytopes containing b give set-theoretic defining equations for the null cone, see Figure 2.

Proposition 3.6. Consider the action of GTd on Cm given by matrix A ∈ Zd×m with linearization b ∈ Zd .
The irreducible components of the null cone are the linear spaces 〈e j | j ∈ J 〉, where PJ (A) is a maximal
subpolytope of P(A) with b /∈ PJ (A).

Proof. Assume that a point v ∈Cm lies in a linear space 〈e j | j ∈ J 〉 where b /∈ PJ (A). Then supp(v)⊆ J ,
hence b /∈ Pv(A), and v is unstable by Theorem 3.4(a). Conversely, assume that v ∈ Cm is not contained
in any linear space 〈e j | j ∈ J 〉 as in the statement. Since the PJ (A) are maximal with b /∈ PJ (A), we
have b ∈ Pv(A) and v is semistable. �

Proposition 3.7. Consider the action of GTd on Cm given by matrix A ∈ Zd×m with linearization b ∈ Zd .
A vector v ∈ Cm is in the null cone if and only if all products

∏
j∈J v j vanish, where J ⊆ [m] indexes a

minimal subpolytope of P(A) containing b.

Proof. Denote vJ :=
∏

j∈J v j . If some vJ is nonzero, i.e., J ⊆ supp(v), then b∈ PJ (A) implies b∈ Pv(A),
hence v is semistable by Theorem 3.4(b). Conversely, if v is semistable then b ∈ Pv(A). By minimality
of the minimal subpolytopes PJ (A) containing b we have, for some J in the statement, the containment
PJ (A)⊆ Pv(A), i.e., J ⊆ supp(v), hence vJ 6= 0. �
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Figure 2. The minimal subpolytopes of P(A) containing b, for four choices of b ∈ Z2.
For example, the leftmost picture displays PJ (A) for J equal to {1, 3, 4} and {2, 3, 4}.
Each subpolytope corresponds to a generator of the null cone, see Proposition 3.7.

The null cone is defined by the vanishing of all homogeneous invariants of positive degree. The
monomials from Proposition 3.7 give the square-free part of the generators of the null cone. We describe
how to take powers of the indeterminates appearing in the monomials, in order to turn them into invariants.
Let J ⊆ [m] index a minimal subpolytope of P(A) containing b. Then 0 can be written as a strictly
positive convex combination of {(a j − b) | j ∈ J }. Since the entries of the matrix A and the vector b are
integers, the convex combination is rational. Multiplying by the lowest common denominator gives a
positive integer linear combination ∑

j∈J

r j (a j − b)= 0, r j ∈ Z>0. (4)

The monomials
∏

j∈J xr j
j are invariants under the group action, since

λ ·

(∏
j∈J

xr j
j

)
=

∏
j∈J

(λ−(a j−b)x j )
r j =

∏
j∈J

xr j
j · λ

−
∑

j∈J r j (a j−b)
=

∏
j∈J

xr j
j ,

where the first equality follows from Remark 3.2 and the last equality follows from (4).

4. Main Results

We begin this section by introducing maximum likelihood estimation in log-linear models, pointing out con-
nections to torus actions. We relate stability under a torus action to maximum likelihood estimation for log-
linear models in Section 4B, and describe how to compute the MLE from the moment map in Section 4C.

4A. Log-linear models. A log-linear model consists of distributions whose logarithms lie in a fixed
linear space. The log-linear model corresponding to a matrix A ∈ Zd×m is

MA =
{

p ∈1m−1 | log p ∈ rowspan(A)
}
. (5)

The coordinatewise logarithm log p applies to p with strictly positive entries, and we therefore have
MA ⊆ relint(1m−1). A parametrization of the model MA is given by

φA
: Rd

>0→1m−1, θ 7→

(
1

Z(θ)

d∏
i=1

θ
ai j
i

)
1≤ j≤m

, (6)
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where Z is a normalization factor. We observe a first connection between the statistical model and a
torus action: the map φA is, up to normalization, the action (3) of the real positive torus element θ on the
all-ones vector 1= (1, . . . , 1) ∈ Rm with trivial linearization b = 0.

For the log-linear model MA, we assume that the vector 1 is in the row span of A; this is a common
assumption for statistical, as well as algebraic, reasons. First, such log-linear models are equivalent to
discrete exponential families [27, Section 6.2]. Second, the assumption means the uniform distribution
1
m 1 is in the model. Moreover, consider the Zariski closure of MA in Cm , defined by the ideal

IA =
〈
pv − pw | v,w ∈ Zm

≥0 such that Av = Aw
〉

(7)

in the ring C[p1, . . . , pm], where pv :=
∏m

j=1 pv j
j for v ∈ Zm

≥0. If 1 ∈ rowspan(A), this becomes a
homogeneous ideal: indeed, if rTA= 1 for some r ∈Rd , then multiplying Av= Aw by this vector results
in 1v = 1w.

Example 4.1. A probability distribution on two ternary random variables is a 3× 3 matrix p = (pi j ) of
nonnegative entries that sum to one. A distribution lies in the independence model if

pi j = pi+ p+ j for all 1≤ i, j ≤ 3,

where pi+ is the sum of the i-th row of p, and p+ j the sum of the j -th column. We view the independence
model as a discrete exponential family, hence require that the entries of p are strictly positive. The
independence model on a pair of ternary random variables is the log-linear model MA where

A =



1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1


∈ Z6×9.

A distribution p ∈MA has nine states, i.e., MA ⊆18. We identify R9 with R3×3 to view the nine state
random variable as a pair of ternary random variables.

The action of GT6(R) on R3×3 given by (2), is as follows. The torus element(
ν1 ν2 ν3 ν4 ν5 ν6

)
=
(
λ1 λ2 λ3 µ1 µ2 µ3

)
acts on a matrix x ∈ R3×3 by multiplying the entry xi j by

∏6
k=1 ν

a
k where a is the column of A with

index (i, j). This is the left-right action of GT3×GT3 on the space of 3×3 matrices; it sends xi j 7→λiµ j xi j .
In particular, the orbit of the all-ones matrix consists of all rank one matrices with all entries nonzero.
The intersection of this orbit with 18 gives the independence model on a pair of ternary variables.

We now consider maximum likelihood estimation for log-linear models. Recall that an observed vector
of counts u ∈ Zm

≥0 defines an empirical distribution ū ∈ 1m−1. The vector Aū is a vector of sufficient
statistics for the model MA. A maximum likelihood estimate is a point q ∈MA such that

Aq = Aū, (8)
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see, e.g., [11, Proposition 2.1.5] or [27, Corollary 7.3.9].
Since the model MA is not closed, the MLE may not exist. Birch [3] was the first to rigorously study

MLE existence in the context of multiway tables, where he observed that u having all entries strictly
positive is a sufficient condition for the MLE to exist and derived condition (8), sometimes known as
Birch’s Theorem, see [23, Theorem 1.10]. The fact that some entries could still be 0 without affecting
MLE existence was not fully understood until the work of Haberman, who gave the first characterization
of MLE existence in her paper [17]. A modern necessary and sufficient condition is the following.

Proposition 4.2 [27, Theorem 8.2.1]. Let A ∈ Zd×m be such that 1 ∈ rowspan(A) and let MA be the
corresponding log-linear model. Suppose we observe a vector of counts u ∈ Zm

≥0. Then the MLE given u
exists in MA if and only if Aū lies in the relative interior of the polytope P(A).

In particular, we see that, indeed, if u has all entries positive, the MLE always exists. However, if u
has some entries zero, the MLE may or may not exist.

Following [21, Section 4.2.3], we define the extended log-linear model MA to be the closure of MA

in the Euclidean topology on Rm . The extended model allows for distributions that have some zero
coordinates. The MLE always exists for the extended model, because it is compact and the likelihood
function is continuous. If the MLE given u does not exist in MA, we refer to the MLE given u in the
extended model MA as the extended MLE given u.

Since the likelihood function (1) is strictly concave for log-linear models, the MLE is unique if it
exists, and similarly for the extended MLE.

4B. Relating stability to the MLE. We now describe connections between existence of the MLE for a
log-linear model and stability under a torus action.

Theorem 4.3. Consider a vector of counts u ∈ Zm
≥0 with sample size u+ = n, matrix A ∈ Zd×m with

1 ∈ Cm in the rowspan, and vector b = Au ∈ Zd . The stability under the action of the complex torus GTd

given by matrix n A with linearization b is related to ML estimation in MA as follows:

(a) 1 unstable does not happen,

(b) 1 semistable⇔ extended MLE exists and is unique,

(c) 1 polystable⇔MLE exists and is unique,

(d) 1 stable does not happen.

Proof. We refer to the conditions for the different notions of stability, coming from the Hilbert–Mumford
criterion in Theorem 3.4. By Proposition 4.2, the MLE of u exists if and only if b lies in the relative
interior of the polytope P(n A), which is the condition for polystability in Theorem 3.4.

It remains to see that the cases of unstable and stable do not occur. The all-ones vector 1 can never be
unstable with respect to the action in Theorem 4.3, because b = Au is in the polytope P(n A). Finally,
the stable case also cannot arise, due to the assumption that the vector 1 lies in the row span of A, as
follows. Writing 1 as a linear combination of the rows, i.e., rTA = 1, we have that all vectors a j lie on
the hyperplane r1x1+ · · ·+ rd xd = 1 and the polytope P(A) has empty interior in Rd . �
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Figure 3. The face Fb(A) of P(A), for four choices of b ∈Z2. For example, the leftmost
picture displays the face PJ (A) for J = {1, 2, 3, 4}. The vectors ai outside of the face are
in the intersection of all the irreducible components of the null cone, see Proposition 4.5.
For the corresponding components of the null cone, see Figure 1.

We remark that we could take any other vector of full support in Theorem 4.3. The theorem shows that
MLE existence can be tested by checking polystability under the group action. We now give alternative
characterizations that involve semistability, which has advantages over polystability. The semistability of
v can be checked by evaluating generators of the null cone at v. If all generators vanish then v is unstable,
otherwise it is semistable.

Proposition 4.4. For a vector of counts u ∈ Zm
≥0 with u+ = n and A ∈ Zd×m , the MLE given u exists if

and only if there is some b ∈ Zd , of the form b = Av for v ∈ Rm
>0, such that u is semistable for the torus

action given by matrix n A with linearization b.

Proof. We first assume that the MLE given u exists. Since the vector Au lies in the polytope Pu(n A), the
vector u ∈ Zm

≥0 is semistable for the action given by matrix n A with linearization Au, by Theorem 3.4(b).
Moreover, since Au is in the relative interior of P(n A), by Proposition 4.2, the vector Au is of the form
Av for some v ∈ Rm

>0.
Conversely, if the MLE given u does not exist, then Au lies on the boundary of the polytope P(n A).

Hence the whole polytope Pu(n A) is contained in the boundary. Thus, for every b ∈ Zd of the form
b = Av for v ∈ Rm

>0, we have b /∈ Pu(n A). Then u is unstable under the torus action given by matrix n A
with linearization b, by Theorem 3.4(a). �

To test MLE existence with Proposition 4.4, we need to test null cone membership for multiple
linearizations. We now discuss a different approach, involving one null cone. For a vector b ∈ P(A) we
denote by Fb(A) the minimal face of the polytope P(A) that contains b; see Figure 3.

Proposition 4.5. Consider a vector of counts u ∈ Zm
≥0 with u+ = n and A ∈ Zd×m . The intersection of

the irreducible components of the null cone for the torus action given by matrix n A with linearization
b = Au is 〈e j | na j /∈ Fb(n A)〉.

In particular, the MLE given u exists in MA if and only if the intersection of the irreducible components
of the null cone is {0}.

Proof. Define A′ := n A and consider the polytope P(A′), the convex hull of a′j := na j . We consider the
null cone under the torus action given by matrix A′ with linearization b. A linear space 〈e j | j ∈ J 〉 is in
the null cone if and only if b /∈ PJ (A′), by Proposition 3.6.



TORIC INVARIANT THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION IN LOG-LINEAR MODELS 197

We will show that e j is contained in every irreducible component of the null cone if and only if
a′j /∈ Fb(A′). From this, the second paragraph of the statement follows because the MLE given u exists if
and only if b = Au is in the relative interior of the polytope P(A′), i.e., b does not lie on a proper face,
and Fb(A′)= P(A′).

Consider an index j with a′j /∈ Fb(A′). All possible expressions for b as b = Av for some v ≥ 0 have
v j = 0, since Fb(A′) is a face of P(A′). Let J ⊆ [m] be such that b /∈ PJ (A′), i.e., 〈e j | j ∈ J 〉 is in the null
cone. Taking J ′ = J ∪ { j}, the polytope PJ ′(A′) still does not contain b. Hence, e j lies in an irreducible
component of the null cone that contains 〈e j ′ | j ′ ∈ J ′〉; so e j lies in every irreducible component.

Conversely, consider an index j with a′j ∈ Fb(A′). We show that there exists an irreducible component
of the null cone that does not contain e j . For each facet F ⊆ Fb(A′), let vF be a vector with supp(vF )=

{k | a′k ∈ F}, and take wF with supp(wF )= supp(vF )∪{ j}. The union of PwF (A
′) over facets F ⊆ Fb(A′)

is the whole polytope Fb(A′), so b ∈ PwF (A
′) for some facet F . By the minimality of Fb(A′), we have

b /∈ PvF (A
′). Hence 〈ek | a′k ∈ F〉 is contained in an irreducible component of the null cone but, since

b ∈ PwF (A
′), the irreducible component does not contain e j . �

Example 4.6. We illustrate Proposition 4.5 for the log-linear model MA, where

A =

p000 p001 p010 p011 p100 p101 p110 p111



p00+ 1 1
p01+ 1 1
p10+ 1 1
p11+ 1 1
p+00 1 1
p+01 1 1
p+10 1 1
p+11 1 1

This is the graphical model on three binary random variables X i given by the path graph 1—2—3, defined
by the conditional independence relation X1⊥⊥ X3 |X2. To identify the graphical model with MA, we
identify R8 with R2×2×2 and label the columns of A by entries pi jk . The sufficient statistics of the model
are the eight marginals pi j+ := pi j0+ pi j1 and p+i j := p0i j + p1i j , where (i, j) ∈ {0, 1}2.

We compute the irreducible components of the null cone for the torus action given by matrix n A with
linearization Au, for various u ∈ Z8. The null cone is the zero locus of those monomials in the ring
C[x1, . . . , x8] such that the supports of their exponent vectors index minimal subpolytopes of P(n A) that
contain b, as in Proposition 3.7.

Let u =
[
1 0 1 0 0 1 0 1

]T
. Then b = 1 ∈ R8 and the null cone is the vanishing locus of x1x3x6x8,

x1x4x6x7, x2x3x5x8, and x2x4x5x7. The irreducible components only intersect at {0}, hence the MLE
given u exists in MA.

Let u =
[
1 1 1 1 0 1 1 0

]T
. Then b=

[
2 2 1 1 1 2 2 1

]
and the null cone is the vanishing locus

of x1x2x3x4x6x7, x2
2 x3x4x5x7, x1x2x2

3 x6x8, and x2
2 x2

3 x5x8. The irreducible components only intersect at
{0}, so the MLE given u exists in MA.
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When u =
[
1 0 1 0 0 1 0 0

]T
, the null cone is the vanishing locus of x1x3x6 and x2x3x5. The

irreducible components intersect at 〈e4, e7, e8〉, hence the MLE given u does not exist in MA. We can
also see this from Proposition 4.2, as follows. The vector b= Au =

[
1 1 1 0 1 1 1 0

]T
has some zero

entries. Since P(A) only contains nonnegative points, b must lie on the boundary of P(A).

4C. The moment map gives the MLE. In Theorem 4.3, we compared two optimization problems: finding
the MLE in a log-linear model, and norm minimization in an orbit under a related torus action. More
specifically, we have seen that one problem attains its optimum if and only if the other one does. We
now describe how these two optima are related via the moment map. For this, we consider two possible
closures of the log-linear model MA. The Euclidean closure of the model is the extended log-linear model
MA. We also consider the smallest Zariski closed subset of 1m−1 containing MA, denoted MA

Z , i.e.,
the Zariski closure of MA in Rm intersected with the simplex 1m−1. Its defining ideal is given in (7). In
the proof of the following theorem, we use the result that these two closures are equal [15, Theorem 3.2].

Theorem 4.7. Let u ∈ Zm
≥0 be a vector of counts with u+ = n. Consider a matrix A ∈ Zd×m with

1 ∈ rowspan(A), and let b = Au ∈ Zd . Consider the orbit closure of 1 under the torus action of GTd

given by matrix n A with linearization b. Let q ∈Cm be a point in the orbit closure where the moment map
vanishes. Then the extended MLE given u for the model MA has j-th entry

|q j |
2

‖q‖2
. (9)

If 1 is polystable, then this vector is the MLE.

Proof. At a point q ∈ Cm where the moment map vanishes, we have n Aq(2) = ‖q‖2b by Theorem 3.5.
Consider the vector q ′ with j-th entry as in (9). We show that q ′ is the extended MLE given u in MA.
Since q ′ ∈1m−1 and Aq ′ = A u

n , it remains to show that q ′ ∈MA. Using the equality MA
Z
=MA, it

suffices to show that q ′ satisfies the equations in (7). Since q lies in the orbit closure of 1, it satisfies
the equations in (7), where A is replaced by the matrix with (i, j) entry nai j − b j . That is, it satisfies
qv − qw = 0 for all v,w ∈ Zm

≥0 with n Av− bv+ = n Aw− bw+. We show that this covers all pairs of
vectors v,w with Av = Aw. Indeed, if Av = Aw then v+ = w+, because 1 is in the row span of A.
Hence q ∈MA. Now we conclude that q ′ also satisfies the equations in (7), as follows. For each equation
qv = qw, we can take norms on both sides and square both sides. The equality v+ = w+ then shows that
(q ′)v = (q ′)w, since the denominator is present on both sides with equal power ‖q‖2v+ .

In the polystable case, the vector q is in the orbit of 1, hence has all entries positive. Thus the entries
of q ′ are also positive, so q ′ is the MLE given u in MA. �

Example 4.8. Consider the log-linear model MA, and vector of counts u, where

A =
[

2 1 0
0 1 2

]
, u =

2
1
1

 , b = Au =
[

5
3

]
.

This model is the plane conic x2
2 = x1x3. The existence of the MLE given u in MA can be characterized

by the torus action given by matrix n A with linearization b, by Theorem 4.3, where n = u+ = 4. Since b
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is a positive combination of the columns of A, the vector 1 is polystable under this action and the MLE
given u exists. The MLE relates to a point of minimal 2-norm in the orbit of 1 under the torus action
given by matrix n A with linearization b, by Theorem 4.7. We show how to obtain the MLE from a point
q of minimal norm in the orbit of 1.

Since q lies in the orbit of 1, its entries are q j = λ
na1 j−b1
1 λ

na2 j−b2
2 , where λi are nonzero complex

numbers, i.e., q =
[
λ3 λ−1 λ−5

]T
where λ= λ1/λ2. Moreover, the moment map vanishes at q, so we

have n Aq(2) = ‖q‖2b. Combining these, gives the condition 3ν2
− ν − 5 = 0, where ν = |λ|8, and we

obtain that the MLE is

p̂ = 1
ν2+ν+1

ν2

ν

1

=


31+
√

61
4
√

61+52
3+3
√

61
4
√

61+52
9

2
√

61+26

∼
0.4662

0.3175
0.2162

 .

Theorem 4.7 shows that the MLE can be obtained from norm minimization on an orbit. It suggests the
possibility of using algorithms from invariant theory to compute the MLE, as we describe in Section 5. In
the next example, we motivate the study of these algorithms, returning to the independence model.

The independence model on a pair of discrete random variables is a log-linear model, as we saw in a
special case in Example 4.1. In the following example, we apply Theorem 4.7 to obtain the MLE given u
for the independence model from the point of minimal 2-norm in the orbit of 1⊗1 under a torus action.

Example 4.9. The independence model on a pair of random variables, each with m states, is the log-linear
model MA, where

A =


Im ⊗ 1

1⊗ Im

 ∈ Z2m×m2
. (10)

The first m rows are Im⊗1 and second m rows are 1⊗ Im , where Im is the m×m identity matrix, and 1 is
the all-ones vector of length m. The Kronecker product A1⊗ A2 of two matrices Ak ∈ Rmk×nk is a matrix
of size m1m2× n1n2. We index its rows by (i1, i2) where ik ranges from 1 to mk , and its columns by
( j1, j2), where j ranges from 1 to nk . The entry of A1⊗ A2 at index

(
(i1, i2), ( j1, j2)

)
is (A1)i1 j1(A2)i2 j2 .

See Example 4.1 for (10) in the case m = 3.
The model is the orbit of the all-ones matrix under the left-right action of GTm(R)×GTm(R) on the

space of m×m matrices, after restricting to positive entries that sum to one. Equivalently, the model is
the orbit under the action in (2) of the torus GT2m(R) on Cm×m given by the matrix A in (10), again after
restricting to positive entries that sum to one. Equivalently, the model consists of all rank one matrices
with positive entries summing to one.

Given a data matrix u ∈ Zm×m , we consider the orbit of the all-ones matrix 1⊗ 1 ∈ Cm×m , under
the action of GT2m(C) given by the matrix n A with linearization b, where A is (10), the sample size is
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n = u++, and b = Au ∈ Z2m . We seek a matrix in the orbit closure of 1⊗ 1 at which the infimum norm
is attained. By Kempf–Ness, such matrices are those at which the moment map vanishes. The vanishing
of the moment map at q ∈ Cm×m gives, by Theorem 3.5,

n



|q1+|
2

...

|qm+|
2

|q+1|
2

...

|q+m |
2


= ‖q‖2



u1+
...

um+

u+1
...

u+m


.

We relate the MLE to the matrix p with entries pi j = |qi j |
2/‖q‖2. The matrix p has nonnegative entries

summing to one, and the same row and column sums as the empirical distribution ū. It remains to show
that p is in MA. For g =

[
λ1 . . . λm µ1 . . . µm

]
in GT2m(C), we have

(g · (1⊗ 1))i j = λ
n
i µ

n
j

( m∏
k=1

λ
−bk
k

)( m∏
l=1

µ
−bm+l
l

)
.

Hence p is a scalar multiple of the matrix with (i, j) entry |λi |
2n
|µ j |

2n , and all such matrices have rank
at most one. The latter is a closed condition, so any nonzero p obtained from the orbit closure of 1⊗1
has rank one. Hence p lies in the closure of the independence model. If the orbit is closed, all entries are
positive and it is the MLE. Otherwise, it is the extended MLE; see Theorem 4.3.

5. Scaling algorithms

We saw in Theorem 4.7 that the MLE in a log-linear model can be obtained from a point of minimal
norm in an orbit. This connects two problems:

(1) norm minimization in a complex torus orbit,

(2) maximum likelihood estimation in a log-linear model.

Algorithms exist for both problems: the former can be approached with convex optimization methods,
and the latter with an algorithm called iterative proportional scaling. In fact, both families of algorithms can
be thought of as generalizations of two sides of a classical scaling algorithm due to Sinkhorn [25]. We ex-
plain these different generalizations, and how Theorem 4.7 completes the circle of algorithms, see Figure 4.

5A. Sinkhorn scaling. The classical scaling algorithm of Sinkhorn [25] scales a square matrix M with
positive entries to a doubly stochastic matrix. That is, one finds diagonal matrices D1 and D2 such that
D1 M D2 has all row sums and all column sums equal to one. The doubly stochastic matrix is obtained by
alternately scaling the row and column marginals to one. A natural extension is to scale the matrix M to
other fixed row sums and column sums [26]. Both versions of Sinkhorn scaling are depicted on the left of
Figure 4. These algorithms involve the left-right action of a pair of tori GTm1 ×GTm2 on an m1×m2

matrix: the algorithms iterate between updates via the left torus and via the right torus.
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Sinkhorn

scale to doubly stochastic

scale to target marginals

norm minimization

IPS

Left-right action General torus action

Invariant Theory:

Statistics:

MLE= q(2)

‖q‖2

Figure 4. Overview of different scaling algorithms. The historical progression is from
left to right, starting with two different sides to Sinkhorn scaling.

Alternating scaling of the rows and columns of a matrix to fixed marginals is an instance of a scaling
algorithm which, in the statistics literature, goes back to Deming and Stephan in [9]. For the independence
model on two variables, the algorithm finds the MLE by alternating between scaling the row sums and the
column sums to match the marginals of the empirical distribution. Given an observed matrix of counts
u ∈ Zm×m

≥0 with sample size u++ = n, and initialized at the uniform distribution, the algorithm has two
steps. The (i, j) entry for the two steps is

1
m2 7→

1
m
·

ui+

n
7→

ui+

n
·

u+ j

n
. (11)

If all entries are positive, the output is the MLE to the independence model given u, otherwise it is the
extended MLE. This is the first example of iterative proportional scaling (IPS), which we describe in the
next subsection.

5B. Iterative proportional scaling. In the previous section, we saw that alternating scaling of a matrix
to fixed row and column sums gives the MLE to the independence model, when initialized at the uniform
distribution. This is scaling under a product of tori GTm ×GTm . We saw in Examples 4.1 and 4.9 how
the independence model fits into the framework of log-linear models. In terms of the group action, this
replaces the left-right action of a pair of tori GTm ×GTm with the action of a single torus GT2m , acting
via (2), where A is the matrix in (10).

In this section, we explain how Sinkhorn scaling extends to algorithms for maximum likelihood
estimation for a general log-linear model, the bottom arrow of Figure 4.

Alternating between matching row and column sums can be extended to hierarchical models, which
summarize data by contingency tables [12], by iteratively updating the various marginals. The approach
was extended to more general log-linear models by Darroch and Ratcliff in [8].

For the log-linear model MA, the MLE p̂ must satisfy the equation A p̂ = Aū from Birch’s theorem,
where ū = u

n is the empirical distribution. IPS finds the extended MLE in MA given an empirical
distribution ū ∈1m−1. We define IPS for a log-linear model given by a matrix A ∈ Zd×m

≥0 whose column
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sums are all equal. Starting at the uniform distribution p(0) = 1
m 1, we iterate until the k-th update p(k)

has sufficient statistics b(k) = Ap(k) close to the target sufficient statistics b = Aū, i.e., until (8) holds
approximately. The update step is

p(k+1)
j =

d∏
i=1

(
(Aū)i
(Ap(k))i

)ai j/α

p(k)j , (12)

where α is the common column sum of A; see [27, Algorithm 7.3.11]. This is the action of a torus element
(obtained by componentwise division of Aū by Ap(k) and then componentwise exponentiation by 1/α)
on the vector p(k). Here the torus action is given by the matrix A with linearization b = 0, see (3).

We can view maximum likelihood estimation as a norm minimization problem in a different way to
Theorem 4.7, by interpreting IPS as minimizing KL divergence.

Proposition 5.1. Consider the log-linear model MA where A ∈ Zd×m has 1 in its row span. Then there
exists a matrix Ã ∈Q

(d+1)×m
≥0 , with all column sums equal, such that MA =M Ã, iterative proportional

scaling in (12) with matrix Ã converges, and at each update step the KL divergence to the MLE decreases.

Proof. The proof of convergence of IPS is given in [8, Theorem 1] in the case where the entries of A are
real and nonnegative with each column of A summing to one. There, the authors show that each step of
IPS decreases the KL divergence KL( p̂‖ p(k)) from the k-th iterate p(k) to the MLE p̂. Since replacing A
by 1

α
A does not change the update step (12), the KL divergence also decreases for any matrix with real

and nonnegative entries and all column sums equal.
We explain how this covers log-linear models defined by integer matrices with 1 in the row span.

We modify A without changing its row span, i.e., without changing the model MA. First, we add a
sufficiently large positive integer to every entry of A. For a general choice of integer, this does not change
rowspan(A) since it adds a multiple of the vector 1, which belongs to rowspan(A), to every row. Second,
let α be the maximum of the column sums a+ j . Add another row to the matrix, with entries α− a+ j .
The extra row is a linear combination of 1 and the rows of A, so the augmented matrix has the same row
span as A. The column sums of the augmented matrix Ã are all α. �

Remark 5.2. We saw in Section 2 that p̂=argminp∈M KL(ū‖ p). Here, we use KL divergence differently,
measuring the KL divergence from iterate p(k) to the MLE, KL( p̂‖ p(k)).

Curiously, when IPS for log-linear models in (12) is applied to the independence model, we do not
recover the classical IPS with Sinkhorn updates, because the column sums of the integer matrix A for the
independence model in (10) are α = 2, hence there is a square root in the update step. If, instead, we did
IPS with the same matrix A but α= 1 in (12) we would recover the two steps in (11) in a single step. This
leads naturally to the question of which exponents α achieve convergence, and how the choice of α affects
the convergence rate. This is the essence of an open problem in algebraic statistics, see [11, Section 7.3].

5C. Norm minimization. In this section, we explain how Sinkhorn scaling generalizes to norm mini-
mization in invariant theory; see the top arrow of Figure 4.

The condition that a matrix can be scaled to a doubly stochastic matrix is dual to testing membership
in the null cone under a group action, as follows. We consider pairs of diagonal matrices (D1, D2) of
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determinant one that act on square matrices M via M 7→ D1 M D2. A matrix does not lie in the null cone
under this action if and only if its orbit closure contains a matrix M such that the matrix with (i, j) entry
|mi j |

2 is a nonzero scalar multiple of a doubly stochastic matrix [14, Corollary 3.6]. This is an instance of
Kempf–Ness. Norm minimization on the orbit of a square matrix either converges to zero, or to a nonzero
matrix M at which the moment map vanishes. The condition µ(M) = 0 translates to the matrix with
entries |mi j |

2 being a scalar multiple of a doubly stochastic matrix. So we see that norm minimization
scales to a nonzero multiple of a doubly stochastic matrix, if such a matrix exists in the orbit.

Norm minimization on an orbit can be considered for a wide range of groups and their actions. If a
group G can be expressed as a product of groups, then the alternating minimization idea from Sinkhorn’s
algorithm generalizes. An important example of this is operator scaling, which solves the scaling problem
for the left-right action of SLm1(C)× SLm2(C) on the space of matrix tuples (Cm1×m2)n . We discuss
connections between operator scaling and statistics in our companion paper [1].

We consider the norm minimization problem for the action of the torus GTd(C) given by the matrix
n A with linearization b. We take b = Au, where u is a vector of counts. By Kempf–Ness, Theorem 3.5,
a vector is not in the null cone if and only if there is a nonzero vector q in its orbit closure satisfying
Aq(2) = ‖q‖2b. Hence, the problem of scaling a vector by acting with the torus to such a nonzero vector
q is dual to testing membership in the null cone under the torus action. This duality generalizes the
discussion of doubly stochastic matrices above.

Since the vector 1 is semistable, see Theorem 4.3, norm minimization converges to such a nonzero
vector q. This is a convex optimization problem, as follows. Consider the action of GTd(C) given by
matrix A′ = n A− b⊗1 ∈ Zd×m . For a torus element (λ1, . . . , λd), the coordinate change yi := log |λi |

2

gives

cap(1)= inf
λ∈GTd (C)

‖λ ·1‖2 = inf
λ∈GTd (C)

m∑
j=1

d∏
i=1

|λi |
2a′i j = inf

y∈Rd

m∑
j=1

exp〈y, a′j 〉.

Convexity then follows from the fact that each exponential function is convex and a sum of convex
functions is convex. This minimization problem is known as geometric programming. Hence, common
algorithms from the vast literature on convex optimization can be used to compute the capacity and find
the MLE, e.g., interior point methods [6] or ellipsoid methods.

5D. Comparison of algorithms. We have seen in the previous two subsections that IPS and norm mini-
mization are generalizations of Sinkhorn scaling that have emerged in different communities. Theorem 4.7
closes the cycle of algorithms from different communities, by showing how to obtain the (extended) MLE
from a complex point of minimal norm in an orbit (or orbit closure); see Figure 4.

This bridges several differences between IPS and norm minimization. We summarize these differences
here. First, when computing the capacity, the norm is minimized along a complex orbit closure (see
Theorem 4.7), whereas every step in IPS involves real numbers. Secondly, the torus action given by
matrix n A that is used for computing the capacity is linearized by b = Au (see Theorem 4.7), whereas
IPS uses the action given by matrix A with trivial linearization b = 0. Finally, the objective functions
differ: the capacity is defined in terms of the Euclidean norm, which does not appear in IPS; instead
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IPS minimizes KL divergence (see Proposition 5.1). In the following example we see that, while IPS
decreases the KL divergence to the MLE, it may increase the Euclidean norm.

Example 5.3. Consider the matrix A and vector of counts u from Example 4.8. We can use IPS to
compute the MLE in MA. We start at the uniform distribution p(0) = 1

31 and do update steps as in (12)
with matrix A. These IPS steps converge by Proposition 5.1, since the matrix A has real nonnegative
entries and all column sums equal. We obtain

p(1) =
[

5
12

√
15

12
1
4

]T
.

Note that the sum of the entries of p(1) is strictly less than one. The KL divergence from the uniform
distribution to the MLE is KL( p̂‖ p(0)) ∼ 0.047, and after the first update it is KL( p̂‖ p(1)) ∼ 0.016.
However, we have ‖p(1)‖2 = 49

144 , which exceeds ‖p(0)‖2 = 1
3 .

6. Comparison with multivariate Gaussian models

We highlight similarities and differences with the multivariate Gaussian setting studied in [1]. For this, we
compare results from this paper with the related results in [1]. We start by comparing the two statistical
settings.

In the discrete setting, a model is given as a subset of the (m−1)-dimensional probability simplex
1m−1⊆Rm . In comparison, in the multivariate Gaussian setting, a model is given by a set of concentration
matrices 9 in the cone of positive definite matrices. For a discrete model M⊆1m−1 the data is a vector
of counts u ∈ Zm

≥0 with u+ = n the total numbers of observations. The log-likelihood given u at p ∈M is∑m
j=1 u j log(p j ). In comparison, for a Gaussian model the data is summarized by the sample covariance

matrix

SY =
1
n

n∑
i=1

Yi YT
i

and the log-likelihood given a tuple of samples Y ∈ (Rm)n is log det(9)− tr(9SY ).

6A. Stability. In both papers we link notions of stability under group actions to maximum likelihood
estimation of certain statistical models: for log-linear models in Theorem 4.3 and for Gaussian group
models in [1, Section 3]. For log-linear models it is enough to consider actions of complex tori on Cm . In
contrast, in [1] we work with actions of (reductive algebraic) groups over R or C, depending on whether
we consider multivariate Gaussian distributions on Rm or Cm . In the log-linear case we study stability of
the all-ones vector, while in [1] we consider the stability notions for the observed tuple of samples.

For log-linear models, the log-likelihood is always bounded from above and the all-ones vector cannot
be unstable. In contrast, in the Gaussian setting a tuple of samples is unstable if and only if the log-
likelihood is not bounded from above. In both cases, semistability is equivalent to the log-likelihood
being bounded from above and polystability is equivalent to the existence of an MLE. In the log-linear
case, the MLE is unique if it exists, while for Gaussian group models there may be infinitely many. In
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fact, the existence of a unique MLE for Gaussian group models relates to stability of a tuple of samples.
In contrast, for log-linear models the all-ones vector is never stable.

6B. MLE computation. An important similarity between the log-linear and Gaussian settings is that
norm minimizers under the respective group actions give an MLE (if it exists), see Theorem 4.7 and
[1, Section 3]. For log-linear models, we compute real MLEs from complex torus orbits. However, for
Gaussian group models, we compute the MLE over K ∈ {R,C} from orbits over the same field K. If the
all-ones vector is semistable but not polystable, Theorem 4.7 yields the extended MLE. However, in the
Gaussian case, if a tuple of samples Y is semistable but not polystable there is no corresponding notion
of extended MLE.

6C. Scaling. From the point of view of scaling algorithms, Sinkhorn’s algorithm is a common origin to
both the log-linear and the Gaussian settings. As we described in Section 5, Sinkhorn scaling to target
marginals is IPS for the independence model and this extends to IPS for a general log-linear model. On
the Gaussian side, Sinkhorn scaling generalizes to alternating minimization procedures for computing
MLEs of matrix normal models and tensor normal models. This algorithm is used both in invariant theory
for norm minimization and in statistics to compute the MLE; see [1]. In contrast, for log-linear models
the algorithms from invariant theory and statistics are not the same; see Figure 4.

We conclude this paper by pointing out that log-linear models and the Gaussian group models in [1]
are examples of exponential transformation families. Hence, it is an interesting and natural question to
ask whether there is a unifying concept that links invariant theory to maximum likelihood estimation for
exponential families.

Appendix A: Hilbert–Mumford for a torus action

Almost all the results in this paper use the polyhedral characterization of stability under a torus action,
given by the Hilbert–Mumford criterion (Theorem 3.4). In this appendix we present a proof of Theorem 3.4,
in what we hope is an elementary and accessible style.

Remark A.1 (disregarding the linearization). The setting of Theorem 3.4 is a torus action of GTd on Cm

given by a matrix A ∈ Zd×m with linearization b ∈ Zd . For our statistical connections, it is important to
separate the role of A (which is fixed by the model) from that of b (which depends on the data). However,
we can remove the need for a linearization by altering the matrix A, as follows. The action of GTd on
Cm given by matrix A ∈ Zd×m with linearization b ∈ Zd is the action given by matrix A′ ∈ Zd×m with
linearization 0 ∈ Zd , where the matrix A′ has j -th column a j − b, see (3). Hence we assume without loss
of generality that the linearization is zero for proving Theorems 3.4 and 3.5. The effect of the linearization
on the moment map is outlined in Section 3C.

The classical statement of the Hilbert–Mumford criterion, see [22, page 53], concerns one parameter
subgroups. For the group GTd , a one parameter subgroup is given by a map

σ : C×→ GTd , λ 7→ (λσ1, . . . , λσd ), (13)
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for some fixed (σ1, . . . , σd) ∈ Zd . We use σ to denote both the map and the vector (σ1, . . . , σd). For
v ∈ Cm , the j-th entry of σ(λ) · v is

(σ (λ) · v) j = λ
〈a j ,σ 〉v j .

We consider limλ→0 σ(λ)·v. The j -th entry of the limiting vector is zero for j /∈ supp(v). For j ∈ supp(v),
we have three possibilities:

(
lim
λ→0

σ(λ) · v
)

j
=


0 if 〈σ, a j 〉> 0,
v j if 〈σ, a j 〉 = 0,
∞ if 〈σ, a j 〉< 0.

(14)

The classical statement of the Hilbert Mumford criterion for a torus action is as follows.

Theorem A.2. Consider the action of GTd on Cm via the matrix A∈Zd×m . Given a nonzero v ∈Cm , with
zero in its orbit closure, there exists a one-parameter subgroup of GTd that scales v to zero in the limit.

We give a proof of Theorem A.2 following [28]. Other references for the statement of the theorem
include [30, Proposition 5.3; 4, Lemma 3.4] for a torus, and [4, Theorem 4.1; 22, page 53; 30, Theorem 5.2]
for a general reductive group.

Proof of Theorem A.2. We seek a one parameter subgroup σ : C×→ GTd such that limλ→0 σ(λ) · v is
zero. From the form of a one parameter subgroup from (13) and the limiting behavior from (14), we see
that this is equivalent to showing that

there exists σ ∈ Zd such that 〈σ, a j 〉> 0 for all j ∈ supp(v). (15)

Reordering the entries of v, we can assume without loss of generality that supp(v)= [k] for some k ≤ m.
Then the existence of such a σ ∈ Zd as in (15) is equivalent to the following statement about A ∈ Zm×d :

if t = (t1, . . . , tk) ∈ Rk
\{0} is such that t1ai1+ · · ·+ tkaik = 0 for all i ∈ [d]

then at least two entries of t are of opposite sign. (16)

The equivalence of (15) and (16) is [28, Lemma 1.1], and is an analogue of Gordan’s theorem [24,
Section 7.8 Equation (31)] over the rational numbers. Thus it remains to prove (16).

Since v has 0 in its orbit closure, there exists a sequence λ(n)= (λ(n)1 , . . . , λ
(n)
d )∈GTd with λ(n) ·v→ 0

as n→∞. In coordinates,

(λ
(n)
1 )a1 j · · · (λ

(n)
d )ad j → 0 as n→∞ for all j ∈ [k]. (17)

The hypothesis of (16) is that we have t ∈ Rk
\{0} with t1ai1+· · ·+ tkaik = 0 for all i ∈ [d]. Without loss

of generality, we can assume t1 is nonzero and therefore

−ai1 =
t2
t1

ai2+ · · ·+
tk
t1

aik for all i ∈ [d], (18)

which implies
d∏

i=1

(λ
(n)
i )−ai1 =

( d∏
i=1

(λ
(n)
i )ai2

)t2/t1
· · ·

( d∏
i=1

(λ
(n)
i )aik

)tk/t1
. (19)
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If t j/t1 ≥ 0 for all j ∈ {2, . . . , k}, then the right-hand side of (19) either equals one (if all t j/t1 are zero)
or tends to zero (if there exists some j with t j/t1 > 0). But the left-hand side of (19) tends to infinity as
n→∞, since it is the inverse of (17) for j = 1. Hence t j/t1 must be strictly negative for some j , i.e., t1
and t j have opposite signs. �

Theorem A.2 has the following generalization. It can be proved via a polyhedral geometry argument
similar to the proof of Theorem A.2.

Theorem A.3 [20, page 173]. Consider the action of GTd on Cm given by matrix A ∈ Zd×m , and fix
v ∈ Cm . If w ∈GTd · v\GTd · v, then there exists a one-parameter subgroup that scales v to an element of
GTd ·w in the limit.

Remark A.4. Theorem A.3 has an analogue for a general reductive group G, but it only applies with the
additional assumption that G ·w is the unique closed orbit in G · v, see [30, Section 6.8].

Equipped with Theorems A.2 and A.3, we now prove Theorem 3.4. The proof mostly rests on
Theorem A.2; we only use the stronger statement of Theorem A.3 for one direction of one of the four cases.

Proof of Theorem 3.4. We first prove parts (a) and (b). If v = 0, then the polytope Pv(A) is empty, hence
0 /∈ Pv(A). If v 6= 0 is unstable, then there exists some σ ∈ Zd such that 〈σ, a j 〉> 0 for all j ∈ supp(v),
by combining Theorem A.2 with (14). Hence σ defines a hyperplane

Hσ = {x ∈ Rd
| 〈σ, x〉 = 0}

that separates zero from Pv(A). By Farkas’ lemma, see [24, Section 7.3], such a hyperplane exists if and
only if 0 /∈ Pv(A).

For (c), we first prove that if 0 is on the boundary of Pv(A), then v is not polystable. We construct
a point in the orbit closure of v, with support strictly smaller than that of v, and hence deduce that
the orbit of v is not closed. Since 0 lies on the boundary of Pv(A), it is contained in a minimal face
F ( Pv(A). Since A has integer entries, there is a hyperplane Hσ , with σ ∈Zd , such that F = Hσ ∩Pv(A).
We choose the sign of σ so that it has nonnegative inner product with all of Pv(A). This ensures that
the limit w := limλ→0 σ(λ) · v exists. The limit w has supp(w) ( supp(v), since Pw(A) ⊆ F . Hence
w ∈ GTd · v\GTd · v, and GTd · v is not closed.

For the converse direction of (c), we show that if v is semistable but not polystable, then 0 /∈

relint(Pv(A)). Let w′ ∈GTd · v\GTd ·v. There exists σ ∈Zd such that w := limλ→0 σ(λ)·v ∈GTd ·w
′, by

Theorem A.3. We have supp(w)⊆ supp(v) and, moreover, supp(w)( supp(v) (otherwise w= v by (14),
a contradiction). Hence 〈σ, a j 〉> 0 for all j ∈ supp(v)\supp(w), while 〈σ, a j 〉 = 0 for all j ∈ supp(w),
by (14). We obtain Pv(A) * Hσ and Pw(A) = Hσ ∩ Pv(A), i.e., Pw(A) is a proper face of Pv(A). We
have GTd ·w = GTd ·w

′
⊆ GTd · v and so w is semistable as v is semistable. By (b), 0 ∈ Pw(A) and

hence 0 is on the boundary of Pv(A).
It remains to prove (d). We can assume v is polystable, i.e., 0 ∈ relint(Pv(A)). We want to show that

the dimension of the stabilizer {λ ∈ GTd | λ · v = v} is zero if and only if the interior of Pv(A) equals
its relative interior (i.e., if and only if Pv(A) is full-dimensional). Since 0 ∈ Pv(A), the equality of the
interior and relative interior holds if and only if U := span{a j | j ∈ supp(v)} equals Rd . If the stabilizer is
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positive dimensional, it must contain a one-parameter subgroup, i.e., some σ ∈ Zd
\{0} with σ(λ) · v = v

for all λ ∈ C×. Then 〈σ, a j 〉 = 0 for all j ∈ supp(v), so the orthogonal complement U⊥ ⊆ Rd contains a
line, and U 6= Rd . Conversely, if U 6= Rd then there exists σ ∈U⊥, which can be chosen to have integer
entries, since A has integer entries. The one parameter subgroup σ(λ) then lies in the stabilizer, which is
therefore positive-dimensional. �

Appendix B: Kempf–Ness for a torus action

Many of the results in this paper use the Kempf–Ness theorem for a torus action, as stated in Theorem 3.5.
An elementary proof of the Kempf–Ness theorem for torus actions can be found in Sections 1 and 2 of
the original paper of Kempf and Ness [19]. In this appendix, we translate between the setting of [19] and
our setting, to explain how the results of [19] give Theorem 3.5. In addition, we present an alternative
proof of Theorem 3.5, obtaining it as a consequence of Theorem 3.4.

As before, we consider the action of GTd on Cm given by a matrix A ∈ Zd×m . We can assume without
loss of generality that the linearization is b = 0, by Remark A.1. We first describe how Theorem 3.5
follows from [19].

First proof of Theorem 3.5. Let v ∈ Cm and consider the action of GTd via the matrix A ∈ Zd×m . Recall
that the moment map at v is the derivative DI γv, where

γv : GTd → R, λ 7→ ‖λ · v‖2.

Identifying the space of R-linear functionals Hom(Cd ,R) with Cd gives the moment map

µ : Cm
→ Cd , v 7→ 2Av(2),

where v(2) is the vector with j-th coordinate |v j |
2.

We translate between our notation and that in [19]. Most importantly, our notion of “polystable” is
called “stable” by Kempf and Ness, see [19, page 234]. Our function γv is denoted pv in [19]. Moreover,
“a critical point g ∈ G of pv” in [19] means the vanishing of the moment map at g · v:

0= Dg pv = DI pg·v = DI γg·v = µ(g · v).

Thus the polystable part of Theorem 3.5 is a direct consequence of [19, Theorems 0.1(a) and 0.2] for
G = GTd . The semistable part follows from the polystable part, using the fact that any orbit closure for
the group GTd contains a unique closed orbit, see, e.g., [20, Bemerkung 1 on page 96]. That unique
closed orbit is not the zero orbit if and only if the vector is semistable. �

We end with an alternative proof of Theorem 3.5, which uses an important connection between the
polytope Pv(A) and the moment map µ, see [2; 16]. The connection relates Pv(A) to the image of the
orbit GTd · v under the moment map. It is a first example of a moment polytope, an important object of
study in invariant theory.
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Second proof of Theorem 3.5. To link the moment map µ to the polytope Pv(A), we need to rescale µ as
follows:

µ̃ : Cm
\{0} → Rd , v 7→

µ(v)

2‖v‖2
=

Av(2)

‖v‖2
. (20)

The vector v(2)/‖v‖2 consists of nonnegative numbers that sum up to one. Hence µ̃(v) is a convex
combination of the columns of A, therefore µ̃(v) ∈ Pv(A). The stronger statement

relint Pv(A)= µ̃(GTd · v), (21)

was proven independently in [2, Theorem 2; 16, Theorem 4], see Remark B.1. Given (21), the polystable
case of Theorem 3.5 is a direct consequence of Theorem 3.4(c), as follows. Polystability is equivalent to
0 ∈ relint Pv(A) which, by (21), implies 0 ∈ µ̃(GTd · v), i.e., that 0= Aw(2)/‖w‖2 for some w ∈ GTd · v.
As in the first proof, the semistable case of Theorem 3.5 can be deduced from the polystable case, since
any orbit closure GTd · v contains a unique closed orbit. �

Remark B.1. The statements in [2, Theorem 2; 16, Theorem 4] discuss a moment map whose domain
is a projective space Pm−1

C
, rather than the space Cm

\{0} in (20). However, the projective results still
allow us to obtain (21), as follows. For nonzero v ∈ Cm , let [v] be the point in Pm−1

C
that represents the

line Cv. We consider the action of GTd on Pm−1
C

given by the matrix A ∈Zd×m . We denote the GTd -orbit
of [v] in Pm−1

C
by GTd · [v] (and denote the orbit closure by GTd · [v]). The map µ̃ factors through the

projective space Pm−1
C

via a unique map µ̄ : Pm−1
C
→ Rd . In fact, µ̄ is the moment map for the action

of GTd on Pm−1
C

given by A ∈ Zd×m . This action fits the setting of [2; 16] because Pm−1
C

is a compact
Kähler manifold. The results [2, Theorem 2; 16, Theorem 4] give

Pv(A)= µ̄(GTd · [v]).

For (21), we require a statement for the orbit of v rather than the orbit closure of [v]. The closure GTd · [v]

is the disjoint union of finitely many GTd orbits. The orbits relate to Pv(A) as follows. For each open face
F of Pv(A) the set µ̄−1(F)∩GTd · [v] is a single GTd orbit in Pm−1

C
, see [2, Theorem 2]. In particular,

when F = relint Pv(A) we obtain the orbit GTd · [v]. This yields (21), since µ̄(GTd · [v])= µ̃(GTd · v).
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