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Abstract

Linear causal disentanglement (LCD) is a recent method in causal representation
learning to describe a collection of observed variables via latent variables with
causal dependencies between them. It can be viewed as a generalization of both in-
dependent component analysis and linear structural equation models. We study the
identifiability of LCD, assuming access to data under multiple contexts, each given
by an intervention on a latent variable. We show that one perfect intervention on
each latent variable is sufficient and in the worst case necessary to recover param-
eters under perfect interventions, generalizing previous work to allow more latent
than observed variables. We give a constructive proof that computes parameters
via a coupled tensor decomposition. For soft interventions, we find the equivalence
class of latent graphs and parameters that are consistent with observed data, via the
study of a system of polynomial equations. Our results hold assuming the existence
of non-zero higher-order cumulants, which implies non-Gaussianity of variables.
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1 Introduction

A key challenge of data science is to find useful and interpretable ways to model
complex data, such as those collected from a biological experiment or a physical
system. In this paper, we study linear causal disentanglement (LCD), a framework to
model such data. LCD generalizes two 20th century data analysis models: indepen-
dent component analysis (ICA) [10, 11, 24] and linear structural equation models
(LSEMs) [7, 52]. Before defining it, we briefly recall these older models.

ICA is a blind source separation method that expresses observed variables
X = (X1,...,X,) as a linear mixture

X = Ae, (1)

where A € RP*9 is a mixing matrix and € = (€1, ..., &,) is a vector of independent
latent variables. ICA has been used in applications including brain dynamics [23]
and astrophysics [6]. LSEMs are another linear model to describe collections of vari-
ables. They model variables Z = (Z1,...,Z;) as

Z=AZ+e, 2

where A € R?%Y is a matrix whose entry \; ; encodes the dependence of Z; on Z;
and ¢ is a vector of noise variables, often assumed to be independent. The variables
are typically assumed to relate via the recursive structure of a directed acyclic graph
(DAG); that is, fixing a DAG G on nodes [¢] = {1,...,q}, with directed edges
denoted j — ¢, we have

Xij 0 = (j—1i)eg.

Equation (2) can be re-written as Z = (I — A)~'e, where acyclicity of G ensures that
the matrix I — A is invertible. This places LSEMs in the context of ICA, since the
variables Z are a linear mixing of independent latent variables [45]. LSEMs appear in
applications including epidemiology [44] and causal inference [42]. In causal infer-
ence, the quantity \; ; is interpreted as the causal effect of Z; on Z;.

The idea of linear causal disentanglement [50] is that the assumptions of ICA and
LSEMs may be too strict: interpretable latent variables may not be independent, and
variables that relate via a graph may not have been directly measured. To get around
this, LCD is defined as follows. As in ICA, we observe variables X = (X1, ..., X))
that are a linear mixing of latent variables. However, unlike ICA, the latent variables
are not independent, instead they follow the structure of an LSEM; that is,

X=FZ,  where Z=AZ+se, 3)

for F' € RP*? a linear transformation, A a matrix that encodes causal dependen-
cies among the latent variables Z = (Z1,...,Z,), and € = (&1,...,&4) a vector of
independent noise variables. As often the case in ICA and LSEMs, variables ¢ are
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assumed to be mean-centered. LCD specializes to ICA when A is the zero matrix (i.e.
when G is the empty graph) and to an LSEM when F' = 1.

LCD falls into the setting of causal representation learning [46], an area of
machine learning that aims to describe and explain the structure of a complex system
by learning variables together with the causal dependencies among them. The idea is
that learned latent representations of data [5] can be difficult to interpret and analyze,
and may not generalize well, but that they improve by using latent representations
with causal structure [64]. Central to interpretability and downstream analysis is the
identifiability of a representation. The LCD model (3) is identifiable if the mixing
matrix F and matrix of dependencies A, and therefore also the latent DAG G, can be
recovered uniquely (or up to a well-described set of possibilities) from observations
of X.

In this paper, we study the identifiability of LCD and develop algorithms to
recover the parameters F and A using tensor decomposition of higher-order cumu-
lants. Higher-order cumulants have been used to recover parameters in both ICA and
LSEMs[11, 15,45, 59, 60]. We build on these insights to use it for LCD. For ICA and
LSEMs, parameters can be recovered from tensor decomposition of a single higher-
order cumulant. For LCD one tensor decomposition no longer suffices to recover
parameters and we will instead use a coupled tensor decomposition. Identifiability of
LCD from covariance matrices (that is, second-order cumulants) was studied in [50].
Our results extend these insights to identifiability via higher-order cumulants.

The setup. Our goal in this paper is to use observations of X to recover the param-
eters F and A in an LCD model (3). We assume access to observations of X under
multiple contexts. The contexts differ from an observational context by an interven-
tion. Interventions appear in biological applications such as [16, 39, 48, 53, 62].
Throughout this paper, we assume that the contexts are interventions at a single node.
An intervention at a variable affects the downstream variables but not those that are
upstream. It thus enables one to find the direction of a causal dependency between
two variables. We study multiple contexts for two reasons: inferring causal depen-
dencies in general necessitates interventions and one context is insufficient for recov-
ery of parameters in the model. We consider two types of interventions.

Definition 1.1 Let variables Z; relate via a linear structural equation model. A soft
intervention at Z; changes all non-zero weights )\; ; and changes the error distribu-
tion €;. A perfect intervention at Z; zeros out all non-zero weights \; ; and changes
the error distribution &;.

A third widely-studied type of intervention is a do-intervention, which sets a variable
to a deterministic value. We focus on soft interventions and perfect interventions, so
that we do not assume access to a fixed value of an unobserved variable. For related
results for do-interventions, see [4, 64].

We denote the set of contexts by K, which is assumed to be known. Each context
k € K is assumed to be an intervention at a single latent variable, as in [50]. The
target of each intervention is unknown: context £ is an intervention on Z;, for some
ix € [q]. The observational setting, in which no variable is intervened on, is indexed
by £ = 0 and assumed to be known. The intervention changes the latent LSEM but
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not the mixing map F. Under context k, we denote the matrix of causal effects by
A¥) | the latent variables by Z(¥), and the error distributions by £(*). Error distribu-
tions £(*) and £(°) agree, except at the ij-th entry. From Definition 1.1, we see that a
perfect intervention sets the ij-th row of A(®) to zero while a soft intervention satis-
fies AE’:)J #+ )\Z(.S?j whenever /\Eg?j # 0, i.e. for all j with edge j — 4y present in G. Our
setup can now be summarized as follows.

Fix p>2 observed variables. We observe distributions X () on RP for
k € K U {0} of the form

X® =Fz®  where  Z%) = A®) z(k) 4 (k) (4)

for Z*) some random variables on R? where q > 2 is the number of latent variables.
The variables Z(°) on RY follow a linear structural equation model on an unknown
DAG G on ¢ nodes, and Z¥) relates to Z(?) via a single-node perfect or soft interven-
tion with unknown target. See Fig. 1 for a cartoon of our setup. We make the follow-
ing genericity assumptions.

(*)
(b) Matrix F € RP* is unknown and generic; matrices A*) € R9%9 k € K U {0}

are unknown with generic non-zero entries.

(c) For all contexts k € K there exists a large enough d (d > 3(q — 1) is sufficient)
(k)

ik

Assumption 1.2 (a) All noise variables €; ’ are non-Gaussian.

such that the d-th order cumulant of €; is not 0 or equal to the d-th order cumu-

lant of 552).

Problem 1.3 In the setup (4) under Assumption 1.2, recover the number of latent
variables ¢, the latent DAG G, the mixing matrix F and the matrices of dependencies
{A®) |k e KU{0}}.

We can rearrange (4) to write variables X (*) as a linear mixture of independent latent
variables

latent variables:

mixing map:

observed variables:

Fig. 1 A cartoon of the setup for p = 2 observed variables and ¢ = 3 latent variables
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X = p(1 — AR)~1ch),
This relates LCD to ICA. Just as for ICA, we have the following non-identifiability.

Remark 1.4 (Benign non-identifiability) Uniqueness of F and A%) is impossible in
LCD, since one can rescale or reorder the latent variables without affecting member-
ship in the model. That is, for a full-rank diagonal matrix D € R9*7 and a permuta-
tion matrix P € R7%9, setting

F=FM, A®=pm"1A®)N, 0 =p1e®)  where M = DP, (5)
we have
F(I — AW~z = p(r — AR)=1e®),

Hence such rescaling and reordering does not affect X (%), Such transformations do
not change the latent graph G except by a relabelling of its nodes under the permuta-
tion P. Given multiple contexts k& € K U {0}, scaling and ordering transformations
D and P are the same for all k.

Definition 1.5 An LCD model is identifiable if there exists a DAG G and matrices F,
A that give the observed distributions X (¥) for k € K U {0}, via the equations in
(4), where the matrices , A*) are unique up to the benign rescaling and reordering
transformation in (5) and the DAG is unique up to a relabeling of nodes.

Main results.
We find the perfect interventions needed for identifiability of LCD.

Theorem 1.6 Consider LCD under Assumption 1.2 with perfect interventions. Then
one perfect intervention on each latent node is sufficient and, in the worst case, nec-

essary to recover the latent DAG G and the parameters F and A from observations
of X,

For p observed variables and ¢ latent variables, Theorem 1.6 says that we need
g interventions for identifiability of LCD. We do not impose the injectivity of the
mixing map F' : R? — RP; the pair (p, ¢) can take any values provided p, g > 2. Our
proof is constructive: we carry out a coupled tensor decomposition of higher-order
cumulants of the distributions X (%), and compare the factors recovered to estimate
the parameters. This extends [45, 59] from observed to latent causal variables, and
extends [11, 15, 60] from independent to dependent latent variables. It relates to [17],
which says that ¢ — 1 interventions are sufficient and in the worst case necessary to
recover a DAG on g observed variables. It builds on [50, Theorem 1], which says
that one intervention on each latent node is sufficient and in the worst case necessary
when the mixing F is injective. When the mixing map is injective, Theorem 1.6 is
weaker than [50, Theorem 1], since it requires non-Gaussian errors. When F' is not
injective non-Gaussianity is necessary for identifiability, see Proposition 3.6.
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We present two algorithms for the recovery of the model parameters using g per-
fect interventions. The first algorithm can be used for any (p, ¢). It takes as input a
tuple of ¢ + 1 cumulants, and returns the parameters  and A*). The second algo-
rithm applies to the setting ¢ < p. Here Moore-Penrose pseudo-inverses can be used
to simplify the recovery. We illustrate the performance of the algorithms in Fig. 2.
Both are implemented in Python, version 3.12.2. The code is available at:

https://github.com/paulaleyes14/linear-causal-disentanglement-via-cumulants.

We now turn to soft interventions. The transitive closure G of a DAG G is the
DAG with all edges 7 — ¢ whenever j — - -- — ¢ is a path in G. We can recover the
transitive closure G of a latent DAG G in LCD from the second-order cumulants, see
[50, Theorem 1]. We show that, if the errors are non-Gaussian, we can distinguish
certain DAGs with the same transitive closure. We define the set of soft-compatible
DAGs soft(G). It is a set of DAGs with the same transitive closure, which also
satisfy additional compatibility conditions coming from ranks of matrices. Define
the set of children of node j by chg(j) = {i|(j — ¢) € G} and the descendants by
deg(j) = {i|(j = - — i) € G}. Then,

soft(G)

— {g’

where »; 1= deg/(j) \ chg/(j), - := chg/(j), and Ag is a generic matrix of depen-
dencies in an LSEM on DAG G, and [M],, denotes the submatrix of M with row
indices in and column indices in . See Definition 3.14 for more details.

G’ =G and rank[(I — Ag)™'],,, ., = rank[(] — Ag)fl],j,nju{j} for all j € [q]},

Theorem 1.7 Consider LCD under Assumption 1.2 with soft interventions. Then one
soft intervention on each latent node is sufficient and, in the worst case, necessary to

1

100 | & Tensor (general) —e— Tensor (general) —
Matrix (general) Matrix (general)

—e— Tensor (injective) 107! 1 —e— Tensor (injective)

—e— Matrix (injective) —e— Matrix (injective)

Median relative Frobenius error in F
Median relative Frobenius eror in A

Fig. 2 Median relative Frobenius error in the recovery of F (left) and A(9) (right) when p = 5. Note
the logarithmic scale on the y-axis. The four algorithms are: (i) Tensor (general), the general algorithm
with cumulants as input (blue), (ii) Matrix (general), the general algorithm with factor matrices as
input (orange), (iii) Tensor (injective), the injective algorithm with cumulants as input (green), and (iv)
Matrix (injective), the injective algorithm with factor matrices as input. For DAG recovery, all meth-
ods recovered the correct DAG every time, except the general tensor method when g > 6. This had a
median DAG recovery error of 3.6 forg = 6 and 4.1 forqg =7
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recover the set of DAGs soft(G). Given G' € soft(G), the set of parameters F and
A®) that are compatible with the observations is a positive dimensional linear space.

The proof relies on the study of the solution space to a system of polynomial equa-
tions, encoding the conditions that parameters compatible with the observations must
satisfy. That space is linear and always positive dimensional, even if we allow mul-
tiple interventions on each latent node. This leads to a negative identifiability result,
in the same spirit as [30].

Corollary 1.8 Consider LCD under Assumption 1.2. With any number of soft inter-
ventions, identifiability of all parameters in the model does not hold.

The non-Gaussianity assumption is required for the linear space of parameters in
Theorem 1.7: with Gaussian errors, the space of parameters may be non-linear, see
Proposition 3.3.

Related work. Higher-order cumulants have been shown to lead to improved
identifiability in related contexts. They extend principal component analysis, which
requires an orthogonal transformation for identifiability, to ICA, which is identifiable
for general linear mixings [10, 11]. For LSEMs, they facilitate the recovery of a full
DAG, rather than its Markov equivalence class [58], see [45, 59]. They have been
used to recover parameters in other latent variable models [1].

Identifiability of causal representation learning is an active area of study. It builds
on work in the identifiability of representation learning [2, 25, 66] and latent DAG
models. These include work that imposes sparsity on the causal relations [2, 3, 13,
21,22, 31, 33,40, 51, 61, 63, 65, 67] and latent variable models on discrete variables
[20, 27]. There are many works related to LCD, due in part to the many possible
assumptions that one can make in a causal disentanglement model. These include the
structure (polynomial, non-linear) of the maps involved [8, 34, 35, 54-57] and the
choice of data generating process [9, 28, 32, 47]. In general, allowing more freedom
on one side, implies more restrictions on the other side.

Outline We cast LCD as the problem of aligning the outputs of a coupled tensor
decomposition in Sect. 2. We discuss the recovery of parameters for perfect and soft
interventions in Sect. 3. We prove our main results Theorem 1.6 in Sect. 3.2 and
Theorem 1.7 in Sect. 3.3. We discuss our algorithms in Sect. 4 and future directions
in Sect. 5. Appendix A contains pseudo-code for our algorithms.

2 Coupled Tensor Decomposition

The cumulants are a sequence of tensors that encode a distribution [38]. The d-th
cumulant of a distribution X on R? is an order d tensor, denoted by r4(X), of for-
mat p X --- X p. The first and second order cumulants are the mean and covariance,
respectively. Higher-order cumulants are those of order three and above.

We describe the higher-order cumulant tensors of distributions X () coming from
LCD, as in (3), as k ranges over contexts. We study a coupled decomposition of
these tensors. This will enable us to study the identifiability of LCD and to design
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tensor decompositions to recover parameters in the model. We first consider a single
context.

2.1 Decomposing Cumulants

Let X be a distribution on R? and assume X = Ae, wheree = (e1, ..., ¢&4) isa vector
of independent variables on R? and A € RP*4 is a linear map, as in ICA (1). Then the
d-th cumulant of X is the order d tensor

Kka(X) = an)a;@d, (6)

where the scalar k4(g;) is the d-th cumulant of variable ; and a; is the i-th column of
matrix 4, as follows. The cumulants x4(¢) are order d tensors of format ¢ x - - x gq.
Since the variables ¢; are independent, by assumption, their cross-cumulants van-
ish [38, Section 2.1]. Hence the tensor x4(¢) is diagonal: its entries vanish away from
the kq(€1),. .., Ka(eq) on the main diagonal. A linear transformation of variables
results in a multi-linear transformation of their cumulants. This gives the expression
in (6), which writes the cumulant as a sum of symmetric rank one tensors.

If ¢ < p then k4(X) has a unique rank ¢ decomposition, whenever cumulants
kaq(e;) are all non-zero and the columns of 4 are linearly independent, by [19]. Hence
the vectors a; can be recovered uniquely, up to permutation and scaling. This extends
to g > p, as follows.

Proposition 2.1 Assume that no pair of columns of A € RP*1 are collinear and that
the q entries of € are independent. Then, for d sufficiently large, all columns a; with
ka(g;) # 0 can be uniquely recovered, up to permutation and scaling, from the d-th
cumulant of X = Ae.

Proof For m > ¢ — 1, the tensors ai@m, e ag@m are linearly independent, by [29,
Proposition 4.3.7.6], since no pair of columns a; are collinear. Letd > 3m > 3(q — 1)
and consider kq(X) =>"7 )\iaf@d, where \; := k4(g;). Consider its flattening of
size p™ x p™ x p?~2™_ The decomposition of this flattened tensor is unique, by [19],
since the vectors that appear in it are linearly independent. Hence the tensors a?m
and a?(d_Qm), and thus also the vectors a;, can be uniquely recovered, up to permu-
tation and scaling, for all indices i with A; # 0. O

For a sufficiently generic matrix 4, one can recover the vectors uniquely, up to per-
mutation and scaling, from the above tensor decomposition provided g is strictly less
than the generic rank of an order d tensor of format p x --- x p, by [12]. The generic

rank is [% ( P+ g -1 )] except for a finite list of pairs (p, q), see [29, Theorem
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3.2.2.4]. Since for fixed p and large d, % < p+ g -1 > ~ dP~1, this result allows for

larger g relative to d than the condition d > 3(¢ — 1) coming from Proposition 2.1.

Corollary 2.2 Assume that the entries of € are independent and non-Gaussian and
that no pair of columns of A are collinear. Then tensor decomposition of the cumu-
lants of X recovers the matrix A, up to permutation and scaling of its columns.

Proof The cumulant sequence (k4(€;))q has infinitely many non-zero terms, since &;
is non-Gaussian [37]. Hence there are non-zero cumulants at high enough d to satisfy
the hypotheses of Proposition 2.1. This is an alternative proof of [18, Theorems 1(i)
and 3(i)]. O

The impossibility of recovering the columns without scaling ambiguity comes

from the fact that we can extract or insert a global scalar from the factor a®¢, We
have (\a)®? = A\?a®9, hence

1 ( Y "id(fi)ai)(gd d odd

ka(X) = ®d
b sign (kq(eq)) (ﬁ: Y |f<«'d(€i)|ai) d even.

(7

Tensor decomposition will therefore recover the columns of 4 up to the factors
+ |I{d(€i)|.

Consider the LCD setting of (3). We have X = FZ = F(I — A)~'c. The dis-
cussion above shows that the product F'(I — A)~! € RP*4 can be recovered (up to
permutation and scaling), since the entries of the random vector ¢ are independent.
However, it is not possible to recover the latent DAG G from the product F/(I — A)~1:
a solution with empty DAG (that is, independent Z variables) is always consistent
with the observations, since

FI-AN)"'e=FZ,

where F = F (I —A)~!and Z = e. This demonstrates the need for observations of
X under multiple contexts.

2.2 Coupling Contexts

Distributions X (*) are linear mixtures of independent variables, since
X®) = F(I — A®))=1(®) | where the entries of £(*) are independent. Our goal is
to recover the parameters F and A¥) for all k € K U {0}. Our steps are as follows:

e using tensor decomposition, recover the products F(I — A®)~1 for all
k € K U {0}, up to scaling and permutation of columns (Proposition 2.3);

e fix the scale and order of columns in the observational context k = 0, which
recovers the matrix F'(I — A(®))~! using benign non-identifiability (Proposition
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2.5, see Remark 1.4);

e find the permutation and scaling of columns for each k£ € K by comparing the
columns of F'(I — A(©)~1 to the matrix recovered from tensor decomposition of
the &-th context (Corollary 2.10).

Then, in Sect. 3, we recover the parameters in # and A*). We begin with the first
step.

Proposition 2.3 Consider LCD under Assumption 1.2. Then we can recover q and
the matrices F(I — A%~ up to scaling and permutation for all k € K U {0}, i.e.,
we can recover

F(I — A®)=tp®k) p(k) ¢ gpxa, (8)

where DWF) € R9%4 is diagonal, with non-zero diagonal entries, and P%*) € R7%4
is a permutation matrix. The diagonal matrix D®) can be assumed to have entries

oo _ ) raEl)  diodd, o

+ %/ |Ka; (sgk))| d;even,

where, for all i € [q|, d; is large enough (d; > 3(q — 1) suffices) and satisfies
Rd; (Eik)) 7& 0.

Proof We have X(¥) = A®)e(®) where A% = F(I — A®))~1 and k ranges over
contexts K U {0}. We first prove the result under an additional assumption, that there
exists a single number d > 3 that satisfies:

(a) the tensor decomposition

q

Ra(X W) =3 ka(e)@®) P (10)

i=1

is unique for all contexts k, where (a(®)); is the i-th column of
A®) = p(1 — AR)~1,

(b) md(egk)) # 0 for all contexts k and all i € [q],
(c) Hd(sl(-f)) # +1 for all contexts k.

Fix such a d. No pair of columns of A*) are collinear, since collinearity is a Zariski
closed condition with non-empty complement and the entries of F and the non-zero
values )\EZ) are generic, by Assumption 1.2(b). Hence Proposition 2.1 applies, and

we recover the mixing matrix A(*) up to permutation and scaling; i.e., we recover the
matrices in (8). The number of columns of these matrices is g. Absorbing the coef-
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ficients of the tensor decomposition into the vectors as in (7), the diagonal matrices
in (8) satisfy (9) for every i € [g], k € K, where d; = d for all i.

We now show why such a d as above is not required. Part (a) holds for any
d > 3(q — 1), see the proof of Proposition 2.1. Part (b) is subtle: the existence of a

sufficiently large d with nd(agk)) # 0 is equivalent to Assumption 1.2(a) that the dis-

tribution €§k) is non-Gaussian, by Marcinkiewicz’s theorem [37]. However, this does

not imply the existence of a common d with that property, as we assumed above. If
such a common d does not exist, we instead recover the columns of F(I — A(*))~1
up to permutation and scaling, as well as the entries of D*), using a set of large
enough cumulants rg, (X®)), ... kg, (X*)) such that for all i there exists £ € [m]

with rq, (5Ek)) # 0. The non-Gaussianity assures that such a set exists, and the num-
ber of non-collinear vectors recovered from these tensor decompositions is g. Part (¢)
can be avoided in the same way as (b), using Assumption 1.2(c). O

Column scaling and permutation as in Proposition 2.3 have natural interpretations
in LCD: there is no natural order on the latent variables, and they can be re-scaled
without affecting membership in the model, see Remark 1.4. The goal of this section
is to show that it is possible to fix an order and scaling of latent variables that is con-
sistent across contexts. The upshot is the following result.

Proposition 2.4 Consider LCD under Assumption 1.2. Then we can recover the num-
ber of latent nodes q and the matrices

AR = P(I — A®)~Y forall ke KU{0}. (11)

We delay the the proof of this result and focus on some intermediate steps. We fix
a scaling of errors and an order on latent variables when k& = 0, as follows.

Proposition 2.5 Without loss of generality P(%) = D(0) = J.

Proof We have recovered ADP for some scaling D and permutation P, by Proposi-
tion 2.3, where we drop the superscripts since we refer only to the observational
context. The permutation P orders the latent variables. We fix it to be the identity,
thereby fixing an order of latent variables. We now consider D. Define /' = F'D and
A =D 'AD. Then

F(I-A)"'D=FI-A\)""

and matrices A and A have the same support. Hence F and A are valid parameters in
the model, so we can without loss of generality set D = 1. O

The choice in Proposition 2.5 sets a non-zero cumulant x4, (5§0)) to £1 for each
i € [q], see (9). Hence DE? = =1 for all i # i, by Proposition 2.3, since £*) and
£(9) differ only at the intervention target i,. We now compare A(®) and A*) D(*) p(k)
The parents of a node ; are the set pag(j) = {i € G|i — j € G} and the ancestors
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of jare ang(j) ={i € G|i — --- — j € G}. We drop the subscript whenever G is
fixed.

Remark 2.6 (Paths in G) Entry (i, j) of the matrix (I — A®)~! is a sum
over all the paths j — --- — i in G, where each path contributes the prod-

uct )\g:)n over all edges m — m in the path. For instance, for the DAG
3—2—1 we have (I A(k)) /\gkz))\2 3. Adding the edge 3 — 1 gives
(I A(k)) = )\gkz) )\ég )\gkg. The entries of F'(I — A®))~! extend these paths
to the observed variables. See ﬁig. 1 and Example 3.4.

Proposition 2.7 Recall that iy, € [q] is the intervention target of context k and let
j € [q]. Assume that F is generic and that the non-zero entries of A¥) are generic.
Then one of three possibilities arises.

(i) j = ix and the j-th column of A(*) equals one of the columns of A®) D) p(F)
up to a scaling that is not +1;

(i) 7 & an (i) U {ix} and the j-th column of A®) equals one of the columns of
AR D) pk), up to sign,

(i) j € an (ix) and the j-th column of A%) is not parallel to any of the columns of
A pk) pk).

Proof We drop the factor of P(*) in the proof: it permutes the columns of A*) D(*)
and we are reasoning only about the set of columns.

(i) Assume j = iy. The (i, j) entry of A®) D(¥) is
(A DW),; = AN DM = A D), (12)

where the second equality holds since j = i, is the intervention target and the
entries of Agkj) involve nodes that are non-ancestors of j (see Remark 2.6). There-
fore, the j-th column of A*) D(¥) is a non-trivial (not 0 or +1) multiple of the j-th
column of A, since Dj(-z) # 41 when is the intervention target.

(ii) Assume j ¢ an (ig) U {ix}. The chain of equalities in (12) holds true, but
Dj(kj) = =+1. Hence, the j-th column of A®*) D(¥) is the j-th column of A(®), up to
sign.

(iii)Let j € an(ig). Assume for contradiction that there exists a column r of
A®) D) that is parallel to the j-th column of A, Then there exists o such that
for every i € [p],

Do Sl =AM b =a Y fied =AW

2€]q] Lelq)

k

1/—\
N2

3
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where f; ¢ is the (i,¢) entry of F. By genericity of F and A(*), the equality holds
if and only if it holds for the coefficient of every f; , independently. It is therefore
equivalent to

(I = A} = ol =AW 1D

— o k _ 1 _ k)
for all £ € [g]. If £ = j, then by genericity of A(*) we have r = j and 5 =D;5.
However, since D( ) = = =1, this leads to the equality

(I=A) =1 - AW

for every £ € [q], which implies by genericity that )\Z(.S?m = /\Z(f)m for every m, a con-
tradiction. O

Proposition 2.9 recovers the target of each intervention. It also recovers the ances-
tors of each latent node. That is, it recovers the transitive closure G, providing a
simpler proof of the following result, proven without the non-Gaussian assumption
in [50, Theorem 1].

Corollary 2.8 Consider LCD under Assumption 1.2 with one intervention (either per-
fect or soft) on each latent node. Then we can recover the transitive closure G of the
latent DAG G.

Proposition 2.7 partially recovers the permutation P(¥), as it pairs all latent nodes
§ ¢ an (i) with the column of F/(I — A(®))~1 indexed by j. We can therefore assume

without loss of generality that i, = k and that P, = §; ; for every j ¢ an(k). We
are left to find the columns of j € an(k).

Proposition 2.9 For j;,j2 € an(k), there exists « € R such that
_ A1 _ _ A —1 pk) - _ pO—1 _ AW —1 pk)
(1= A0) = (=497 0®) = (1= A0) = (1= 49)~10®) )

Jorall i € |q), ifand only if j; = jo and J(;)J; = 1.

Proof Fix j := j; = jo and assume D( ) = 1. The left hand side is a sum over all

paths from node j to node i, through node k, since the paths that do not go through &
cancel:

(=AY} = (1= AW} = (1= AO) 1T = A0 = (1= AW A1 =A%), )
1

= (1= A (qu@anqu Nih)
(I=AO) L —(1=AP) - 1k
- v (= AO) = (1 - AW)DR)
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where we used (I — A©)7} — (I — AW)7I D) = (1 — A®)71(1 — D{")). This
proves one direction.

Assume conversely that the equality in the statement holds for some j1, jo € an(k),
and let 7 = j;. Then
(I — A1 (UfAquﬂﬂ —a(UfA@E;f(ufM“rﬁﬂﬁmJ.

Jrn 1.2

The right-hand side is zero since the latent graph is a DAG and j; € an(k). Hence

_ 0 k)\—1 y(k ©
0= (1= AL — (1= A®)~" Dl >)m2 + (1= AL
where we used that there are no paths from j; to & and D(k) = =+1. Therefore,
(I —A©)~1 =1, which implies by genericity that j; = j, and D(k) =1 d

J1,J2 J2,J2

Corollary 2.10 For every k and for generic parameters in F, A9 A®) we have
rank (A(O) — A(k)D(k)p(k)> — g

if and only if P®) = I and D" = 1 for all j # k.

Proof A matrix has rank one if and only if all its columns are scalar multiples. There-
fore, our claim is equivalent to the existence for every j € [g] of some o € R such
that

(0) _ AN (k) p(k)
Zfez<1 A= (1= A®) 1M p )m)

=a > fui ((I — A (- A(k)“D(k)P(k))i,k) :

i€[q]

(13)

for every ¢ € [p]. If we treat the parameters in F, A AR D,(Ckll as indeterminates,

the equation holds if and only if all the summands are equal. Analogously, this is the
case if the fy ; parameters are generic

For j ¢ an(k), we have P =, ;. Assume for contradiction that D(k) —1.
Then, for i = k, the left-hand 51de of (13) is 0 and the right-hand side is (1 — D,(Ck,l),
which forces oo = 0. However, for ¢ = j, the left-hand side is 2, so a # 0, a contra-
diction. This forces Dj(-? = 1 for the non-ancestors of k. Putting this together with
Proposition 2.9, we deduce that the matrix (I — A(®)~1 — (I — A(®))=1 D) p(k)
has rank at most 1 if and only if P*) = I and Dj(-fcj) =1 for all j # k. Moreover,
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because D,gk,z # 1, the k-th column of the difference matrix is non-zero, hence the
rank is exactly 1. O

Proof of Proposition 2.4 We recover the matrices A*) up to scaling and permutation,
by Proposition 2.3. The upshot of Corollary 2.10 is that we can identify the target iy,
of the intervention and the permutation. Hence we can get rid of P(*) by right multi-
plication with its transpose. Now the ij-th column of F(I — A(®))~! differs from the

ix-th column of F/(I — A®))~1 D) by the scaling D .» S0 we can also recover the

ki

diagonal matrix, and hence A®*) itself. O

Remark 2.11 While Proposition 2.4 holds for any p, g > 2, the proof is simpler when
q < p. Then, the Moore-Penrose pseudo-inverse satisfies

(F(I - A(k))_lD("’)P("'))+ = (PMYT(DW)~H(T1 — AW)FT,

Finding the permutation and intervention targets is done as follows. There is just one
row in the pseudo-inverse of the context & that does not appear in the pseudo-inverse
of the observational context. Hence it indexes the intervention target. The permuta-
tion is found by matching the remaining rows of the two matrices. The expression
relating the psuedo-inverse of the product to the product of psuedo-inverses does not
hold in general when g > p.

3 Recovery via Interventions

In this section, we identify when two latent graphs and parameters F, A%) give the
same distributions X (*). At this stage, we have access to the matrices A®*) in (11),
by Proposition 2.4.

Proposition 3.1 Distributions F(I — A®))~1¢(®) and F(I — Z(k))_lé(k) coincide
forallk € K U {0} ifand only ifthere exists a reordering of the sets {Ego)}, {?:ﬁo)}and
a rescaling of F, A0 F, A0 via (5) such that F(I — A®)~1 = F(I — A(K))~1
forallk e KU{0}.

Proof Define A®) = F(I — A®)~1 and A®) = F(I — K(k))’l. The equality of
matrices A%) and A% implies the equality of the distributions X (¥) = A(K) (k)
and X®) = A()=(k) Conversely, assume that distributions X *) and X*) coincide.
Then, we have the equality of cumulants #4(X®)) = r4(X®) for all k and d. To
simplify the exposition, we assume that there exists d as in the proof of Proposi-
tion 2.3 (this assumption can be avoided using the same argument as in the proof of
Proposition 2.3). For this fixed d and for each context £, the tensor decomposition of
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ra(X *)) is unique up to rescaling and permutation. Since the cumulant is the same
for both distributions, from the decomposition we get

F(I = A®)=1p® pk) = p(1 — K(k))—lﬁ(k)ﬁ(k’)_

Fix k = 0. We can reorder the variables e§0> to set P(®) = I and we can absorb D(©)
into F and A(®), as in Proposition 2.5. Analogously, we can do the same in the tilde
setting. Therefore, up to reordering and rescaling via (5) we have

F(I =AYt = F(1 — A1,

Then, Corollary 2.10 implies that there exists a unique choice of signs of the diagonal
matrices and a unique permutation matrix Q satisfying

rank (A(O) — A(k)D(k)P(k)Q> =1 = rank (ﬁ(o) — Zl(k)ﬁ(k)ﬁ(k)Q) ,

and Q = (P™)T and Q = (P®)T . Therefore, P*) = P(*), and by comparing the
intervened columns of the difference matrices we have D) = D) This implies
AR — A(R), O

The upshot is that solving Problem 1.3 is equivalent to solve the following problem.

Problem 3.2 Given a generic matrix Fe RP*4 and matrices A A@) e Raxa
constructed according to a model with DAG G, with generic non-zero entries, do
there exist a generic matrix F' € RP*?, and matrices A© . A@ € RI%9 con-
structed according to a model with DAG G, such that

F(I— AW~ = F(1 — A®)~1 (14)

forallk € K U {0}?If so, how are the DAGs and the corresponding matrices related?
We solve the system of polynomial equations (14). The solution is unique if and only
if the DAG and the matrices are identifiable. Otherwise, the set of solutions is the set
of possible DAGs and space of possible parameters.

From now on, unless otherwise stated, we assume that we have the observational
context and one intervention per latent node. We re-index contexts so that the k-th
intervention (either soft or perfect) is on Z, hence K = [¢].

3.1 AlLinear System

Let A®) = ﬁ([ — K(k))_l and let S be the space of solutions to (14). The algebraic
variety S is associated to the ideal

I=(FI—-A"1_A® L =0,... q).

The matrices F, A*) are filled with indeterminates. Each point of S provides a graph
and parameters compatible with the given model. At first sight, S might have high
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degree, since the degree of the generators can reach g + 1. However, there is a sim-
pler set of generators:

I=(F—A®T AW k=0,... q). (15)

Assuming the A*) are known, Z has (q + 1)¢p linear generators in a polynomial ring
with gp + (¢ + 1)|e(G)| indeterminates a priori, namely the f; ;, and all the non-zero
entries of A%) for k = 0, ..., q. To write down the equations for Z, we choose a can-
didate DAG G. This can be the complete directed acyclic graph, or it could be sparser,
if the model assumptions allow us to rule out some edges. We find a set of minimal
generators for Z to compute the dimension of the associated algebraic variety; i.e.,
to find the identifiability of the parameters (which will depend on our guess for G).

Proposition 3.3 Consider the setup in Assumption 1.2 with q soft interventions. When
d > 2, the space of parameters F and A®), k € [q| U {0}, such that kqg(X™®)) is a
given tensor is a linear space. When d = 2, for any q € N there exists a DAG on q
nodes such that the space of parameters for which ko (X (k)) is a given matrix for all
k € [q) U {0} is non-linear.

Proof The case d > 2 follows from (15). For the case d = 2, consider a model on two
latent nodes with one edge 2 — 1, with parameters F' = (3:0)s Xﬁog = X?g =1,

Xglg = 13. Symbolic computation with, e.g., Macaulay2 or Oscar.jl shows that the

space of parameters that satisfy ro(X*)) = ko (X®) for k € {0,1,2} is 1-dimen-
sional and of degree 8. It is the union of 6 irreducible components, four linear and
two quadratic. The same happens for generic parameters. We can embed this DAG
into a DAG on ¢ nodes with only one edge 2 — 1. Then, the space of solutions has
the same dimension (= 1) and degree (= 8) as the space of solutions for the DAG on
two nodes. (]

Proposition 3.3 shows that the non-Gaussianity assumption is required in Theo-
rem 1.7. We conclude this subsection with an example, to see the linear structure of

7.

Example 3.4 Consider the latent DAG
= @4@\\7@

with parameters

2 6 10 1 09 3 0
12 9 -3 8 © _ @ _10 0 0 10
F=|Zg 4 7 2 AV=A"=10 00 7|
-9 8 2 =5 0 0 0 O
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0 =5 8 0 0930 093 0
w_10 0 0 10 2_10 0 0 2 3 _10 0 0 10
AV=19 0 o 7| A=loo0oo0 7] A2"=loo0 o0 -1

0 0 0 0 0000 000 0

Then, assuming known G, the ideal Z (15) is minimally generated by 21 linear
polynomials

fi1—2, fa1 -2, fa1+8, fa1+9,
Fro+ 220 — 24, oo+ 20— 27, fr2—8A) +68, fiz— 9N} +73,
Fis+2X% 16, fa+20% -3, fra—8AB+17,  fiz— 9N} +25,
Fra+1BAD —173, foa+ MY - 192 fiu— BN 4287, faa— DB + I,

AL A 1, A A =5 AZ A w8 AP A 8, —140Y) + 50 + 105.

These can be found by computing the primary decomposition of Z in computer alge-
bra software, such as Macaulay?2 [36] or Oscar.jl [14, 41].

3.2 Perfect Interventions

When the interventions are perfect, namely )\,(ij) = 0 for every k € [q], there is a

unique solution to the linear system in (15), provided the candidate DAG contains all
edges of the true graph. In other words, the ideal Z is zero dimensional and defines a
point. This is Theorem 1.6.

Proof of Theorem 1.6 Worst case necessity of one intervention per node for identi-
fiability is a direct consequence of [50, Proposition 5]. We prove sufficiency. We
have matrices A*) = F(I — A®))~! by Proposition 2.4. Pick k, j € [q] with k # j.
Then,

(A(O) _A(k)) _ Z Fre ((I_A(O))fl B (I_A(,@))fl)

1,5 = 0y
= Y A=A (1 =AO) = (=AM
£€ de(k) ko

0 _
= Agl)c - A(O)Mj‘-

With this, we construct (I —A(®)~1 and hence recover A(®). We multiply
AO) (T — A1) to obtain F. O
The above result shows that g perfect interventions are sufficient to recover the
DAG and the parameters of a model. To find the parameters (and hence the latent
DAG), one can solve the linear system (15) or follow the procedure in the proof.

Remark 3.5 When g < p, an alternative proof via pseudo-inverses exists, see Sect. 4.3.
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When ¢ > p, the non-Gaussianity assumption is necessary for Theorem 1.6, as
follows.

Proposition 3.6 Consider LCD under Assumption 1.2 with perfect interventions and
q > p. Then one perfect intervention on each latent node is not sufficient to recover

the latent DAG G and the parameters F and A%) from the covariance matrices of
X®),

Proof For (p,q) = (2,3) and G = (), we compute the parameters F and A®) for
which the covariance matrices F(I — A®)=1(DW)2(T — AF))=TET coincide
with the true covariance matrices for £ = 0, 1, 2. We choose and fix an ordering of
the nodes, and we fix the scaling by imposing D(®) = I. This space has dimension 2,
so the parameters cannot be recovered uniquely. We can embed this DAG in a DAG
with ¢g nodes, for any g. Hence the p X p covariance matrices do not contain enough
information to recover the parameters, when p < q. O

3.3 Soft Interventions

In this section we compute the dimension of solutions of the linear system
F— AR —A®) =0fork =0,...,q, under soft interventions. For every k and
for every ¢ € [p],j € [q], we have

k) (k k
Joj+ Z Aé,i))‘v(:,j):Ag,j)'
i€ ch(j)

Since we consider single-node soft interventions, there are pg(q + 1) equations in
pq + 2|e(G)| indeterminates, namely f,; for all £ € [p], j € [q], and /\E?j) for all
(j — i) € e(G),and /\;kj) forall (j — k) € e(G).Foreach (¢, j), we subtract the equa-

tion for k = 0 from the equations for k € [g]. Then the (pg(q + 1)) x (pg + 2]e(G)])
matrix of the linear system has block structure

()

We can focus on the (pg®) x (2le(G)|) bottom-right block, involving only

the indeterminates A(*). The equations of this smaller linear system are
AF(T — ARy — AO(T — A®) =0, or

(k) § (k) (0) 1 (0) (k (0)
Z At’,i)Az(‘,j o Z Aé,i Aig = Ae,j) - Agﬂw (16)
i€ ch(j) i€ ch(y)

for k,j € [q], £ € [p]. There are three cases:

(1) If k & ch(j), then (16) becomes
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> (AR - AR = (A - AP,

i€ ch(j)
The (4,4) entry of  A®) — A© is by  definition
e de(iy fon (I = AR (T — A<0>)fl)m. If k¢ de(j), then
(I =AW)=L— (I = A®)=1) =0 for every n since by construction

)

de(j) D de(i). Hence, (17) reads 0 = 0 and it imposes no condition on our
indeterminates.

(2)If k € de(j) \ ch(j), then ((I — A®)™L — (I — A@)=) 50, since there

is a path from i to n through k. Such a path must exist for some #, since k is a
descendant of some i. Hence the coefficients of (17) are non-zero, and we get
linear conditions on the indeterminates.

(3.) Finally, if k£ € ch(j), we get an expression for )\( ) in terms of the )\(0)

1 0) (0 0) 0 (0 0)
£ i€ ()
i#k (18)
0 k 0)
NS A — AT o A~ A
T kg 40 i3 A(o) ’
i) A ok
P4k

WhereweusedAl(fk) A% » = Obecause (I — AK))=1 — (1 —AO)=1) =0
for every n. We get (18) for every £ € [p]. However, most equations are redundant.

The following result mimics Proposition 2.9.
Proposition 3.7 For ke [q], let A®) = (I — A®)~1 — (I — AO)=1  Then,
rank (A(’“)) < 1, with equality if and only if an(k) # 0.

Proof Fix k € [q] and recall that the (i, j) entry of (I — A®))~1 is the sum of all

paths from Z; to Z;, where a path is encoded as the product of /\gf)n for all edges
n — m in the path. Then, the only non-zero columns of A(*) are those indexed
by j for j € an (k). We prove that these columns are multiple of each other. Let
J1,J2 € an (kj), then

:(I_Am) 1A<k>

7]m

k. Jm
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for m = 1, 2. Hence, for every ¢ € [q], the (7, j1) entry equals the (¢, j2) entry up to
(k)
k,j2 . O

For generic parameters we have rank(A®) — A©®) <1 for all k € [q], with
equality whenever an(k) # (), by Proposition 3.7, with proof is analogous to that
of Corollary 2.10. Hence the conditions in (17) are equivalent for all ¢ € [p], and
the same is true of the conditions in (18). This reduces the size of the linear system,
taking only the equations for £ = 1 € [p]. We obtain a reduced matrix of the linear

system
1, 0 *
0 [ Tey [ * | (19)
0 0 *

where the top block writes F in terms of A(®) the second block writes A%) in
terms of A, and the bottom block gives the conditions (17) on A(®). The latter
are ) i, | de(d) \ ch(j)| equationsin} >, (. |ch(j)| = |e(G)| indeterminates. The
conditions are independent for each j. Namely, the block has the form

M[]| 0 |---] O
0 |MP[|—-] 0
M = . .
0 ) M.[q}
Each  sub-block  has size |de(j)\ ch(j)| x |ch(j)] and  defines
- (A — b[j
MTj] ()\MLE a0) b[j] where

32

M| = ((Am —40) 1

o = (A = 49) ) ke deli)\ ch(s)

1,5

) ke de(j)\ ch(j), i € ch(j),

At this point, it seems that the matrices defining the linear system depend on F and
A®) However, following the proof of Proposition 3.7, we have

k — k k
(A9 40) = Al Y fia - AL A = AT AR,
’ n€lq) née de(k)

Assuming Ag?,)c # 0 for every k € [g], which holds generically, we can rescale to
obtain

Mljl = () ). ke de(j)\ ch(j), i € ch(j),

(20)
bl = (A ) ke de(i)\ ch(j),
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where A®) = (I — AW)=1 — (T — A©)=1 From this, we see that M[j] and b[/]
depend only on the latent DAG and its parameters: the linear system (17) becomes

) _
Z Ak’LAZJ - kj’ (21)

i€ ch(j)
for all j € [g]. We compute the dimension of the solution space by comparing the
ranks | de(7) \ ch(j)| x | ch(y)| matrix M[j] and the | de(j) \ ch(j)| x (|ch(j)|+ 1)
matrix (M[/]|b[j]). Recall that an ideal has dimension —1 when its associated variety
is empty.
Proposition 3.8 Assume that the interventions are soft. For each node j, let

o — { -1 o if rank.M[j] # rank (M[4]|b[4]) ,
J |ch(j)| — rank M[j] otherwise,

where M[j] and b[j] are defined in (20). Then, the ideal T in (15) has dimension

) [ -1 if ¢; = —1 for some j € [q],
dimZ = { ;1 1 ¢ otherwise.

Proof The dimension of Z is the dimension of the solution space of (21), that is,

M) (A = b[j]

)7,'6 ch(j)
for all jelg], by (19). Its dimension c¢; 1is |ch(j)| — rankM|[j] if
rank M[j] # rank (M[4]]b[j]). Otherwise, the solution space is empty and we set
¢j = —1, as is convention. O

Corollary 3.9 With one soft intervention per latent node it is never possible to recover
uniquely all the parameters of the model.

Proof The result remains true if we assume knowledge of the latent DAG
g. Let ch(i) = (. Take 5 € pa(i) such that de(j) \ ch(j) = (. Then M[j] = 0, so
=|ch(j)| > 1. Therefore, dimZ > 1 and it is not possible to identify uniquely the

parameters feojand /\,”, for £ € [p| and k € ch(j) \ {¢}. O

Adding interventions does not affect the matrices M[;] in the proof of Corollary
3.9. Therefore Corollary 1.8 follows: non-identifiability holds regardless of the num-
ber of interventions.

When c¢; = 0 it is possible to identify uniquely all parameters /\Z(.?j) fori € ch(y),

as well as f¢; and )\,(C]fj)-, for £ € [p| and k € ch(j). The condition ¢; = 0 holds, for
example, when ch(j) = {i1} and de(j) = {i1,i2}.
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Example 3.10 We continue Example 3.4. The matrices are

M[1] = M[2] = M[3] = b[1] = b[2] = b[3] =0, M[4] = (-14 5), b[4] = —105,

hence ¢1 = |ch(1)] =0, co = |ch(2)] =1, cs =|ch(3)| =1,
¢y = |ch(4)| — rank M[4] = 2 — 1 = 1. By Proposition 3.8, we have dim Z = 3 and
in fact it is minimally generated by the 21 linear polynomials in 24 indeterminates in
Example 3.4.

The rank of M[j] depends on the structure of the DAG G beyond the number of
children and descendants of j. This is highlighted in the following example.

Example 3.11 Consider the DAG
i~ OO0 O
Node 7 = 5 has 2 children and 4 descendants, hence (21) consists of equations

(k)4 (0) _ A (k) —
STOAEINT =AT k=12 22)
i=3,4
They impose conditions on the A There are two A!”) from node 5, namely

1,7 2,7
Agf%, )\4(1(7)5)), and two equations. However, the equations in (22) are dependent. We have

P AN (e VLTIV RY()
8 o) o8 2T + A8 )

so rankM[5] = rank (M[5]|b[5]) = 1 < 2. Hence we cannot recover the param-
eters )\:(3?%, )\f;. The reason rankM[5] < 2 is that all the paths from 4 to 1 or 2
(encoded in the second column of M[5]) and all the paths from 5 to 1 or 2 (encoded
in b[5]) go through 3. This factorization of paths creates dependencies in M[5], b[5],
preventing identifiability.

To recover as many parameters as possible, DAGs should balance between too
many children, hence too many indeterminates, and too few children, hence paths
factorize more easily.

From an algorithmic point of view, we can check the rank condition in Proposi-
tion 3.8. Indeed, we have matrices A*), and we can compute, for all i, k € [¢] with
i # k, the entries

k 0
o _ AT - AL

N
ki

(0)
Alk
Remark 3.12 1f ¢ < p, the computations can be simplified. We can write (16) as
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AP = (AN FAOAO) L 7 (AR)HF+ 40,
(0)

This writes the /\ék]) indeterminates in terms of A;
©)
0,J
system is the same as in (20), as can be proved by noticing that for any k # i, the k-th
row of (A))*+ A(©) equals the k-th row of A*) up to sign. Indeed,

indeterminates, and enables us

to find the linear conditions on the A\; "/ indeterminates. The reduction of the linear

(00740, = (=050

k _ _
= Y AT AT+ (1 - A0
L€ pa(k)

_ — k
= (I - AW Ly (1 - AO) L= A,

where the last row used (I — Aé?i))_l =(- Az(zi'))_l for every £ € pa(k).

3.3.1 Identifiability of the Latent DAG

For perfect interventions, Theorem 1.6 shows that we can recover the latent DAG of
the model, as well as the parameters. With soft interventions, we cannot recover the
whole DAG and all the parameters (see Corollary 3.9). It is natural to wonder to what
extent we can recover the latent DAG. Thanks to Proposition 3.8, we can turn this
into 2¢ rank computations.

Definition 3.13 Given a model with matrices A*) € RP*4 for k = 0, ..., q, we say
that a DAG G’ is compatible with the model if there exist parameters F' € RP*9,
A®) € R9%4 defined according to the latent DAG G/, such that A(F) = F(I — A(F))~1
for all k.

If the true latent DAG is G, a compatible DAG G’ must satisfy G = G', by Corol-
lary 2.8. To emphasize that a matrix such as A*) depends on a DAG G, we write

A(gk). In the same spirit, we define
. k . N .
Mgglj] = (A ) k€ degi(j) \ chgr(j), i € chgr(j),
boorli] = ((AF)s ) k€ degr(j)\ chg(j),

where the indexing depends on G’ and A(gk) =(I - A(gk))*1 — (I - A(go))*l. Recall
that

[(1 = A?)~1,.

denotes the submatrix with rows in . C [¢] and columns in . C [g]. We give the fol-
lowing definition, already mentioned in the introduction.
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Definition 3.14 Given a DAG G on ¢ nodes, its soft-compatible class is

soft(G) :{g’ DAG | G’ =G and for all j € [q] 23)
. (0)y—1 . (0)y—1
rank{(T — Ag") ™ aeg: 1)\ chgr (7). chgr () = TAOK[(T = Ag") " ] 4o )\ ehgr (), Ther () }

where ch(j) := ch(j) U {4} for j € [q].
The soft-compatible class of a DAG G is the set of all graphs that are compatible with
a model with latent DAG G, as follows.

Theorem 3.15 Consider LCD under under Assumption 1.2 with DAG G. Then a
graph G' is compatible with the model if and only if G’ € soft(G).

Proof The ranks of the matrices in (23) are the same as the ranks of the matrices
Mg g[j] and (Mg g [j]lbg.¢[4]), since the first matrices can be obtained from the
second by replacing each term )\,(Ckl) — )\,(fg with /\,(COZ By the genericity of the param-
eters, this does not affect the rank. The genericity assumption allows us to switch
between the parameters of the model and abstract indeterminates without change.
Therefore, the ranks of the matrices in (23) coincide with the ranks of M[;] and
(M5][b[5]) from (20).

The DAG G’ is compatible with the model if and only if the corresponding ideal Z
has non-negative dimension. Here the indeterminates of the system defined by Z are
the entries of F and of A(gk,). By Proposition 3.8, it is equivalent to c; # —1 for all j,

which holds if and only if rankM [j] = rank (M [4]|b[4]) for allj. This is equivalent
to the condition G’ € soft(G). O

Proof of Theorem 1.7 The linearity follows from equation (15). The positive dimen-
sionality follows from Corollary 3.9. The compatibility class of DAGs is Theorem
3.15. O

We investigate the concept of soft-compatible class. If G’ has the same transi-
tive closure as G and if chg/(j) D chg(j) for all j, then G’ € soft(G). This is true
because

(0)y—1 (0)y—1
(1 = Ag") " Tdeg(j)\ cho(s), chg(y  and  [(I = Ag") ]deg(j)\chg(j),ag(j)

always satisfies the rank condition (since by construction a solution with DAG G
exists). However, the matrix [(I — A(go))_l] degs (4)\ chg (4), chg/ (j) 1S obtained from
(T - A(go))_l] deg (j)\ chg (j), chg(j) DY adding columns and deleting rows, hence the
column indexed by j remains in the span of the columns indexed by its children.

Therefore, in order to exit the soft-compatible class of G, a DAG G’ with the same
transitive closure must have enough more children at some node.
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If ¢ = 2, soft(G) = G for every DAG, since there are no distinct DAGs with the
same transitive closure. For ¢ = 3, the only case in which two DAGs have the same
transitive closure (up to relabeling the nodes) is the segment DAG Z5 — Zy — 71,
denoted by _, and the DAG with extra edge Z3 — Z;, denoted by A. Since A is
obtained from __ by adding Z; to the children of Z3, we know that A € soft (_).
On the other hand, since de_( ) \ cha ( ) = 0 for 7 = 1,2, the only relevant
submatrices are obtained for j = 3 and they are

=AMz and (= AD) ey

for which the rank condition is trivially satisfied, hence == &€ SOft(A). Therefore,
for DAGs on 3 nodes, the soft-compatible classes are the classes of DAGs with the
same transitive closure.

For g = 4, if every node has at most 1 descendant that is not a child, the rank
condition is always satisfied. The only time this might not hold is for DAGs whose
transitive closure is the complete DAG on 4 nodes. There are 8 such DAGs (up to
relabeling). We compute their soft-compatible classes.

Example 3.16 Consider DAGs on 4 nodes, with transitive closure the complete DAG

0N 00 OO 0=0=0}
# O30 & -OFOSO=0,

%—0{?@ H0=0~0"0}

The submatrices of (I — A ~!for j = 1,2, 3 are either empty or they have one

row, for every G’. Therefore, on these nodes the rank condition is always satisfied.
The interesting rank condition comes from the submatrices for j = 4. By computing
these submatrices for all pairs of DAGs, one obtains

soft(G1) = soft(Ga) = {G1,G2,G3,94,Gs,Fs, Gr, Gs},
soft(G3) = soft(Gs) = soft(Gs) = soft(Gs) = soft(Gr) = soft(Gs) = {Gs, G4, Gs, G, G7, Gs}-
Forn=1,2andm = 3,...,8, we have G,, & soft(G,,), since

rank[(1 — AG" ) ™" deg,, (4)\ cho,, (4). che, (4) = Tank[(] — AG )10y 5 =1,

0)y— 0)\—
rank[(] — A(gﬂ)l) 1}degn(4)\chgn(4)’a%(4) = rank[(] — A(g,i) Ty ay =2
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Soft-compatible classes are in general smaller than the DAGs with the same tran-
sitive closure. In a soft-compatible class a unique sparsest DAG does not exist, see
Example 3.16 where the sparsest DAGs in soft(Gs) are Gz, G4. Moreover, soft-com-
patible classes are not equivalence classes, see Example 3.16 where Gg € soft(Gy)

but G; ¢ soft(Gs).
3.3.2 More Interventions

So far in Sect. 3 we have mostly assumed one intervention per latent node, and we
proved that this is not sufficient to recover the latent DAG or the parameters. It is
natural to wonder whether more interventions would allow the recovery. We already
discussed after Corollary 3.9 that complete identifiability is impossible regardless of
the number of interventions; in other words, Corollary 1.8 holds.

In some cases, increasing the number of interventions allows us to recover more
parameters (see Example 3.18). In other cases, more interventions do not improve the
parameters that can be recovered (see Example 3.17).

Example 3.17 Consider the DAG

IO A N
¢ - —O—00—0

Node 7 = 4 has 2 children and 3 descendants, so ¢4 = 1. We are interested in the

question: if we have more interventions, can we recover more? In particular, can we

recover )\gﬁ, /\:(,,(,)31 ?

The only intervention that could give us more information is an extra intervention
on node 1, since that is the only descendant of 4 which is not its child. Assume a fifth
context also with intervention target 1. We have a linear system with two equations
and two unknowns:

1), (0 1) (0 1
AL+ ADIAD = AL,
5) 4 (0 5) (0 5
APPEL + ATIA = A

The matrix of this linear system, however, has rank 1 because
AN o (A% <A§131> ©) | 1(0),(0) <A§1%>
5 =X : and S = (A5 4+ A5 5A54) e
5 2,3 5 5 2,4 2,313,4 5
<A§,§ AP) AP) AP)

All paths from 4 to 1 must go through 2 and this means no additional parameters can
be recovered from the extra intervention.

Example 3.18 Consider the DAG
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g_m@

and focus on the node j = 4. The linear system is as above, but now

1 1
(%’) i (A%)
A1,3 A1,2

so the matrix is full rank and we can recover the parameters )\é?)l, )\g?i.

To conclude, more interventions do not necessarily allow us to recover the DAG
or the parameters. Indeterminates )\E? with ch(i) = () are not the only ones that can-
not be recovered regardless of how many soft interventions we have - this is also the

case for )\gfi and )\gfi in Example 3.17. But there are examples where more interven-

. . . . k k) .
tions reduce the dimension of the solution space - we can recover )\g i and )\g Z in

Example 3.18.

4 Algorithm

Coupled tensor decomposition of higher-order cumulants enables us to recover
parameters in an LCD model. In this section, we explain how to turn our results into
a numerical algorithm for LCD. The algorithm has two main steps. The first (see
Sect. 4.1) is to identify intervention targets, permutation, and scaling. This turns the
results of Sect. 2 into an algorithm, and works for both perfect and soft interventions.
The second step (see Sect. 4.2) is to recover the parameters of the model. We do this
step for perfect interventions (following Theorem 1.6) and not for soft interventions,
in light of Theorem 1.7. Both steps simplify when ¢ < p; that is, when the number of
latent variables is at most the number of observed variables, see Sect. 4.3. We test our
algorithms on synthetic data in Sect. 4.4.

4.1 Recovery of Intervention Targets, Permutation, and Scaling

The algorithm input is the d-th order cumulants x4(X *)) as in (10), for k € K U {0}
ranging over contexts and a fixed d > 3. The input tensors are either exact (popula-
tion cumulants) or approximate (sample cumulants).

For our fixed d, we assume that the decomposition in (10) is unique, that
md(sgk)) # 0 for all k and all i € [g], and that Hd(€§f)) = +1 for all k. This is the
same assumption as appears temporarily in the proof of Proposition 2.3. The assump-
tion is not necessary, since one can combine information from multiple higher-order
cumulants, but it helps our exposition, as in the proof of Proposition 2.3. In our
experiments, we consider d = 3 and d = 4.

Tensor decomposition recovers the matrices A*) up to permutation and scal-
ing, by Proposition 2.1. Tensor decomposition thus recovers a set of matrices
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{AFWDF) pF) . | ¢ K U{0}} for unknown scaling matrices D*) and unknown
permutations P*). In practice, any numerical tensor decomposition algorithm
can be used for this step. We use the subspace power method [26] or simultane-
ous diagonalization [19] when ¢ < p. We can assume without loss of generality that
D = p©) = T, see Proposition 2.5. Then the other scaling matrices D(*) have all
entries £1 except one, by (9) of Proposition 2.3. There is one entry that is not +1,
which corresponds to the intervention target of context k.

To find the permutation, we consider the difference A(®) — A®) D) p(K) a5 D(k)
varies over diagonal matrices with diagonal =1 and P(*) varies over permutation
matrices. That is, the product D*) P(%) is a signed permutation matrix. The rank of
the difference equals one if and only if we have the correct sign and order, see Corol-
lary 2.10. This suggests an algorithm: for all ¢ x g signed permutation matrices Q (of
which there are 29 x ¢!) compute A®) D) P(*)Q and compute the second largest
eigenvalue of the matrix A(®) — A®) D(*) P(*)Q_ Choose O for which this eigen-
value is smallest. This Q is (P*))T, up to sign, where the sign gives all but entry

Dl(f)zk of D), See Algorithm 1.
To find the remaining entry of D), we compare the columns of A(®) and
A®) D) The only column that differs between the two matrices is the iz-th column.

(k)

The ij-th columns of the two matrices are collinear, with scaling D; ", . This recov-

ers the intervention target i;, and the scaling matrix D(®). See Algorithm 2.

A faster way approach to find the intervention targets, permutation, and scaling
could be to implement Proposition 2.7. One can compare each column of A(®) to each
column of A®) D) P(F) e g by projecting a column v; of one matrix onto another
column vy of the other. Each time, the residue of the projection ||vi — 7,y (v1)]]
and the scaling m |7 (v,) (v1)]| can be stored and thresholds can be used to decide
which numerical values are zero or +1. Such a procedure is numerically sensitive and
influenced by the threshold. The threshold determines the assignment of intervention
target, and we want the |K| intervention targets to cover all latent nodes. One must
choose a threshold that gives such an assignment. We leave this for future work.

4.2 Recovery of Parameters

Once the intervention targets, permutation, and scaling are recovered, using Sect. 4.1,
we have matrices A®) = F(I — A®)~! for k = 0,...,q. We can relabel contexts
so that the intervention target of the A-th context is k. We construct (I — A(9))~1 as

(I - A(O))i_,jl = { Aﬂ_Aﬁ i

following the proof of Theorem 1.6. We invert this matrix to find A(®). This is Algo-
rithm 3. Finally, we recover F using F = A (I — A(®)). One can compare the prod-
ucts A®) (I — A®)) for different contexts & to test the goodness of fit of the LCD
model. In theory, these should all return the same mixing matrix F.
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4.3 The Injective Case

Restricting to the case ¢ < p allows for simplifications, c¢f. Remarks 2.11, 3.5, and
3.12. First, the tensor decomposition step can achieved using simultaneous diago-
nalization [19]. We explain how to recover the intervention targets, permutation, and
scaling in this setting. When ¢ < p the Moore-Penrose pseudo-inverse satisfies

+
o) .— (F(I_A<k>)—1D(k>p<k>) = (PW)YT (D) =11 — AR H, (24)

where H = F'*. In particular, C(©) = (I — A©)H. Let (c*))* denote the ¢-th row
of C'*), Then we have the following result, in the same spirit as Proposition 2.7.

Proposition 4.1 Consider LCD under Assumption 1.2 where q < p. Fix k € K and
let o be the permutation associated to the permutation matrix P*). Then

(0))¢ = (o (®)
()" = ()

if and only if ¢ # iy, where 1y, is the target of the k-th intervention.

Proof We have formulae

) 1 )
¢ 0 )\ o 4 (k
O =nf = 3T, ()70 = - 3T ]
jepa(f) 4,6 j€pa(f)

by (24). If £ # iy, then Dgi,) =1 and /\% = )\f} for all j € [g]. Hence these two

expressions coincide. If ¢ =i, then under the genericity assumption we have
(C(O))Z £ (C(k))o(é). 0

Proposition 4.1 enables us to find the intervention target 5 and the permutation
matrix P(*), as follows. For sufficiently general parameters A(°) and A*) and error
distribution (¥, the rows (c(®) and (c*))?() differ. Hence, iy, is the index of
the row of C'(*) without a match in C*), We recover P(*) by matching the remain-
ing rows: if £ # i, then there exists j such that (c(9)¢ = (c¢(*))7. This finds all but
one row of P*)_ It has a unique completion to a permutation matrix, which matches
(c(9) to the row of C'*) without a match in C'(*). See Algorithms 4 and 5. Algo-
rithm 6 recovers the scalings D(*).

We now explain how to recover the parameters. In light of the above, we have
matrices (A®)* = (I — A®)H. We find H = F* as follows. The i-th row of
(A®))* has entries

(AWNE =3 "(1 = AW, Hej = Hi, .
£€(q]

This is Algorithm 7. To find A(?), we use
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(ANTHY = (T - AYHHY = (1 — A1),

Following the initial tensor decomposition, the time complexity of this algorithm
is determined by the time required for the alignment and to calculate the pseudo-
inverses of the products. The former takes time O(¢®p) and the latter O(p?q?), so the
overall runtime is O(q?p max(p, q)). This improves on the algorithm in [50] provided
we ignore the time taken to construct and decompose the higher-order cumulants.

4.4 Numerical Experiments

We test our algorithms on synthetic data. The general procedure for any (p, q) is
implemented in Algorithms 1-3 in Appendix A and the injective case (¢ < p) is
implemented in Algorithms 4-7. For the general setting, we use d = 4, since we use
the subspace power method for tensor decomposition [26] and it requires input of
even order. We use the subspace power method because it can be used to decompose
any even-order symmetric real tensor with low rank, it outperforms other state-of-
the-art methods, and is robust to noisy input (see [26] for details). For the injective
case, we study d = 3. These choices of d satisfy Assumption 1.2(c), since we assume
error distributions that are sufficiently general to have non-vanishing third or fourth
order cumulants, for instance they are not Gaussian or symmetrically distributed. A
larger d is needed in Assumption 1.2(c) only in the special case that some higher-
order cumulants of the error distributions vanish.

We sample graphs using the Python package |causaldag| [49]. It extends the
Erdés—Rényi model [43] to DAGs: given an edge density p, the edge ¢ — j is added
to the graph with probability p, and if and only if ¢ > j. We fix p = 0.75, sample the
entries of F'* independently from Unif([—2,2]), and the non-zero entries of A(®)
independently from Unif(4-[0.25, 1]), as in [50]. We fix p = 5 and vary ¢ from 2 to
7. For each value of g, we generate 500 models and calculate the relative Frobenius
MHM— M ||, where || - || denotes
the Frobenius norm, M is the true matrix, and M is the recovered matrix. We also
calculate DAG recovery error, as follows. A penalty of 1 is incurred if the algorithm
recovers a non-existent edge or misses an existing one, while recovering an edge in
the wrong direction incurs a penalty of 2. Then we sum the penalty over all edges.

error for the recovery of F and A(®), which is

We plot the median error in recovering F, A(%) in Fig. 2. A significant portion of
the error is due to the tensor decomposition step, especially in the case g > p, but
improved algorithms for tensor decomposition are beyond the scope of this paper.
Therefore, together with the error of the recovery starting from the population cumu-
lants rq(X *)), we display also the error of the recovery obtained directly from the
factor matrices A¥) D(*) P(F) a5 if these had been recovered perfectly from tensor
decomposition.

For the injective case, we fix p = 10 and let g vary from 2 to 10. We consider 500
models generated as above, and compute the relative Frobenius error for both recov-
ered matrices F and A(?). The median errors are plotted in Fig. 3, starting from the
cumulants (blue graph) as well as from the factor matrices (orange graph).
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10-10
—e— Covariance

—e— Tensor (injective)

—e— Matrix (injective)

—e— Covariance
—e— Tensor (injective)
—e— Matrix (injective)

1013 1013

Median relative Frobenius error in F

g

Median relative Frobenius error in A

10715

Fig.3 Median relative Frobenius error in the recovery of F (left) and A(®) (right) when p = 10, using
the injective algorithm. Note the logarithmic scale on the y-axis

We explain how our algorithm for LCD can be used in practice, and what it finds.
Assume we have K + 1 contexts: an observational context and K other contexts.
While the K contexts may result in complicated changes to the distribution over the
observed variables, the idea of LCD is to build a latent representation such that they
can be viewed as a single-node intervention on the latent variables, and such that
each context is an intervention on a different latent variable. Each latent variable is a
linear combination of observed variables. For example, if the observed variables cor-
respond to genes and the contexts to mutations, then the latent variables are weighted
combinations of genes, which can be thought of as weighting the effect of a muta-
tion on each gene. See [50] for a workflow of LCD on a single-cell RNA sequencing
dataset. For LCD, the input consists of ng + - - - + nx data points, where nj data
points are observed in context k. We build the d-th order sample cumulant for each
context k. Any d > 3 can be used, since for sufficiently general data the higher-order
cumulants of the error distributions will not vanish. We run our LCD algorithm on
the tuple of cumulant tensors. We use the general formulation in Algorithms 1-3. If
K < pwe can also use the injective approach in Algorithms 4-7. The output is a tuple
of K latent variables, together with estimates for the latent graph G, weights A, and
the linear mixing map F.

5 Outlook

We have studied the identifiability of linear causal disentanglement using tensor
decomposition of higher-order cumulants. We view the parameters compatible with a
given model as the solution space to a system of equations. Identifiability holds when
the space has dimension zero, and can be achieved using perfect interventions. Here,
we give an algorithm to recover the parameters. For soft interventions, we recover a
compatibility class of graphs and parameters. We conclude with some open problems
for future investigation.

On the theoretical side, the first question is of combinatorial nature. The defini-
tion of soft(G) in Definition 3.14 involves ranks of matrices. These rank conditions
encode information about the paths in G. This suggests the following problem.
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Problem 5.1 Find a combinatorial description of soft(G), based on the structure of

g.

Higher-order cumulants can reduce the degree of the solution space of parameters, as
compared to covariance matrices, see Proposition 3.3. An open problem is whether
they restricts the set of compatible DAGs.

Problem 5.2 Let softo(G) denote the graphs G’ for which there exist parameters
F,A®) defined according to G’ such that the covariance matrix coincides with the
covariance matrix of a model with latent DAG G. Are the following containments
strict in general

soft(G) C softa(G) C {G'|G' = G}?

Under soft interventions, the space of parameters compatible with a given model is
linear and positive dimensional, by Theorem 1.7. It is then natural to ask for the best
solution in this space, for an appropriate notion of best. This would give a choice of
unique parameters under soft interventions.

Finally, our assumptions require that a// the latent error distributions are non-
Gaussian. The results may extend to the case where some are Gaussian, cf. [60].

On the algorithmic side, there are multiple possible improvements. The tensor
decomposition contributes significantly to the error in the recovered parameters, see
Fig. 2. Other tensor decomposition algorithms might give more accurate output. One
could test our algorithm starting from the factor matrices plus random noise, to study
the extent to which our algorithm would work with a sufficiently accurate tensor
decomposition. Next, one could implement a greedy search over permutations and
signs to speed up the recovery of P*) and D(*). Finally, it would be interesting to
study the robustness to non-linearity in the latent space (e.g., Z = (I — A)~te + ag?
for small o € R) or in the mixing map (e.g., X = FZ + aZ?2, where Z2 is a vector
with entries Z; Z; forall i, j € [¢] and o € R small).

A Pseudocode

We provide pseudocode for the algorithms in Sect. 4. Their implementations are
available at https://github.com/paulaleyes14/linear-causal-disentanglement-via-cum
ulants. Below, the i-th row of a matrix M is denoted by m? and the i-th column by m,.

Algorithms 3 and 7 below work if the set of intervention targets coincides with
the set of latent variables. In theory, this is true by our assumptions. In practice, the
algorithm could assign the wrong target to an intervention due to numerical errors.
When implementing the algorithm, we force the interventions to be on distinct nodes.
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A.1 General Case

© P NS TR

10:
11:
12:
13:
14:
15:
16:
17:

: Input: M = A©® and M® = AR pE) pk)
: Output: P®) the permutation matrix encoding the relabeling of the latent nodes in the
context corresponding to an intervention at node iy.

: ¢ <—number of columns of M
perm < set of all ¢ X ¢ permutation matrices with entries £1

0 <+ maximum float
P + None

: for mat in perm do

newmat < M — M®) . mat

ss + second largest abs(singular value) of newmat

if ss < o then
0+ 88
P« mat"
else
continue
end if
end for
return P

Algorithm 1 Recovery of the permutation matrix (recover_perm)

1: Input: M = A©, M® = A®DE Pk and a threshold thr.
2: Output: the target of the k-th intervention i, and the diagonal matrix D®),

oW

o >

: ¢ < number of columns of M

D <+ I;xq
P < recover _perm(M, M*))
N« M®PT

: scalings < list()
: indices < list()
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

for i =1 to ¢ do
v < project n’ onto m’
if [v — n’| < thr then
Add v[1]/m?[1] to scalings
Add i to indices
end if
end for
d < largest entry of scalings
iy, < indices(index of d)
D[ik7 Lk] —d
return iy, D

Algorithm 2 Recovery of the intervention target and scaling (recover_target_scaling)
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12:
13:
14:
15:

: Input: M = A© M® = A® D& p&) for all k € [q], and a threshold thr.
: Output: A,

: ¢ < number of columns of M

L < Igxq

:for k=1toqdo

P « recover_perm(M, M®*))

(i, D) ¢ recover target scaling(M, M®), thr)

A= M® PT inverse(D)
for j =1toqdo
if j # i) then
Llix, ] M
end if
end for
end for
return I ., — inverse(L)

Algorithm 3 Recovery of A©) (recover_Lambda)

A.2 Injective Case

: Input: C = C® and C® = (P)YT(DWY=1(] — AK) 7.
: Output: (ix, ji) such that 4, is the intervention target of the k-th context, and
: ¢ <—number of rows of C'

: matched,ps + set()
: matchediy; < set()

for i =1 to ¢ do
if ¢’ has matching row in C®) then
j < index of matching row
Add 7 to matchedgps
Add j to matchedyy
end if

: end for

¢ i < [q]\matched,ps
¢ Ji 4 [g]\matched;p,
. return (ix, ji)

PM =1.

iksJk

Algorithm 4 Recovery of the intervention target (recover_target)
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1: Input: C' = C® and C'®, recovered from the context with intervention target iy.
: Output: the permutation matrix P®).

)

: ¢ <—number of rows of C
P < 0gyq
(ig, 1) < recover _target(C, CR))
: fori=1to qdo
if i = i, then
continue
else
j  index of matching row in C® to ¢!
Pli,j] 1
end if
: end for
: return P

R A

e = S
AN

Algorithm 5 Recovery of the permutation matrix (recover_perm)

Input: C = C© and C®,
Output: the diagonal matrix D®).

[\V)

q <—number of rows of C

D+ I,

(ix, jr) < recover _target(C), O(k))
P « recover perm(C), C(k))

B «+ pseudoinverse( PC©)
B® « pseudoinverse( PC*))

v — project b(k)ik onto b(O)z’k

10: Dlig, i1] + v[1]/b©, [1]

11: return D

Algorithm 6 Recovery of the scaling (recover_scaling)
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1: Input: C' = C©® and C® for all k € [q].
Output: F such that C© = (I — A©)H and H = F*.

»

3: q < number of rows in C'

4: for k=1 to g do

5: (i1, ji) < recover _target(C, C'*))
6: P < recover perm(C, ')

7: D + recover _scaling(C, C®))

& A=PDCW

9: hir = a’

10: end for

11: return pseudoinverse(H)

Algorithm 7 Recovery of F' = Ht (recover_F)
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