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Abstract
Linear causal disentanglement (LCD) is a recent method in causal representation 
learning to describe a collection of observed variables via latent variables with 
causal dependencies between them. It can be viewed as a generalization of both in-
dependent component analysis and linear structural equation models. We study the 
identifiability of LCD, assuming access to data under multiple contexts, each given 
by an intervention on a latent variable. We show that one perfect intervention on 
each latent variable is sufficient and in the worst case necessary to recover param-
eters under perfect interventions, generalizing previous work to allow more latent 
than observed variables. We give a constructive proof that computes parameters 
via a coupled tensor decomposition. For soft interventions, we find the equivalence 
class of latent graphs and parameters that are consistent with observed data, via the 
study of a system of polynomial equations. Our results hold assuming the existence 
of non-zero higher-order cumulants, which implies non-Gaussianity of variables.
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1  Introduction

A key challenge of data science is to find useful and interpretable ways to model 
complex data, such as those collected from a biological experiment or a physical 
system. In this paper, we study linear causal disentanglement (LCD), a framework to 
model such data. LCD generalizes two 20th century data analysis models: indepen-
dent component analysis (ICA) [10, 11, 24] and linear structural equation models 
(LSEMs) [7, 52]. Before defining it, we briefly recall these older models.

ICA is a blind source separation method that expresses observed variables 
X = (X1, . . . , Xp) as a linear mixture

	 X = Aε,� (1)

where A ∈ Rp×q is a mixing matrix and ε = (ε1, . . . , εq) is a vector of independent 
latent variables. ICA has been used in applications including brain dynamics  [23] 
and astrophysics [6]. LSEMs are another linear model to describe collections of vari-
ables. They model variables Z = (Z1, . . . , Zq) as

	 Z = ΛZ + ε,� (2)

where Λ ∈ Rq×q is a matrix whose entry λi,j  encodes the dependence of Zi on Zj  
and ε is a vector of noise variables, often assumed to be independent. The variables 
are typically assumed to relate via the recursive structure of a directed acyclic graph 
(DAG); that is, fixing a DAG G on nodes [q] = {1, . . . , q}, with directed edges 
denoted j → i, we have

	 λi,j ̸= 0 ⇐⇒ (j → i) ∈ G.

Equation (2) can be re-written as Z = (I − Λ)−1ε, where acyclicity of G ensures that 
the matrix I − Λ is invertible. This places LSEMs in the context of ICA, since the 
variables Z are a linear mixing of independent latent variables [45]. LSEMs appear in 
applications including epidemiology [44] and causal inference [42]. In causal infer-
ence, the quantity λi,j  is interpreted as the causal effect of Zj  on Zi.

The idea of linear causal disentanglement [50] is that the assumptions of ICA and 
LSEMs may be too strict: interpretable latent variables may not be independent, and 
variables that relate via a graph may not have been directly measured. To get around 
this, LCD is defined as follows. As in ICA, we observe variables X = (X1, . . . , Xp) 
that are a linear mixing of latent variables. However, unlike ICA, the latent variables 
are not independent, instead they follow the structure of an LSEM; that is,

	 X = FZ, where Z = ΛZ + ε,� (3)

for F ∈ Rp×q a linear transformation, Λ a matrix that encodes causal dependen-
cies among the latent variables Z = (Z1, . . . , Zq), and ε = (ε1, . . . , εq) a vector of 
independent noise variables. As often the case in ICA and LSEMs, variables ε are 
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assumed to be mean-centered. LCD specializes to ICA when Λ is the zero matrix (i.e. 
when G is the empty graph) and to an LSEM when F = I .

LCD falls into the setting of causal representation learning  [46], an area of 
machine learning that aims to describe and explain the structure of a complex system 
by learning variables together with the causal dependencies among them. The idea is 
that learned latent representations of data [5] can be difficult to interpret and analyze, 
and may not generalize well, but that they improve by using latent representations 
with causal structure [64]. Central to interpretability and downstream analysis is the 
identifiability of a representation. The LCD model (3) is identifiable if the mixing 
matrix F and matrix of dependencies Λ, and therefore also the latent DAG G, can be 
recovered uniquely (or up to a well-described set of possibilities) from observations 
of X.

In this paper, we study the identifiability of LCD and develop algorithms to 
recover the parameters F and Λ using tensor decomposition of higher-order cumu-
lants. Higher-order cumulants have been used to recover parameters in both ICA and 
LSEMs [11, 15, 45, 59, 60]. We build on these insights to use it for LCD. For ICA and 
LSEMs, parameters can be recovered from tensor decomposition of a single higher-
order cumulant. For LCD one tensor decomposition no longer suffices to recover 
parameters and we will instead use a coupled tensor decomposition. Identifiability of 
LCD from covariance matrices (that is, second-order cumulants) was studied in [50]. 
Our results extend these insights to identifiability via higher-order cumulants.

The setup. Our goal in this paper is to use observations of X to recover the param-
eters F and Λ in an LCD model (3). We assume access to observations of X under 
multiple contexts. The contexts differ from an observational context by an interven-
tion. Interventions appear in biological applications such as  [16, 39, 48, 53, 62]. 
Throughout this paper, we assume that the contexts are interventions at a single node. 
An intervention at a variable affects the downstream variables but not those that are 
upstream. It thus enables one to find the direction of a causal dependency between 
two variables. We study multiple contexts for two reasons: inferring causal depen-
dencies in general necessitates interventions and one context is insufficient for recov-
ery of parameters in the model. We consider two types of interventions.

Definition 1.1  Let variables Zi relate via a linear structural equation model. A soft 
intervention at Zi changes all non-zero weights λi,j  and changes the error distribu-
tion εi. A perfect intervention at Zi zeros out all non-zero weights λi,j  and changes 
the error distribution εi.

A third widely-studied type of intervention is a do-intervention, which sets a variable 
to a deterministic value. We focus on soft interventions and perfect interventions, so 
that we do not assume access to a fixed value of an unobserved variable. For related 
results for do-interventions, see [4, 64].

We denote the set of contexts by K, which is assumed to be known. Each context 
k ∈ K is assumed to be an intervention at a single latent variable, as in [50]. The 
target of each intervention is unknown: context k is an intervention on Zik  for some 
ik ∈ [q]. The observational setting, in which no variable is intervened on, is indexed 
by k = 0 and assumed to be known. The intervention changes the latent LSEM but 
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not the mixing map F. Under context k, we denote the matrix of causal effects by 
Λ(k), the latent variables by Z(k), and the error distributions by ε(k). Error distribu-
tions ε(k) and ε(0) agree, except at the ik-th entry. From Definition 1.1, we see that a 
perfect intervention sets the ik-th row of Λ(k) to zero while a soft intervention satis-
fies λ(k)

ik,j ̸= λ
(0)
ik,j  whenever λ(0)

ik,j ̸= 0, i.e. for all j with edge j → ik present in G. Our 
setup can now be summarized as follows.

Fix p ≥ 2 observed variables. We observe distributions X(k) on Rp for 
k ∈ K ∪ {0} of the form

	 X(k) = FZ(k), where Z(k) = Λ(k)Z(k) + ε(k),� (4)

for Z(k) some random variables on Rq  where q ≥ 2 is the number of latent variables. 
The variables Z(0) on Rq  follow a linear structural equation model on an unknown 
DAG G on q nodes, and Z(k) relates to Z(0) via a single-node perfect or soft interven-
tion with unknown target. See Fig. 1 for a cartoon of our setup. We make the follow-
ing genericity assumptions.

Assumption 1.2  (a)	 All noise variables ε(k)
i  are non-Gaussian.

(b)	 Matrix F ∈ Rp×q is unknown and generic; matrices Λ(k) ∈ Rq×q , k ∈ K ∪ {0} 
are unknown with generic non-zero entries.

(c)	 For all contexts k ∈ K there exists a large enough d (d ≥ 3(q − 1) is sufficient) 
such that the d-th order cumulant of ε(k)

ik
 is not 0 or equal to the d-th order cumu-

lant of ε(0)
ik

.

Problem 1.3  In the setup (4) under Assumption 1.2, recover the number of latent 
variables q, the latent DAG G, the mixing matrix F and the matrices of dependencies 
{Λ(k) | k ∈ K ∪ {0}}.

We can rearrange (4) to write variables X(k) as a linear mixture of independent latent 
variables

Fig. 1  A cartoon of the setup for p = 2 observed variables and q = 3 latent variables
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	 X(k) = F (I − Λ(k))−1ε(k).

This relates LCD to ICA. Just as for ICA, we have the following non-identifiability.

Remark 1.4  (Benign non-identifiability) Uniqueness of F and Λ(k) is impossible in 
LCD, since one can rescale or reorder the latent variables without affecting member-
ship in the model. That is, for a full-rank diagonal matrix D ∈ Rq×q and a permuta-
tion matrix P ∈ Rq×q, setting

	 F̃ = FM, Λ̃(k) = M−1Λ(k)M, ε̃(k) = M−1ε(k), where M = DP,� (5)

we have

	 F̃ (I − Λ̃(k))−1ε̃(k) = F (I − Λ(k))−1ε(k).

Hence such rescaling and reordering does not affect X(k). Such transformations do 
not change the latent graph G except by a relabelling of its nodes under the permuta-
tion P. Given multiple contexts k ∈ K ∪ {0}, scaling and ordering transformations 
D and P are the same for all k.

Definition 1.5  An LCD model is identifiable if there exists a DAG G and matrices F, 
Λ(k) that give the observed distributions X(k) for k ∈ K ∪ {0}, via the equations in 
(4), where the matrices F, Λ(k) are unique up to the benign rescaling and reordering 
transformation in (5) and the DAG is unique up to a relabeling of nodes.

Main results.
We find the perfect interventions needed for identifiability of LCD.

Theorem 1.6  Consider LCD under Assumption 1.2 with perfect interventions. Then 
one perfect intervention on each latent node is sufficient and, in the worst case, nec-
essary to recover the latent DAG G and the parameters F and Λ(k) from observations 
of X (k).

For p observed variables and q latent variables, Theorem 1.6 says that we need 
q interventions for identifiability of LCD. We do not impose the injectivity of the 
mixing map F : Rq → Rp; the pair (p, q) can take any values provided p, q ≥ 2. Our 
proof is constructive: we carry out a coupled tensor decomposition of higher-order 
cumulants of the distributions X(k), and compare the factors recovered to estimate 
the parameters. This extends [45, 59] from observed to latent causal variables, and 
extends [11, 15, 60] from independent to dependent latent variables. It relates to [17], 
which says that q − 1 interventions are sufficient and in the worst case necessary to 
recover a DAG on q observed variables. It builds on [50, Theorem 1], which says 
that one intervention on each latent node is sufficient and in the worst case necessary 
when the mixing F is injective. When the mixing map is injective, Theorem 1.6 is 
weaker than [50, Theorem 1], since it requires non-Gaussian errors. When F is not 
injective non-Gaussianity is necessary for identifiability, see Proposition 3.6.
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We present two algorithms for the recovery of the model parameters using q per-
fect interventions. The first algorithm can be used for any (p, q). It takes as input a 
tuple of q + 1 cumulants, and returns the parameters F and Λ(k). The second algo-
rithm applies to the setting q ≤ p. Here Moore-Penrose pseudo-inverses can be used 
to simplify the recovery. We illustrate the performance of the algorithms in Fig. 2. 
Both are implemented in Python, version 3.12.2. The code is available at:

​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​p​a​​u​l​a​l​e​​y​e​s​1​4​​/​l​i​n​e​a​​r​-​c​a​​u​s​a​l​-​​d​i​s​e​n​​t​a​n​g​l​e​​m​e​n​t​​-​v​i​a​-​c​u​m​u​l​a​n​t​s.
We now turn to soft interventions. The transitive closure G of a DAG G is the 

DAG with all edges j → i whenever j → · · · → i is a path in G. We can recover the 
transitive closure G of a latent DAG G in LCD from the second-order cumulants, see 
[50, Theorem 1]. We show that, if the errors are non-Gaussian, we can distinguish 
certain DAGs with the same transitive closure. We define the set of soft-compatible 
DAGs soft(G). It is a set of DAGs with the same transitive closure, which also 
satisfy additional compatibility conditions coming from ranks of matrices. Define 
the set of children of node j by chG(j) = {i | (j → i) ∈ G} and the descendants by 
deG(j) = {i | (j → · · · → i) ∈ G}. Then,

	

soft(G)

=
{

G′
∣∣∣ G′ = G and rank[(I − ΛG)−1]rj , cj = rank[(I − ΛG)−1]rj , cj∪{j} for all j ∈ [q]

}
,

where rj := deG′(j) \ chG′(j), cj := chG′(j), and ΛG  is a generic matrix of depen-
dencies in an LSEM on DAG G, and [M ]r,c denotes the submatrix of M with row 
indices in  and column indices in . See Definition 3.14 for more details.

Theorem 1.7  Consider LCD under Assumption 1.2 with soft interventions. Then one 
soft intervention on each latent node is sufficient and, in the worst case, necessary to 

Fig. 2  Median relative Frobenius error in the recovery of F (left) and Λ(0) (right) when p = 5. Note 
the logarithmic scale on the y-axis. The four algorithms are: (i) Tensor (general), the general algorithm 
with cumulants as input (blue), (ii) Matrix (general), the general algorithm with factor matrices as 
input (orange), (iii) Tensor (injective), the injective algorithm with cumulants as input (green), and (iv) 
Matrix (injective), the injective algorithm with factor matrices as input. For DAG recovery, all meth-
ods recovered the correct DAG every time, except the general tensor method when q ≥ 6. This had a 
median DAG recovery error of 3.6 for q = 6 and 4.1 for q = 7
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recover the set of DAGs soft(G). Given G′ ∈ soft(G), the set of parameters F and 
Λ(k) that are compatible with the observations is a positive dimensional linear space.

The proof relies on the study of the solution space to a system of polynomial equa-
tions, encoding the conditions that parameters compatible with the observations must 
satisfy. That space is linear and always positive dimensional, even if we allow mul-
tiple interventions on each latent node. This leads to a negative identifiability result, 
in the same spirit as [30].

Corollary 1.8  Consider LCD under Assumption 1.2. With any number of soft inter-
ventions, identifiability of all parameters in the model does not hold.

The non-Gaussianity assumption is required for the linear space of parameters in 
Theorem 1.7: with Gaussian errors, the space of parameters may be non-linear, see 
Proposition 3.3.

Related work. Higher-order cumulants have been shown to lead to improved 
identifiability in related contexts. They extend principal component analysis, which 
requires an orthogonal transformation for identifiability, to ICA, which is identifiable 
for general linear mixings [10, 11]. For LSEMs, they facilitate the recovery of a full 
DAG, rather than its Markov equivalence class [58], see [45, 59]. They have been 
used to recover parameters in other latent variable models [1].

Identifiability of causal representation learning is an active area of study. It builds 
on work in the identifiability of representation learning [2, 25, 66] and latent DAG 
models. These include work that imposes sparsity on the causal relations [2, 3, 13, 
21, 22, 31, 33, 40, 51, 61, 63, 65, 67] and latent variable models on discrete variables 
[20, 27]. There are many works related to LCD, due in part to the many possible 
assumptions that one can make in a causal disentanglement model. These include the 
structure (polynomial, non-linear) of the maps involved [8, 34, 35, 54–57] and the 
choice of data generating process [9, 28, 32, 47]. In general, allowing more freedom 
on one side, implies more restrictions on the other side.

Outline We cast LCD as the problem of aligning the outputs of a coupled tensor 
decomposition in Sect. 2. We discuss the recovery of parameters for perfect and soft 
interventions in Sect. 3. We prove our main results Theorem 1.6 in Sect. 3.2 and 
Theorem 1.7 in Sect. 3.3. We discuss our algorithms in Sect. 4 and future directions 
in Sect. 5. Appendix A contains pseudo-code for our algorithms.

2  Coupled Tensor Decomposition

The cumulants are a sequence of tensors that encode a distribution  [38]. The d-th 
cumulant of a distribution X on Rp is an order d tensor, denoted by κd(X), of for-
mat p × · · · × p. The first and second order cumulants are the mean and covariance, 
respectively. Higher-order cumulants are those of order three and above.

We describe the higher-order cumulant tensors of distributions X(k) coming from 
LCD, as in  (3), as k ranges over contexts. We study a coupled decomposition of 
these tensors. This will enable us to study the identifiability of LCD and to design 
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tensor decompositions to recover parameters in the model. We first consider a single 
context.

2.1  Decomposing Cumulants

Let X be a distribution on Rp and assume X = Aε, where ε = (ε1, . . . , εq) is a vector 
of independent variables on Rq  and A ∈ Rp×q is a linear map, as in ICA (1). Then the 
d-th cumulant of X is the order d tensor

	
κd(X) =

q∑
i=1

κd(εi)a⊗d
i ,� (6)

where the scalar κd(εi) is the d-th cumulant of variable εi and ai is the i-th column of 
matrix A, as follows. The cumulants κd(ε) are order d tensors of format q × · · · × q. 
Since the variables εi are independent, by assumption, their cross-cumulants van-
ish [38, Section 2.1]. Hence the tensor κd(ε) is diagonal: its entries vanish away from 
the κd(ε1), . . . , κd(εq) on the main diagonal. A linear transformation of variables 
results in a multi-linear transformation of their cumulants. This gives the expression 
in (6), which writes the cumulant as a sum of symmetric rank one tensors.

If q ≤ p then κd(X) has a unique rank q decomposition, whenever cumulants 
κd(εi) are all non-zero and the columns of A are linearly independent, by [19]. Hence 
the vectors ai can be recovered uniquely, up to permutation and scaling. This extends 
to q > p, as follows.

Proposition 2.1  Assume that no pair of columns of A ∈ Rp×q  are collinear and that 
the q entries of ε are independent. Then, for d sufficiently large, all columns ai  with 
κd(εi) ̸= 0  can be uniquely recovered, up to permutation and scaling, from the d-th 
cumulant of X = Aε.

Proof  For m ≥ q − 1, the tensors a⊗m
1 , . . . , a⊗m

q  are linearly independent, by [29, 
Proposition 4.3.7.6], since no pair of columns ai are collinear. Let d ≥ 3m ≥ 3(q − 1) 
and consider κd(X) =

∑q
i=1 λia⊗d

i , where λi := κd(εi). Consider its flattening of 
size pm × pm × pd−2m. The decomposition of this flattened tensor is unique, by [19], 
since the vectors that appear in it are linearly independent. Hence the tensors a⊗m

i  
and a⊗(d−2m)

i , and thus also the vectors ai, can be uniquely recovered, up to permu-
tation and scaling, for all indices i with λi ̸= 0. � □

For a sufficiently generic matrix A, one can recover the vectors uniquely, up to per-
mutation and scaling, from the above tensor decomposition provided q is strictly less 
than the generic rank of an order d tensor of format p × · · · × p, by [12]. The generic 

rank is ⌈ 1
p

(
p + d − 1

d

)
⌉ except for a finite list of pairs (p, q), see [29, Theorem 
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3.2.2.4]. Since for fixed p and large d, 1
p

(
p + d − 1

d

)
∼ dp−1, this result allows for 

larger q relative to d than the condition d ≥ 3(q − 1) coming from Proposition 2.1.

Corollary 2.2  Assume that the entries of ε are independent and non-Gaussian and 
that no pair of columns of A are collinear. Then tensor decomposition of the cumu-
lants of X recovers the matrix A, up to permutation and scaling of its columns.

Proof  The cumulant sequence (κd(εi))d has infinitely many non-zero terms, since εi 
is non-Gaussian [37]. Hence there are non-zero cumulants at high enough d to satisfy 
the hypotheses of Proposition 2.1. This is an alternative proof of [18, Theorems 1(i) 
and 3(i)]. � □

The impossibility of recovering the columns without scaling ambiguity comes 
from the fact that we can extract or insert a global scalar from the factor a⊗d

i . We 
have (λa)⊗d = λda⊗d, hence

	

κd(X) =




∑q
i=1

(
d
√

κd(εi)ai

)⊗d

d odd
∑q

i=1 sign (κd(εi))
(

± d
√

|κd(εi)|ai

)⊗d

d even.
� (7)

Tensor decomposition will therefore recover the columns of A up to the factors 
± d

√
|κd(εi)|.

Consider the LCD setting of  (3). We have X = FZ = F (I − Λ)−1ε. The dis-
cussion above shows that the product F (I − Λ)−1 ∈ Rp×q can be recovered (up to 
permutation and scaling), since the entries of the random vector ε are independent. 
However, it is not possible to recover the latent DAG G from the product F (I − Λ)−1: 
a solution with empty DAG (that is, independent Z variables) is always consistent 
with the observations, since

	 F (I − Λ)−1ε = F̃ Z̃,

where F̃ = F (I − Λ)−1 and Z̃ = ε. This demonstrates the need for observations of 
X under multiple contexts.

2.2  Coupling Contexts

Distributions X(k) are linear mixtures of independent variables, since 
X(k) = F (I − Λ(k))−1ε(k), where the entries of ε(k) are independent. Our goal is 
to recover the parameters F and Λ(k) for all k ∈ K ∪ {0}. Our steps are as follows:

	● using tensor decomposition, recover the products F (I − Λ(k))−1 for all 
k ∈ K ∪ {0}, up to scaling and permutation of columns (Proposition 2.3);

	● fix the scale and order of columns in the observational context k = 0, which 
recovers the matrix F (I − Λ(0))−1, using benign non-identifiability (Proposition 
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2.5, see Remark 1.4);
	● find the permutation and scaling of columns for each k ∈ K by comparing the 

columns of F (I − Λ(0))−1 to the matrix recovered from tensor decomposition of 
the k-th context (Corollary 2.10).

Then, in Sect. 3, we recover the parameters in F and Λ(k). We begin with the first 
step.

Proposition 2.3  Consider LCD under Assumption 1.2. Then we can recover q and 
the matrices F(I − Λ(k))−1  up to scaling and permutation for all k ∈ K ∪ {0}; i.e., 
we can recover

	 F (I − Λ(k))−1D(k)P (k) ∈ Rp×q,� (8)

where D(k) ∈ Rq×q  is diagonal, with non-zero diagonal entries, and P(k) ∈ Rq×q  
is a permutation matrix. The diagonal matrix D(k) can be assumed to have entries

	
D

(k)
i,i =




di

√
κdi

(ε(k)
i ) diodd,

± di

√
|κdi(ε

(k)
i )| dieven,

� (9)

where, for all i ∈ [q], di  is large enough (di ≥ 3 (q − 1 ) suffices) and satisfies 
κdi (ε

(k)
i ) ̸= 0 .

Proof  We have X(k) = A(k)ε(k), where A(k) = F (I − Λ(k))−1 and k ranges over 
contexts K ∪ {0}. We first prove the result under an additional assumption, that there 
exists a single number d ≥ 3 that satisfies: 

(a)	 the tensor decomposition 

	
κd(X(k)) =

q∑
i=1

κd(ε(k)
i )(a(k))⊗d

i � (10)

	  is unique for all contexts k, where (a(k))i is the i-th column of 
A(k) = F (I − Λ(k))−1,

(b)	 κd(ε(k)
i ) ̸= 0 for all contexts k and all i ∈ [q],

(c)	 κd(ε(k)
ik

) ̸= ±1 for all contexts k.

Fix such a d. No pair of columns of A(k) are collinear, since collinearity is a Zariski 
closed condition with non-empty complement and the entries of F and the non-zero 
values λ(k)

i,j  are generic, by Assumption 1.2(b). Hence Proposition 2.1 applies, and 
we recover the mixing matrix A(k) up to permutation and scaling; i.e., we recover the 
matrices in (8). The number of columns of these matrices is q. Absorbing the coef-
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ficients of the tensor decomposition into the vectors as in (7), the diagonal matrices 
in (8) satisfy (9) for every i ∈ [q], k ∈ K, where di = d for all i.

We now show why such a d as above is not required. Part (a) holds for any 
d ≥ 3(q − 1), see the proof of Proposition 2.1. Part (b) is subtle: the existence of a 
sufficiently large d with κd(ε(k)

i ) ̸= 0 is equivalent to Assumption 1.2(a) that the dis-
tribution ε(k)

i  is non-Gaussian, by Marcinkiewicz’s theorem [37]. However, this does 
not imply the existence of a common d with that property, as we assumed above. If 
such a common d does not exist, we instead recover the columns of F (I − Λ(k))−1 
up to permutation and scaling, as well as the entries of D(k), using a set of large 
enough cumulants κd1(X(k)), . . . , κdm(X(k)) such that for all i there exists ℓ ∈ [m] 
with κdℓ

(ε(k)
i ) ̸= 0. The non-Gaussianity assures that such a set exists, and the num-

ber of non-collinear vectors recovered from these tensor decompositions is q. Part (c) 
can be avoided in the same way as (b), using Assumption 1.2(c). � □

Column scaling and permutation as in Proposition 2.3 have natural interpretations 
in LCD: there is no natural order on the latent variables, and they can be re-scaled 
without affecting membership in the model, see Remark 1.4. The goal of this section 
is to show that it is possible to fix an order and scaling of latent variables that is con-
sistent across contexts. The upshot is the following result.

Proposition 2.4  Consider LCD under Assumption 1.2. Then we can recover the num-
ber of latent nodes q and the matrices

	 A(k) := F (I − Λ(k))−1 forall k ∈ K ∪ {0}.� (11)

We delay the the proof of this result and focus on some intermediate steps. We fix 
a scaling of errors and an order on latent variables when k = 0, as follows.

Proposition 2.5  Without loss of generality P(0) = D(0) = I .

Proof  We have recovered ADP for some scaling D and permutation P, by Proposi-
tion  2.3, where we drop the superscripts since we refer only to the observational 
context. The permutation P orders the latent variables. We fix it to be the identity, 
thereby fixing an order of latent variables. We now consider D. Define F̃ = FD and 
Λ̃ = D−1ΛD. Then

	 F (I − Λ)−1D = F̃ (I − Λ̃)−1.

and matrices Λ and Λ̃ have the same support. Hence F̃  and Λ̃ are valid parameters in 
the model, so we can without loss of generality set D = I . � □

The choice in Proposition 2.5 sets a non-zero cumulant κdi
(ε(0)

i ) to ±1 for each 
i ∈ [q], see (9). Hence D(k)

i,i = ±1 for all i ̸= ik, by Proposition 2.3, since ε(k) and 
ε(0) differ only at the intervention target ik. We now compare A(0) and A(k)D(k)P (k). 
The parents of a node j are the set paG(j) = {i ∈ G | i → j ∈ G} and the ancestors 
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of j are anG(j) = {i ∈ G | i → · · · → j ∈ G}. We drop the subscript whenever G is 
fixed.

Remark 2.6  (Paths in G) Entry (i,  j) of the matrix (I − Λ(k))−1 is a sum 
over all the paths j → · · · → i in G, where each path contributes the prod-
uct λ

(k)
m,n over all edges n → m in the path. For instance, for the DAG 

3 → 2 → 1 we have (I − Λ(k))−1
1,3 = λ

(k)
1,2λ

(k)
2,3 . Adding the edge 3 → 1 gives 

(I − Λ(k))−1
1,3 = λ

(k)
1,2λ

(k)
2,3 + λ

(k)
1,3 . The entries of F (I − Λ(k))−1 extend these paths 

to the observed variables. See Fig. 1 and Example 3.4.

Proposition 2.7  Recall that ik ∈ [q] is the intervention target of context k and let 
j ∈ [q]. Assume that F is generic and that the non-zero entries of Λ(k) are generic. 
Then one of three possibilities arises. 

(i)	 j = ik and the j-th column of A(0) equals one of the columns of A(k)D(k)P (k) 
up to a scaling that is not ±1;

(ii)	 j ̸∈ an (ik) ∪ {ik} and the j-th column of A(0) equals one of the columns of 
A(k)D(k)P (k), up to sign;

(iii)	j ∈ an (ik) and the j-th column of A(0) is not parallel to any of the columns of 
A(k)D(k)P (k).

Proof  We drop the factor of P (k) in the proof: it permutes the columns of A(k)D(k) 
and we are reasoning only about the set of columns. 

(i)	 Assume j = ik. The (i, j) entry of A(k)D(k) is 

	 (A(k)D(k))i,j = A
(k)
i,j D

(k)
j,j = A

(0)
i,j D

(k)
j,j ,� (12)

	  where the second equality holds since j = ik is the intervention target and the 
entries of A(k)

i,j  involve nodes that are non-ancestors of j (see Remark 2.6). There-
fore, the j-th column of A(k)D(k) is a non-trivial (not 0 or ±1) multiple of the j-th 
column of A(0), since D(k)

j,j ̸= ±1 when j is the intervention target.
(ii)	 Assume j ̸∈ an (ik) ∪ {ik}. The chain of equalities in (12) holds true, but 

D
(k)
j,j = ±1. Hence, the j-th column of A(k)D(k) is the j-th column of A(0), up to 

sign.

(iii)	Let j ∈ an (ik). Assume for contradiction that there exists a column r of 
A(k)D(k) that is parallel to the j-th column of A(0). Then there exists α such that 
for every i ∈ [p], 

	

∑
ℓ∈[q]

fi,ℓ(I − Λ(0))−1
ℓ,j = α

∑
ℓ∈[q]

fi,ℓ(I − Λ(k))−1
ℓ,r D(k)

r,r ,
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where fi,ℓ is the (i, ℓ) entry of F. By genericity of F and Λ(k), the equality holds 
if and only if it holds for the coefficient of every fi,ℓ independently. It is therefore 
equivalent to

	 (I − Λ(0))−1
ℓ,j = α(I − Λ(k))−1

ℓ,r D(k)
r,r

for all ℓ ∈ [q]. If ℓ = j, then by genericity of Λ(k) we have r = j and 1
α = D

(k)
j,j . 

However, since D(k)
j,j = ±1, this leads to the equality

	 (I − Λ(0))−1
ℓ,j = (I − Λ(k))−1

ℓ,j

for every ℓ ∈ [q], which implies by genericity that λ(0)
ik,m = λ

(k)
ik,m for every m, a con-

tradiction. � □
Proposition 2.9 recovers the target of each intervention. It also recovers the ances-

tors of each latent node. That is, it recovers the transitive closure G, providing a 
simpler proof of the following result, proven without the non-Gaussian assumption 
in [50, Theorem 1].

Corollary 2.8  Consider LCD under Assumption 1.2 with one intervention (either per-
fect or soft) on each latent node. Then we can recover the transitive closure G of the 
latent DAG G.

Proposition 2.7 partially recovers the permutation P (k), as it pairs all latent nodes 
j /∈ an (ik) with the column of F (I − Λ(0))−1 indexed by j. We can therefore assume 
without loss of generality that ik = k and that P (k)

i,j = δi,j  for every j ̸∈ an(k). We 
are left to find the columns of j ∈ an(k).

Proposition 2.9  For j1 , j2 ∈ an(k), there exists α ∈ R such that

	
(I − Λ(0))−1

i,j1
−

(
(I − Λ(k))−1 D(k)

)
i,j2

= α

(
(I − Λ(0))−1

i,k −
(

(I − Λ(k))−1 D(k)
)

i,k

)

for all i ∈ [q], if and only if j1 = j2  and D(k)
j1 ,j1

= 1 .

Proof  Fix j := j1 = j2 and assume D(k)
j1,j1

= 1. The left hand side is a sum over all 
paths from node j to node i, through node k, since the paths that do not go through k 
cancel:

	

(I − Λ(0))−1
i,j − (I − Λ(k))−1

i,j = (I − Λ(0))−1
i,k (I − Λ(0))−1

k,j − (I − Λ(k))−1
i,k (I − Λ(k))−1

k,j

= (I − Λ(0))−1
i,k

(
(I − Λ(0))−1

k,j − (I − Λ(k))−1
k,j

)

= (I−Λ(0))−1
k,j

−(I−Λ(k))−1
k,j

1−D
(k)
k,k

(
(I − Λ(0))−1

i,k − (I − Λ(k))−1
i,k D

(k)
k,k

)
,
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where we used (I − Λ(0))−1
i,k − (I − Λ(k))−1

i,k D
(k)
k,k = (I − Λ(0))−1

i,k (1 − D
(k)
k,k). This 

proves one direction.
Assume conversely that the equality in the statement holds for some j1, j2 ∈ an(k), 

and let i = j1. Then

	
(I − Λ(0))−1

j1,j1
−

(
(I − Λ(k))−1D(k)

)
j1,j2

= α

(
(I − Λ(0))−1

j1,k −
(

(I − Λ(k))−1D(k)
)

j1,k

)
.

The right-hand side is zero since the latent graph is a DAG and j1 ∈ an(k). Hence

	
0 = (I − Λ(0))−1

j1,j1
−

(
(I − Λ(k))−1D(k)

)
j1,j2

= 1 ± (I − Λ(0))−1
j1,j2

where we used that there are no paths from j2 to k and D(k)
j2,j2

= ±1. Therefore, 

(I − Λ(0))−1
j1,j2

= 1, which implies by genericity that j1 = j2 and D(k)
j2,j2

= 1. � □

Corollary 2.10  For every k and for generic parameters in F , Λ(0), Λ(k), we have

	
rank

(
A(0) − A(k)D(k)P(k)

)
= 1

if and only if P(k) = I  and D(k)
j,j = 1  for all j ̸= k.

Proof  A matrix has rank one if and only if all its columns are scalar multiples. There-
fore, our claim is equivalent to the existence for every j ∈ [q] of some α ∈ R such 
that

	

∑
i∈[q]

fℓ,i

(
(I − Λ(0))−1

i,j −
(

(I − Λ(k))−1D(k)P (k)
)

i,j

)

= α
∑
i∈[q]

fℓ,i

(
(I − Λ(0))−1

i,k −
(

(I − Λ(k))−1D(k)P (k)
)

i,k

)
,

� (13)

for every ℓ ∈ [p]. If we treat the parameters in F, Λ(0), Λ(k), D
(k)
k,k as indeterminates, 

the equation holds if and only if all the summands are equal. Analogously, this is the 
case if the fℓ,i parameters are generic.

For j ̸∈ an(k), we have P (k)
i,j = δi,j . Assume for contradiction that D(k)

j,j = −1. 

Then, for i = k, the left-hand side of (13) is 0 and the right-hand side is α(1 − D
(k)
k,k), 

which forces α = 0. However, for i = j, the left-hand side is 2, so α ̸= 0, a contra-
diction. This forces D(k)

j,j = 1 for the non-ancestors of k. Putting this together with 
Proposition 2.9, we deduce that the matrix (I − Λ(0))−1 − (I − Λ(k))−1D(k)P (k) 
has rank at most 1 if and only if P (k) = I  and D(k)

j,j = 1 for all j ̸= k. Moreover, 
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because D(k)
k,k ̸= 1, the k-th column of the difference matrix is non-zero, hence the 

rank is exactly 1. � □

Proof of Proposition 2.4  We recover the matrices A(k) up to scaling and permutation, 
by Proposition 2.3. The upshot of Corollary 2.10 is that we can identify the target ik 
of the intervention and the permutation. Hence we can get rid of P (k) by right multi-
plication with its transpose. Now the ik-th column of F (I − Λ(0))−1 differs from the 
ik-th column of F (I − Λ(k))−1D(k) by the scaling D(k)

ik,ik
, so we can also recover the 

diagonal matrix, and hence A(k) itself. � □

Remark 2.11  While Proposition 2.4 holds for any p, q ≥ 2, the proof is simpler when 
q ≤ p. Then, the Moore-Penrose pseudo-inverse satisfies

	

(
F (I − Λ(k))−1D(k)P (k)

)+
= (P (k))⊤(D(k))−1(I − Λ(k))F +.

Finding the permutation and intervention targets is done as follows. There is just one 
row in the pseudo-inverse of the context k that does not appear in the pseudo-inverse 
of the observational context. Hence it indexes the intervention target. The permuta-
tion is found by matching the remaining rows of the two matrices. The expression 
relating the psuedo-inverse of the product to the product of psuedo-inverses does not 
hold in general when q > p.

3  Recovery via Interventions

In this section, we identify when two latent graphs and parameters F, Λ(k) give the 
same distributions X(k). At this stage, we have access to the matrices A(k) in (11), 
by Proposition 2.4.

Proposition 3.1  Distributions F(I − Λ(k))−1 ε(k) and F̃(I − Λ̃(k))−1 ε̃(k) coincide 
for all k ∈ K ∪ {0} if and only if there exists a reordering of the sets {ε

(0)
i }, {ε̃

(0)
i } and 

a rescaling of F , Λ(0), F̃ , Λ̃(0) via (5) such that F(I − Λ(k))−1 = F̃(I − Λ̃(k))−1  
for all k ∈ K ∪ {0}.

Proof  Define A(k) = F (I − Λ(k))−1 and Ã(k) = F̃ (I − Λ̃(k))−1. The equality of 
matrices A(k) and Ã(k) implies the equality of the distributions X(k) = A(k)ε(k) 
and X̃(k) = Ã(k)ε(k). Conversely, assume that distributions X(k) and X̃(k) coincide. 
Then, we have the equality of cumulants κd(X(k)) = κd(X̃(k)) for all k and d. To 
simplify the exposition, we assume that there exists d as in the proof of Proposi-
tion 2.3 (this assumption can be avoided using the same argument as in the proof of 
Proposition 2.3). For this fixed d and for each context k, the tensor decomposition of 
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κd(X(k)) is unique up to rescaling and permutation. Since the cumulant is the same 
for both distributions, from the decomposition we get

	 F (I − Λ(k))−1D(k)P (k) = F̃ (I − Λ̃(k))−1D̃(k)P̃ (k).

Fix k = 0. We can reorder the variables ε(0)
i  to set P (0) = I  and we can absorb D(0) 

into F and Λ(0), as in Proposition 2.5. Analogously, we can do the same in the tilde 
setting. Therefore, up to reordering and rescaling via (5) we have

	 F (I − Λ(0))−1 = F̃ (I − Λ̃(0))−1.

Then, Corollary 2.10 implies that there exists a unique choice of signs of the diagonal 
matrices and a unique permutation matrix Q satisfying

	
rank

(
A(0) − A(k)D(k)P (k)Q

)
= 1 = rank

(
Ã(0) − Ã(k)D̃(k)P̃ (k)Q

)
,

and Q = (P (k))⊤ and Q = (P̃ (k))⊤. Therefore, P (k) = P̃ (k), and by comparing the 
intervened columns of the difference matrices we have D(k) = D̃(k). This implies 
A(k) = Ã(k). � □

The upshot is that solving Problem 1.3 is equivalent to solve the following problem.

Problem 3.2  Given a generic matrix F̃ ∈ Rp×q and matrices Λ̃(0), . . . , Λ̃(q) ∈ Rq×q 
constructed according to a model with DAG G̃, with generic non-zero entries, do 
there exist a generic matrix F ∈ Rp×q, and matrices Λ(0), . . . , Λ(q) ∈ Rq×q con-
structed according to a model with DAG G, such that

	 F (I − Λ(k))−1 = F̃ (I − Λ̃(k))−1� (14)

for all k ∈ K ∪ {0}? If so, how are the DAGs and the corresponding matrices related?
We solve the system of polynomial equations (14). The solution is unique if and only 
if the DAG and the matrices are identifiable. Otherwise, the set of solutions is the set 
of possible DAGs and space of possible parameters.

From now on, unless otherwise stated, we assume that we have the observational 
context and one intervention per latent node. We re-index contexts so that the k-th 
intervention (either soft or perfect) is on Zk, hence K = [q].

3.1  A Linear System

Let A(k) = F̃ (I − Λ̃(k))−1 and let S be the space of solutions to (14). The algebraic 
variety S is associated to the ideal

	 I = ⟨F (I − Λ(k))−1 − A(k), k = 0, . . . , q⟩.

The matrices F, Λ(k) are filled with indeterminates. Each point of S provides a graph 
and parameters compatible with the given model. At first sight, S might have high 
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degree, since the degree of the generators can reach q + 1. However, there is a sim-
pler set of generators:

	 I = ⟨F − A(k)(I − Λ(k)), k = 0, . . . , q⟩.� (15)

Assuming the A(k) are known, I has (q + 1)qp linear generators in a polynomial ring 
with qp + (q + 1)|e(G)| indeterminates a priori, namely the fi,j , and all the non-zero 
entries of Λ(k) for k = 0, . . . , q. To write down the equations for I, we choose a can-
didate DAG G. This can be the complete directed acyclic graph, or it could be sparser, 
if the model assumptions allow us to rule out some edges. We find a set of minimal 
generators for I to compute the dimension of the associated algebraic variety; i.e., 
to find the identifiability of the parameters (which will depend on our guess for G).

Proposition 3.3  Consider the setup in Assumption 1.2 with q soft interventions. When 
d > 2 , the space of parameters F and Λ(k), k ∈ [q] ∪ {0}, such that κd(X (k)) is a 
given tensor is a linear space. When d = 2 , for any q ∈ N there exists a DAG on q 
nodes such that the space of parameters for which κ2 (X (k)) is a given matrix for all 
k ∈ [q] ∪ {0} is non-linear.

Proof  The case d > 2 follows from (15). For the case d = 2, consider a model on two 
latent nodes with one edge 2 → 1, with parameters F̃ = ( 2 3

5 11 ), λ̃(0)
1,2 = λ̃

(2)
1,2 = 7, 

λ̃
(1)
1,2 = 13. Symbolic computation with, e.g., Macaulay2 or Oscar.jl shows that the 

space of parameters that satisfy κ2(X(k)) = κ2(X̃(k)) for k ∈ {0, 1, 2} is 1-dimen-
sional and of degree 8. It is the union of 6 irreducible components, four linear and 
two quadratic. The same happens for generic parameters. We can embed this DAG 
into a DAG on q nodes with only one edge 2 → 1. Then, the space of solutions has 
the same dimension (= 1) and degree (= 8) as the space of solutions for the DAG on 
two nodes. � □

Proposition 3.3 shows that the non-Gaussianity assumption is required in Theo-
rem 1.7. We conclude this subsection with an example, to see the linear structure of 
I.

Example 3.4  Consider the latent DAG

with parameters

	

F =




2 6 10 1
2 9 −3 8

−8 4 7 2
−9 8 2 −5


 , Λ(0) = Λ(4) =




0 9 3 0
0 0 0 10
0 0 0 7
0 0 0 0


 ,
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Λ(1) =




0 −5 8 0
0 0 0 10
0 0 0 7
0 0 0 0


 , Λ(2) =




0 9 3 0
0 0 0 2
0 0 0 7
0 0 0 0


 , Λ(3) =




0 9 3 0
0 0 0 10
0 0 0 −1
0 0 0 0


 .

Then, assuming known G, the ideal I (15) is minimally generated by 21 linear 
polynomials

	

f1,1 − 2, f2,1 − 2, f3,1 + 8, f4,1 + 9,

f1,2 + 2λ
(0)
1,2 − 24, f2,2 + 2λ

(0)
1,2 − 27, f3,2 − 8λ

(0)
1,2 + 68, f4,2 − 9λ

(0)
1,2 + 73,

f1,3 + 2λ
(0)
1,3 − 16, f2,3 + 2λ

(0)
1,3 − 3, f3,3 − 8λ

(0)
1,3 + 17, f4,3 − 9λ

(0)
1,3 + 25,

f1,4 + 172
7 λ

(0)
3,4 − 173, f2,4 + 177

14 λ
(0)
3,4 − 193

2 , f3,4 − 289
7 λ

(0)
3,4 + 287, f4,4 − 715

14 λ
(0)
3,4 + 725

2 ,

λ
(1)
1,2 − λ

(0)
1,2 + 14, λ

(1)
1,3 − λ

(0)
1,3 − 5, λ

(2)
2,4 − λ

(0)
2,4 + 8, λ

(3)
3,4 − λ

(0)
3,4 + 8, −14λ

(0)
2,4 + 5λ

(0)
3,4 + 105.

These can be found by computing the primary decomposition of I in computer alge-
bra software, such as Macaulay2 [36] or Oscar.jl [14, 41].

3.2  Perfect Interventions

When the interventions are perfect, namely λ(k)
k,j = 0 for every k ∈ [q], there is a 

unique solution to the linear system in (15), provided the candidate DAG contains all 
edges of the true graph. In other words, the ideal I is zero dimensional and defines a 
point. This is Theorem 1.6.

Proof of Theorem 1.6  Worst case necessity of one intervention per node for identi-
fiability is a direct consequence of [50, Proposition 5]. We prove sufficiency. We 
have matrices A(k) = F (I − Λ(k))−1, by Proposition 2.4. Pick k, j ∈ [q] with k ̸= j. 
Then,

	

(
A(0) − A(k)

)
1,j

=
∑
ℓ∈[q]

f1,ℓ

(
(I − Λ(0))−1 − (I − Λ(k))−1

)
ℓ,i

=
∑

ℓ∈ de(k)

f1,ℓ(I − Λ(0))−1
ℓ,k

(
(I − Λ(0))−1 − (I − Λ(k))−1

)
k,j

= A
(0)
1,k (I − Λ(0))−1

k,j .

With this, we construct (I − Λ(0))−1 and hence recover Λ(0). We multiply 
A(0)(I − Λ(0)) to obtain F. � □

The above result shows that q perfect interventions are sufficient to recover the 
DAG and the parameters of a model. To find the parameters (and hence the latent 
DAG), one can solve the linear system (15) or follow the procedure in the proof.

Remark 3.5  When q ≤ p, an alternative proof via pseudo-inverses exists, see Sect. 4.3.
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When q > p, the non-Gaussianity assumption is necessary for Theorem 1.6, as 
follows.

Proposition 3.6  Consider LCD under Assumption 1.2 with perfect interventions and 
q > p. Then one perfect intervention on each latent node is not sufficient to recover 
the latent DAG G and the parameters F and Λ(k) from the covariance matrices of 
X (k).

Proof  For (p, q) = (2, 3) and G = ∅, we compute the parameters F and Λ(k) for 
which the covariance matrices F (I − Λ(k))−1(D(k))2(I − Λ(k))−⊤F ⊤ coincide 
with the true covariance matrices for k = 0, 1, 2. We choose and fix an ordering of 
the nodes, and we fix the scaling by imposing D(0) = I . This space has dimension 2, 
so the parameters cannot be recovered uniquely. We can embed this DAG in a DAG 
with q nodes, for any q. Hence the p × p covariance matrices do not contain enough 
information to recover the parameters, when p < q. � □

3.3  Soft Interventions

In this section we compute the dimension of solutions of the linear system 
F − A(k)(I − Λ(k)) = 0 for k = 0, . . . , q, under soft interventions. For every k and 
for every ℓ ∈ [p], j ∈ [q], we have

	
fℓ,j +

∑
i∈ ch(j)

A
(k)
ℓ,i λ

(k)
i,j = A

(k)
ℓ,j .

Since we consider single-node soft interventions, there are pq(q + 1) equations in 
pq + 2|e(G)| indeterminates, namely fℓ,j  for all ℓ ∈ [p], j ∈ [q], and λ

(0)
i,j  for all 

(j → i) ∈ e(G), and λ(k)
k,j  for all (j → k) ∈ e(G). For each (ℓ, j), we subtract the equa-

tion for k = 0 from the equations for k ∈ [q]. Then the 
(
pq(q + 1)

)
×

(
pq + 2|e(G)|

)
 

matrix of the linear system has block structure

	

(
Ipq ⋆
0 ⋆

)
.

We can focus on the 
(
pq2)

×
(
2|e(G)|

)
 bottom-right block, involving only 

the indeterminates Λ(k). The equations of this smaller linear system are 
A(k)(I − Λ(k)) − A(0)(I − Λ(0)) = 0, or

	

∑
i∈ ch(j)

A
(k)
ℓ,i λ

(k)
i,j −

∑
i∈ ch(j)

A
(0)
ℓ,i λ

(0)
i,j = A

(k)
ℓ,j − A

(0)
ℓ,j ,� (16)

for k, j ∈ [q], ℓ ∈ [p]. There are three cases: 

(1.)	If k ̸∈ ch(j), then (16) becomes 
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∑
i∈ ch(j)

(A(k)
ℓ,i − A

(0)
ℓ,i )λ(0)

i,j = (A(k)
ℓ,j − A

(0)
ℓ,j ).� (17)

	  The (ℓ, i) entry of A(k) − A(0) is by definition ∑
n∈ de(i) fℓ,n

(
(I − Λ(k))−1 − (I − Λ(0))−1)

n,i
. If k ̸∈ de(j), then (

(I − Λ(k))−1 − (I − Λ(0))−1)
n,i

= 0 for every n since by construction 

de(j) ⊃ de(i). Hence,  (17) reads 0 = 0 and it imposes no condition on our 
indeterminates.

(2.)	If k ∈ de(j) \ ch(j), then 
(
(I − Λ(k))−1 − (I − Λ(0))−1)

n,i
̸= 0, since there 

is a path from i to n through k. Such a path must exist for some n, since k is a 
descendant of some i. Hence the coefficients of (17) are non-zero, and we get 
linear conditions on the indeterminates.

(3.)	Finally, if k ∈ ch(j), we get an expression for λ(k)
k,j  in terms of the λ(0)

i,j : 

	

λ
(k)
k,j = 1

A
(k)
ℓ,k




A
(0)
ℓ,kλ

(0)
k,j +

∑

i ∈ ch(j)
i ̸= k

(A(0)
ℓ,i − A

(k)
ℓ,i )λ(0)

i,j + (A(k)
ℓ,j − A

(0)
ℓ,j )




= λ
(0)
k,j +

∑

i ∈ ch(j)
i ̸= k

A
(0)
ℓ,i − A

(k)
ℓ,i

A
(0)
ℓ,k

λ
(0)
i,j +

A
(k)
ℓ,j − A

(0)
ℓ,j

A
(0)
ℓ,k

,

�(18)

	  where we used A(k)
ℓ,k − A

(0)
ℓ,k = 0 because 

(
(I − Λ(k))−1 − (I − Λ(0))−1)

n,k
= 0 

for every n. We get (18) for every ℓ ∈ [p]. However, most equations are redundant.

The following result mimics Proposition 2.9.

Proposition 3.7  For k ∈ [q], let ∆(k) = (I − Λ(k))−1 − (I − Λ(0))−1 . Then, 

rank
(
∆(k)) ≤ 1 , with equality if and only if an(k) ̸= ∅.

Proof  Fix k ∈ [q] and recall that the (i,  j) entry of (I − Λ(k))−1 is the sum of all 
paths from Zj  to Zi, where a path is encoded as the product of λ(k)

m,n for all edges 
n → m in the path. Then, the only non-zero columns of ∆(k) are those indexed 
by j for j ∈ an (k). We prove that these columns are multiple of each other. Let 
j1, j2 ∈ an (k), then

	

∆(k)
i,jm

= (I − Λ(k))−1
i,k (I − Λ(k))−1

k,jm
− (I − Λ(0))−1

i,k (I − Λ(0))−1
k,jm

= (I − Λ(0))−1
i,k ∆(k)

k,jm

1 3



La Matematica

for m = 1, 2. Hence, for every i ∈ [q], the (i, j1) entry equals the (i, j2) entry up to 
∆(k)

k,j2

∆(k)
k,j1

. � □

For generic parameters we have rank(A(k) − A(0)) ≤ 1 for all k ∈ [q], with 
equality whenever an(k) ̸= ∅, by Proposition 3.7, with proof is analogous to that 
of Corollary 2.10. Hence the conditions in (17) are equivalent for all ℓ ∈ [p], and 
the same is true of the conditions in (18). This reduces the size of the linear system, 
taking only the equations for ℓ = 1 ∈ [p]. We obtain a reduced matrix of the linear 
system

	

(
Ipq 0 ⋆
0 I|e(G)| ⋆
0 0 ⋆

)
,� (19)

where the top block writes F in terms of Λ(0), the second block writes Λ(k) in 
terms of Λ(0), and the bottom block gives the conditions  (17) on Λ(0). The latter 
are 

∑
j∈[q] | de(j) \ ch(j)| equations in 

∑
j∈[q] | ch(j)| = |e(G)| indeterminates. The 

conditions are independent for each j. Namely, the block has the form

	

M =




M [1] 0 · · · 0
0 M [2] · · · 0
... · · ·

. . .
...

0 · · · 0 M [q]


 .

Each sub-block has size | de(j) \ ch(j)| × | ch(j)| and defines 
M [j] ·

(
λ

(0)
i,j

)
i∈ ch(j)

= b[j] where

	

M [j] =
((

A(k) − A(0)
)

1,i

)
, k ∈ de(j) \ ch(j), i ∈ ch(j),

b[j] =
((

A(k) − A(0)
)

1,j

)
, k ∈ de(j) \ ch(j).

At this point, it seems that the matrices defining the linear system depend on F and 
Λ(k). However, following the proof of Proposition 3.7, we have

	

(
A(k) − A(0)

)
1,i

=
∑

n∈[q]

f1,n ∆(k)
n,i =

∑
n∈ de(k)

f1,n(I − Λ(0))−1
n,k ∆(k)

k,i = A
(0)
1,k ∆(k)

k,i .

Assuming A(0)
1,k ̸= 0 for every k ∈ [q], which holds generically, we can rescale to 

obtain

	

M [j] =
(

∆(k)
k,i

)
, k ∈ de(j) \ ch(j), i ∈ ch(j),

b[j] =
(

∆(k)
k,j

)
, k ∈ de(j) \ ch(j),

� (20)
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where ∆(k) = (I − Λ(k))−1 − (I − Λ(0))−1. From this, we see that M[j] and b[j] 
depend only on the latent DAG and its parameters: the linear system (17) becomes

	

∑
i∈ ch(j)

∆(k)
k,i λ

(0)
i,j = ∆(k)

k,j ,� (21)

for all j ∈ [q]. We compute the dimension of the solution space by comparing the 
ranks | de(j) \ ch(j)| × | ch(j)| matrix M[j] and the | de(j) \ ch(j)| × (| ch(j)| + 1) 
matrix (M[j]|b[j]). Recall that an ideal has dimension −1 when its associated variety 
is empty.

Proposition 3.8  Assume that the interventions are soft. For each node j, let

	
cj =

{
−1 if rank M [j] ̸= rank (M [j]|b[j]) ,
| ch(j)| − rank M [j] otherwise,

where M[j] and b[j] are defined in (20). Then, the ideal I in (15) has dimension

	
dim I =

{
−1 if cj = −1 for some j ∈ [q],∑q

j=1 cj otherwise.

Proof  The dimension of I is the dimension of the solution space of (21), that is,

	
M [j] ·

(
λ

(0)
i,j

)
i∈ ch(j)

= b[j]

for all j ∈ [q], by (19). Its dimension cj  is | ch(j)| − rankM [j] if 
rank M [j] ̸= rank (M [j]|b[j]). Otherwise, the solution space is empty and we set 
cj = −1, as is convention. � □

Corollary 3.9  With one soft intervention per latent node it is never possible to recover 
uniquely all the parameters of the model.

Proof  The result remains true if we assume knowledge of the latent DAG 
G. Let ch(i) = ∅. Take j ∈ pa(i) such that de(j) \ ch(j) = ∅. Then M [j] = ∅, so 
cj = | ch(j)| ≥ 1. Therefore, dim I ≥ 1 and it is not possible to identify uniquely the 
parameters fℓ,j  and λ(k)

k,j , for ℓ ∈ [p] and k ∈ ch(j) \ {i}. � □

Adding interventions does not affect the matrices M[j] in the proof of Corollary 
3.9. Therefore Corollary 1.8 follows: non-identifiability holds regardless of the num-
ber of interventions.

When cj = 0 it is possible to identify uniquely all parameters λ(0)
i,j  for i ∈ ch(j), 

as well as fℓ,j  and λ(k)
k,j , for ℓ ∈ [p] and k ∈ ch(j). The condition cj = 0 holds, for 

example, when ch(j) = {i1} and de(j) = {i1, i2}.
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Example 3.10  We continue Example 3.4. The matrices are

	M [1] = M [2] = M [3] = b[1] = b[2] = b[3] = ∅, M [4] = (−14 5) , b[4] = −105,

hence c1 = | ch(1)| = 0, c2 = | ch(2)| = 1, c3 = | ch(3)| = 1, 
c4 = | ch(4)| − rank M [4] = 2 − 1 = 1. By Proposition 3.8, we have dim I = 3 and 
in fact it is minimally generated by the 21 linear polynomials in 24 indeterminates in 
Example 3.4.

The rank of M[j] depends on the structure of the DAG G beyond the number of 
children and descendants of j. This is highlighted in the following example.

Example 3.11  Consider the DAG

Node j = 5 has 2 children and 4 descendants, hence (21) consists of equations

	

∑
i=3,4

∆(k)
k,i λ

(0)
i,5 = ∆(k)

k,5 k = 1, 2.� (22)

They impose conditions on the λ
(0)
i,j . There are two λ

(0)
i,j  from node 5, namely 

λ
(0)
3,5, λ

(0)
4,5, and two equations. However, the equations in (22) are dependent. We have

	
M [5] =

(
λ

(1)
1,3 − λ

(0)
1,3 (λ(1)

1,3 − λ
(0)
1,3)λ(0)

3,4
λ

(2)
2,3 − λ

(0)
2,3 (λ(2)

2,3 − λ
(0)
2,3)λ(0)

3,4

)
, b[5] =

(
(λ(1)

1,3 − λ
(0)
1,3)(λ(0)

3,4λ
(0)
4,5 + λ

(0)
3,5)

(λ(2)
2,3 − λ

(0)
2,3)(λ(0)

3,4λ
(0)
4,5 + λ

(0)
3,5)

)
,

so rankM [5] = rank (M [5]|b[5]) = 1 < 2. Hence we cannot recover the param-
eters λ(0)

3,5, λ
(0)
4,5. The reason rankM [5] < 2 is that all the paths from 4 to 1 or 2 

(encoded in the second column of M[5]) and all the paths from 5 to 1 or 2 (encoded 
in b[5]) go through 3. This factorization of paths creates dependencies in M[5], b[5], 
preventing identifiability.

To recover as many parameters as possible, DAGs should balance between too 
many children, hence too many indeterminates, and too few children, hence paths 
factorize more easily.

From an algorithmic point of view, we can check the rank condition in Proposi-
tion 3.8. Indeed, we have matrices A(k), and we can compute, for all i, k ∈ [q] with 
i ̸= k, the entries

	
∆(k)

k,i =
A

(k)
1,i − A

(0)
1,i

A
(0)
1,k

.

Remark 3.12  If q ≤ p, the computations can be simplified. We can write (16) as
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	 Λ(k) = (A(k))+A(0)Λ(0) + I − (A(k))+A(0).

This writes the λ(k)
k,j  indeterminates in terms of λ(0)

i,j  indeterminates, and enables us 

to find the linear conditions on the λ(0)
i,j  indeterminates. The reduction of the linear 

system is the same as in (20), as can be proved by noticing that for any k ̸= i, the k-th 
row of (A(k))+A(0) equals the k-th row of ∆(k) up to sign. Indeed,

	

(
(A(k))+A(0)

)
k,i

=
(

(I − Λ(k))(I − Λ(0))−1
)

k,i

=
∑

ℓ∈ pa(k)

−λ
(k)
k,ℓ(I − Λ(0)

ℓ,i )−1 + (I − Λ(0))−1
k,i

= −(I − Λ(k))−1
k,i + (I − Λ(0))−1

k,i = −∆(k)
k,i ,

where the last row used (I − Λ(0)
ℓ,i )−1 = (I − Λ(k)

ℓ,i )−1 for every ℓ ∈ pa(k).

3.3.1  Identifiability of the Latent DAG

For perfect interventions, Theorem 1.6 shows that we can recover the latent DAG of 
the model, as well as the parameters. With soft interventions, we cannot recover the 
whole DAG and all the parameters (see Corollary 3.9). It is natural to wonder to what 
extent we can recover the latent DAG. Thanks to Proposition 3.8, we can turn this 
into 2q rank computations.

Definition 3.13  Given a model with matrices A(k) ∈ Rp×q for k = 0, . . . , q, we say 
that a DAG G′ is compatible with the model if there exist parameters F ∈ Rp×q, 
Λ(k) ∈ Rq×q  defined according to the latent DAG G′, such that A(k) = F (I − Λ(k))−1 
for all k.

If the true latent DAG is G, a compatible DAG G′ must satisfy G = G′, by Corol-
lary 2.8. To emphasize that a matrix such as Λ(k) depends on a DAG G, we write 
Λ(k)

G . In the same spirit, we define

	

MG,G′ [j] =
(

(∆(k)
G )k,i

)
k ∈ deG′(j) \ chG′(j), i ∈ chG′(j),

bG,G′ [j] =
(

(∆(k)
G )k,j

)
k ∈ deG′(j) \ chG′(j),

where the indexing depends on G′ and ∆(k)
G = (I − Λ(k)

G )−1 − (I − Λ(0)
G )−1. Recall 

that

	 [(I − Λ(0))−1]r,c

denotes the submatrix with rows in r ⊂ [q] and columns in c ⊂ [q]. We give the fol-
lowing definition, already mentioned in the introduction.
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Definition 3.14  Given a DAG G on q nodes, its soft-compatible class is

	

soft(G) =
{

G′ DAG | G′ = G and for all j ∈ [q]

rank[(I − Λ(0)
G )−1] deG′ (j)\ chG′ (j), chG′ (j) = rank[(I − Λ(0)

G )−1] deG′ (j)\ chG′ (j), chG′ (j)

}
,
�(23)

where ch(j) := ch(j) ∪ {j} for j ∈ [q].
The soft-compatible class of a DAG G is the set of all graphs that are compatible with 
a model with latent DAG G, as follows.

Theorem 3.15  Consider LCD under under Assumption  1.2 with DAG G. Then a 
graph G′ is compatible with the model if and only if G′ ∈ soft(G).

Proof  The ranks of the matrices in (23) are the same as the ranks of the matrices 
MG,G′ [j] and (MG,G′ [j]|bG,G′ [j]), since the first matrices can be obtained from the 
second by replacing each term λ(k)

k,i − λ
(0)
k,i  with λ(0)

k,i . By the genericity of the param-
eters, this does not affect the rank. The genericity assumption allows us to switch 
between the parameters of the model and abstract indeterminates without change. 
Therefore, the ranks of the matrices in (23) coincide with the ranks of M[j] and 
(M [j]|b[j]) from (20).

The DAG G′ is compatible with the model if and only if the corresponding ideal I 
has non-negative dimension. Here the indeterminates of the system defined by I are 
the entries of F and of Λ(k)

G′ . By Proposition 3.8, it is equivalent to cj ̸= −1 for all j, 
which holds if and only if rankM [j] = rank (M [j]|b[j]) for all j. This is equivalent 
to the condition G′ ∈ soft(G). � □

Proof of Theorem 1.7  The linearity follows from equation (15). The positive dimen-
sionality follows from Corollary 3.9. The compatibility class of DAGs is Theorem 
3.15. � □

We investigate the concept of soft-compatible class. If G′ has the same transi-
tive closure as G and if chG′(j) ⊃ chG(j) for all j, then G′ ∈ soft(G). This is true 
because

	 [(I − Λ(0)
G )−1] deG(j)\ chG(j), chG(j) and [(I − Λ(0)

G )−1] deG(j)\ chG(j), chG(j)

always satisfies the rank condition (since by construction a solution with DAG G 
exists). However, the matrix [(I − Λ(0)

G )−1] deG′ (j)\ chG′ (j), chG′ (j) is obtained from 

[(I − Λ(0)
G )−1] deG(j)\ chG(j), chG(j) by adding columns and deleting rows, hence the 

column indexed by j remains in the span of the columns indexed by its children. 
Therefore, in order to exit the soft-compatible class of G, a DAG G′ with the same 
transitive closure must have enough more children at some node.
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If q = 2, soft(G) = G for every DAG, since there are no distinct DAGs with the 
same transitive closure. For q = 3, the only case in which two DAGs have the same 
transitive closure (up to relabeling the nodes) is the segment DAG Z3 → Z2 → Z1, 
denoted by , and the DAG with extra edge Z3 → Z1, denoted by ▲. Since ▲ is 
obtained from  by adding Z1 to the children of Z3, we know that ▲ ∈ soft  ( ). 
On the other hand, since  for j = 1, 2, the only relevant 
submatrices are obtained for j = 3 and they are

	 [(I − Λ(0)
▲ )−1]1,2 and [(I − Λ(0)

▲ )−1]1, {2,3}

for which the rank condition is trivially satisfied, hence . Therefore, 
for DAGs on 3 nodes, the soft-compatible classes are the classes of DAGs with the 
same transitive closure.

For q = 4, if every node has at most 1 descendant that is not a child, the rank 
condition is always satisfied. The only time this might not hold is for DAGs whose 
transitive closure is the complete DAG on 4 nodes. There are 8 such DAGs (up to 
relabeling). We compute their soft-compatible classes.

Example 3.16  Consider DAGs on 4 nodes, with transitive closure the complete DAG

G1 = 4 3 2 1 G2 = 4 3 2 1

G3 = 4 3 2 1 G4 = 4 3 2 1

G5 = 4 3 2 1 G6 = 4 3 2 1

G7 = 4 3 2 1 G8 = 4 3 2 1

The submatrices of (I − Λ(0)
G )−1 for j = 1, 2, 3 are either empty or they have one 

row, for every G′. Therefore, on these nodes the rank condition is always satisfied. 
The interesting rank condition comes from the submatrices for j = 4. By computing 
these submatrices for all pairs of DAGs, one obtains

	
soft(G1) = soft(G2) = {G1, G2, G3, G4, G5, G6, G7, G8},

soft(G3) = soft(G4) = soft(G5) = soft(G6) = soft(G7) = soft(G8) = {G3, G4, G5, G6, G7, G8}.

For n = 1, 2 and m = 3, . . . , 8, we have Gn ̸∈ soft(Gm), since

	

rank[(I − Λ(0)
Gm

)−1] deGn (4)\ chGn (4), chGn (4) = rank[(I − Λ(0)
Gm

)−1]{1,2}, 3 = 1,

rank[(I − Λ(0)
Gm

)−1] deGn (4)\ chGn (4), chGn (4) = rank[(I − Λ(0)
Gm

)−1]{1,2}, {3,4} = 2.
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Soft-compatible classes are in general smaller than the DAGs with the same tran-
sitive closure. In a soft-compatible class a unique sparsest DAG does not exist, see 
Example 3.16 where the sparsest DAGs in soft(G8) are G3, G4. Moreover, soft-com-
patible classes are not equivalence classes, see Example 3.16 where G8 ∈ soft(G1) 
but G1 ̸∈ soft(G8).

3.3.2  More Interventions

So far in Sect. 3 we have mostly assumed one intervention per latent node, and we 
proved that this is not sufficient to recover the latent DAG or the parameters. It is 
natural to wonder whether more interventions would allow the recovery. We already 
discussed after Corollary 3.9 that complete identifiability is impossible regardless of 
the number of interventions; in other words, Corollary 1.8 holds.

In some cases, increasing the number of interventions allows us to recover more 
parameters (see Example 3.18). In other cases, more interventions do not improve the 
parameters that can be recovered (see Example 3.17).

Example 3.17  Consider the DAG

Node j = 4 has 2 children and 3 descendants, so c4 = 1. We are interested in the 
question: if we have more interventions, can we recover more? In particular, can we 
recover λ(0)

2,4, λ
(0)
3,4?

The only intervention that could give us more information is an extra intervention 
on node 1, since that is the only descendant of 4 which is not its child. Assume a fifth 
context also with intervention target 1. We have a linear system with two equations 
and two unknowns:

	

∆(1)
1,2λ

(0)
2,4 + ∆(1)

1,3λ
(0)
3,4 = ∆(1)

1,4,

∆(5)
1,2λ

(0)
2,4 + ∆(5)

1,3λ
(0)
3,4 = ∆(5)

1,4.

The matrix of this linear system, however, has rank 1 because

	

(
∆(1)

1,3
∆(5)

1,3

)
= λ

(0)
2,3

(
∆(1)

1,2
∆(5)

1,2

)
and

(
∆(1)

1,4
∆(5)

1,4

)
= (λ(0)

2,4 + λ
(0)
2,3λ

(0)
3,4)

(
∆(1)

1,2
∆(5)

1,2

)
.

All paths from 4 to 1 must go through 2 and this means no additional parameters can 
be recovered from the extra intervention.

Example 3.18  Consider the DAG
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and focus on the node j = 4. The linear system is as above, but now

	

(
∆(1)

1,3
∆(5)

1,3

)
∦

(
∆(1)

1,2
∆(5)

1,2

)
,

so the matrix is full rank and we can recover the parameters λ(0)
2,4, λ

(0)
3,4.

To conclude, more interventions do not necessarily allow us to recover the DAG 
or the parameters. Indeterminates λ(k)

i,j  with ch(i) = ∅ are not the only ones that can-
not be recovered regardless of how many soft interventions we have - this is also the 
case for λ(k)

2,4  and λ(k)
3,4  in Example 3.17. But there are examples where more interven-

tions reduce the dimension of the solution space - we can recover λ(k)
2,4  and λ(k)

3,4  in 
Example 3.18.

4  Algorithm

Coupled tensor decomposition of higher-order cumulants enables us to recover 
parameters in an LCD model. In this section, we explain how to turn our results into 
a numerical algorithm for LCD. The algorithm has two main steps. The first (see 
Sect. 4.1) is to identify intervention targets, permutation, and scaling. This turns the 
results of Sect. 2 into an algorithm, and works for both perfect and soft interventions. 
The second step (see Sect. 4.2) is to recover the parameters of the model. We do this 
step for perfect interventions (following Theorem 1.6) and not for soft interventions, 
in light of Theorem 1.7. Both steps simplify when q ≤ p; that is, when the number of 
latent variables is at most the number of observed variables, see Sect. 4.3. We test our 
algorithms on synthetic data in Sect. 4.4.

4.1  Recovery of Intervention Targets, Permutation, and Scaling

The algorithm input is the d-th order cumulants κd(X(k)) as in (10), for k ∈ K ∪ {0} 
ranging over contexts and a fixed d ≥ 3. The input tensors are either exact (popula-
tion cumulants) or approximate (sample cumulants).

For our fixed d, we assume that the decomposition in  (10) is unique, that 
κd(ε(k)

i ) ̸= 0 for all k and all i ∈ [q], and that κd(ε(k)
ik

) ̸= ±1 for all k. This is the 
same assumption as appears temporarily in the proof of Proposition 2.3. The assump-
tion is not necessary, since one can combine information from multiple higher-order 
cumulants, but it helps our exposition, as in the proof of Proposition 2.3. In our 
experiments, we consider d = 3 and d = 4.

Tensor decomposition recovers the matrices A(k) up to permutation and scal-
ing, by Proposition  2.1. Tensor decomposition thus recovers a set of matrices 

1 3



La Matematica

{A(k)D(k)P (k) : k ∈ K ∪ {0}} for unknown scaling matrices D(k) and unknown 
permutations P (k). In practice, any numerical tensor decomposition algorithm 
can be used for this step. We use the subspace power method  [26] or simultane-
ous diagonalization [19] when q ≤ p. We can assume without loss of generality that 
D(0) = P (0) = I , see Proposition 2.5. Then the other scaling matrices D(k) have all 
entries ±1 except one, by (9) of Proposition 2.3. There is one entry that is not ±1, 
which corresponds to the intervention target of context k.

To find the permutation, we consider the difference A(0) − A(k)D(k)P (k), as D(k) 
varies over diagonal matrices with diagonal ±1 and P (k) varies over permutation 
matrices. That is, the product D(k)P (k) is a signed permutation matrix. The rank of 
the difference equals one if and only if we have the correct sign and order, see Corol-
lary 2.10. This suggests an algorithm: for all q × q signed permutation matrices Q (of 
which there are 2q × q!) compute A(k)D(k)P (k)Q and compute the second largest 
eigenvalue of the matrix A(0) − A(k)D(k)P (k)Q. Choose Q for which this eigen-
value is smallest. This Q is (P (k))⊤, up to sign, where the sign gives all but entry 
D

(k)
ik,ik

 of D(k). See Algorithm 1.
To find the remaining entry of D(k), we compare the columns of A(0) and 

A(k)D(k). The only column that differs between the two matrices is the ik-th column. 
The ik-th columns of the two matrices are collinear, with scaling D(k)

ik,ik
. This recov-

ers the intervention target ik and the scaling matrix D(k). See Algorithm 2.
A faster way approach to find the intervention targets, permutation, and scaling 

could be to implement Proposition 2.7. One can compare each column of A(0) to each 
column of A(k)D(k)P (k), e.g. by projecting a column v1 of one matrix onto another 
column v2 of the other. Each time, the residue of the projection ∥v1 − π⟨v2⟩(v1)∥ 
and the scaling 1

∥v2∥ ∥π⟨v2⟩(v1)∥ can be stored and thresholds can be used to decide 
which numerical values are zero or ±1. Such a procedure is numerically sensitive and 
influenced by the threshold. The threshold determines the assignment of intervention 
target, and we want the |K| intervention targets to cover all latent nodes. One must 
choose a threshold that gives such an assignment. We leave this for future work.

4.2  Recovery of Parameters

Once the intervention targets, permutation, and scaling are recovered, using Sect. 4.1, 
we have matrices A(k) = F (I − Λ(k))−1 for k = 0, . . . , q. We can relabel contexts 
so that the intervention target of the k-th context is k. We construct (I − Λ(0))−1 as

	
(I − Λ(0))−1

i,j =

{ 1 i = j,
A

(0)
1,j

−A
(i)
1,j

A
(0)
1,i

i ̸= j,

following the proof of Theorem 1.6. We invert this matrix to find Λ(0). This is Algo-
rithm 3. Finally, we recover F using F = A(0)(I − Λ(0)). One can compare the prod-
ucts A(k)(I − Λ(k)) for different contexts k to test the goodness of fit of the LCD 
model. In theory, these should all return the same mixing matrix F.

1 3



La Matematica

4.3  The Injective Case

Restricting to the case q ≤ p allows for simplifications, cf. Remarks 2.11, 3.5, and 
3.12. First, the tensor decomposition step can achieved using simultaneous diago-
nalization [19]. We explain how to recover the intervention targets, permutation, and 
scaling in this setting. When q ≤ p the Moore-Penrose pseudo-inverse satisfies

	
C(k) :=

(
F (I − Λ(k))−1D(k)P (k)

)+
= (P (k))⊤(D(k))−1(I − Λ(k))H,� (24)

where H = F +. In particular, C(0) = (I − Λ(0))H . Let (c(k))ℓ denote the ℓ-th row 
of C(k). Then we have the following result, in the same spirit as Proposition 2.7.

Proposition 4.1  Consider LCD under Assumption 1.2 where q ≤ p. Fix k ∈ K  and 
let σ be the permutation associated to the permutation matrix P(k). Then

	 (c(0))ℓ = (c(k))σ(ℓ)

if and only if ℓ ̸= ik , where ik  is the target of the k-th intervention.

Proof  We have formulae

	
(c(0))ℓ = hℓ −

∑
j∈pa(ℓ)

λ
(0)
ℓ,j hj , (c(k))σ(ℓ) = 1

D
(k)
ℓ,ℓ


hℓ −

∑
j∈pa(ℓ)

λ
(k)
ℓ,j hj


 ,

by (24). If ℓ ̸= ik, then D(k)
ℓ,ℓ = 1 and λ(k)

ℓ,j = λ
(0)
ℓ,j  for all j ∈ [q]. Hence these two 

expressions coincide. If ℓ = ik then under the genericity assumption we have 
(c(0))ℓ ̸= (c(k))σ(ℓ). � □

Proposition 4.1 enables us to find the intervention target ik and the permutation 
matrix P (k), as follows. For sufficiently general parameters Λ(0) and Λ(k) and error 
distribution ε(k), the rows (c(0))ik  and (c(k))σ(ik) differ. Hence, ik is the index of 
the row of C(0) without a match in C(k). We recover P (k) by matching the remain-
ing rows: if ℓ ̸= ik, then there exists j such that (c(0))ℓ = (c(k))j . This finds all but 
one row of P (k). It has a unique completion to a permutation matrix, which matches 
(c(0))ik  to the row of C(k) without a match in C(0). See Algorithms 4 and 5. Algo-
rithm 6 recovers the scalings D(k).

We now explain how to recover the parameters. In light of the above, we have 
matrices (A(k))+ = (I − Λ(k))H . We find H = F + as follows. The ik-th row of 
(A(k))+ has entries

	
(A(k))+

ik,j =
∑
ℓ∈[q]

(I − Λ(k))ik,ℓHℓ,j = Hik,j .

This is Algorithm 7. To find Λ(0), we use
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	 (A(0))+H+ = (I − Λ(0))HH+ = (I − Λ(0)).

Following the initial tensor decomposition, the time complexity of this algorithm 
is determined by the time required for the alignment and to calculate the pseudo-
inverses of the products. The former takes time O(q3p) and the latter O(p2q2), so the 
overall runtime is O(q2p max(p, q)). This improves on the algorithm in [50] provided 
we ignore the time taken to construct and decompose the higher-order cumulants.

4.4  Numerical Experiments

We test our algorithms on synthetic data. The general procedure for any (p, q) is 
implemented in Algorithms 1-3 in Appendix A and the injective case (q ≤ p) is 
implemented in Algorithms 4-7. For the general setting, we use d = 4, since we use 
the subspace power method for tensor decomposition [26] and it requires input of 
even order. We use the subspace power method because it can be used to decompose 
any even-order symmetric real tensor with low rank, it outperforms other state-of-
the-art methods, and is robust to noisy input (see [26] for details). For the injective 
case, we study d = 3. These choices of d satisfy Assumption 1.2(c), since we assume 
error distributions that are sufficiently general to have non-vanishing third or fourth 
order cumulants, for instance they are not Gaussian or symmetrically distributed. A 
larger d is needed in Assumption 1.2(c) only in the special case that some higher-
order cumulants of the error distributions vanish.

We sample graphs using the Python package |causaldag| [49]. It extends the 
Erdős–Rényi model [43] to DAGs: given an edge density ρ, the edge i → j is added 
to the graph with probability ρ, and if and only if i > j. We fix ρ = 0.75, sample the 
entries of F + independently from Unif([−2, 2]), and the non-zero entries of Λ(0) 
independently from Unif(±[0.25, 1]), as in [50]. We fix p = 5 and vary q from 2 to 
7. For each value of q, we generate 500 models and calculate the relative Frobenius 
error for the recovery of F and Λ(0), which is 1

∥M∥ ∥M̃ − M∥, where ∥ · ∥ denotes 
the Frobenius norm, M is the true matrix, and M̃  is the recovered matrix. We also 
calculate DAG recovery error, as follows. A penalty of 1 is incurred if the algorithm 
recovers a non-existent edge or misses an existing one, while recovering an edge in 
the wrong direction incurs a penalty of 2. Then we sum the penalty over all edges.

We plot the median error in recovering F, Λ(0) in Fig. 2. A significant portion of 
the error is due to the tensor decomposition step, especially in the case q > p, but 
improved algorithms for tensor decomposition are beyond the scope of this paper. 
Therefore, together with the error of the recovery starting from the population cumu-
lants κd(X(k)), we display also the error of the recovery obtained directly from the 
factor matrices A(k)D(k)P (k), as if these had been recovered perfectly from tensor 
decomposition.

For the injective case, we fix p = 10 and let q vary from 2 to 10. We consider 500 
models generated as above, and compute the relative Frobenius error for both recov-
ered matrices F and Λ(0). The median errors are plotted in Fig. 3, starting from the 
cumulants (blue graph) as well as from the factor matrices (orange graph).
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We explain how our algorithm for LCD can be used in practice, and what it finds. 
Assume we have K + 1 contexts: an observational context and K other contexts. 
While the K contexts may result in complicated changes to the distribution over the 
observed variables, the idea of LCD is to build a latent representation such that they 
can be viewed as a single-node intervention on the latent variables, and such that 
each context is an intervention on a different latent variable. Each latent variable is a 
linear combination of observed variables. For example, if the observed variables cor-
respond to genes and the contexts to mutations, then the latent variables are weighted 
combinations of genes, which can be thought of as weighting the effect of a muta-
tion on each gene. See [50] for a workflow of LCD on a single-cell RNA sequencing 
dataset. For LCD, the input consists of n0 + · · · + nK  data points, where nk data 
points are observed in context k. We build the d-th order sample cumulant for each 
context k. Any d ≥ 3 can be used, since for sufficiently general data the higher-order 
cumulants of the error distributions will not vanish. We run our LCD algorithm on 
the tuple of cumulant tensors. We use the general formulation in Algorithms 1-3. If 
K ≤ p we can also use the injective approach in Algorithms 4-7. The output is a tuple 
of K latent variables, together with estimates for the latent graph G, weights Λ, and 
the linear mixing map F.

5  Outlook

We have studied the identifiability of linear causal disentanglement using tensor 
decomposition of higher-order cumulants. We view the parameters compatible with a 
given model as the solution space to a system of equations. Identifiability holds when 
the space has dimension zero, and can be achieved using perfect interventions. Here, 
we give an algorithm to recover the parameters. For soft interventions, we recover a 
compatibility class of graphs and parameters. We conclude with some open problems 
for future investigation.

On the theoretical side, the first question is of combinatorial nature. The defini-
tion of soft(G) in Definition 3.14 involves ranks of matrices. These rank conditions 
encode information about the paths in G. This suggests the following problem.

Fig. 3  Median relative Frobenius error in the recovery of F (left) and Λ(0) (right) when p = 10, using 
the injective algorithm. Note the logarithmic scale on the y-axis
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Problem 5.1  Find a combinatorial description of soft(G), based on the structure of 
G.

Higher-order cumulants can reduce the degree of the solution space of parameters, as 
compared to covariance matrices, see Proposition 3.3. An open problem is whether 
they restricts the set of compatible DAGs.

Problem 5.2  Let soft2(G) denote the graphs G′ for which there exist parameters 
F, Λ(k) defined according to G′ such that the covariance matrix coincides with the 
covariance matrix of a model with latent DAG G. Are the following containments 
strict in general

	 soft(G) ⊂ soft2(G) ⊂ {G′ | G′ = G}?

Under soft interventions, the space of parameters compatible with a given model is 
linear and positive dimensional, by Theorem 1.7. It is then natural to ask for the best 
solution in this space, for an appropriate notion of best. This would give a choice of 
unique parameters under soft interventions.

Finally, our assumptions require that all the latent error distributions are non-
Gaussian. The results may extend to the case where some are Gaussian, cf. [60].

On the algorithmic side, there are multiple possible improvements. The tensor 
decomposition contributes significantly to the error in the recovered parameters, see 
Fig. 2. Other tensor decomposition algorithms might give more accurate output. One 
could test our algorithm starting from the factor matrices plus random noise, to study 
the extent to which our algorithm would work with a sufficiently accurate tensor 
decomposition. Next, one could implement a greedy search over permutations and 
signs to speed up the recovery of P (k) and D(k). Finally, it would be interesting to 
study the robustness to non-linearity in the latent space (e.g., Z = (I − Λ)−1ε + αε2 
for small α ∈ R) or in the mixing map (e.g., X = FZ + αZ2, where Z2 is a vector 
with entries ZiZj  for all i, j ∈ [q] and α ∈ R small).

A Pseudocode

We provide pseudocode for the algorithms in Sect. 4. Their implementations are 
available at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​p​​a​u​l​a​l​​e​y​e​s​​1​​4​/​l​i​n​​e​​a​r​-​​c​a​u​​s​​a​l​-​d​i​s​​e​n​t​a​n​​g​l​e​m​​​e​n​t​​-​v​i​a​-​c​u​m​
u​l​a​n​t​s. Below, the i-th row of a matrix M is denoted by mi and the i-th column by mi.

Algorithms 3 and 7 below work if the set of intervention targets coincides with 
the set of latent variables. In theory, this is true by our assumptions. In practice, the 
algorithm could assign the wrong target to an intervention due to numerical errors. 
When implementing the algorithm, we force the interventions to be on distinct nodes.
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A.1 General Case

Algorithm 1  Recovery of the permutation matrix (recover_perm)

Algorithm 2  Recovery of the intervention target and scaling (recover_target_scaling)
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Algorithm 3  Recovery of Λ(0) (recover_Lambda)

A.2 Injective Case

Algorithm 4  Recovery of the intervention target (recover_target)
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Algorithm 5  Recovery of the permutation matrix (recover_perm)

Algorithm 6  Recovery of the scaling (recover_scaling)
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Algorithm 7  Recovery of F = H+ (recover_F)
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