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Introduction

The concept of a graph is widely used across the sciences [15]. Graphs are a
framework to relate entities: the vertices are the entities of interest, and the
edges encode connections between them. A graph is given a statistical meaning
in the study of graphical models [23, 25]. Each vertex represents a random vari-
able, and the edges between variables reflect their statistical dependence [42].
In this paper, we study directed Gaussian graphical models, also called Gaus-
sian Bayesian networks, or linear structural equation models with independent
errors [39]. Such models have been applied to cell signalling [34], gene interac-
tions [17], causal inference [30], and many other contexts.

We define graphical models on directed acyclic graphs (DAGs) with a colour-
ing of their vertices and edges. Vertices or edges with the same colour must
have the same parameter values. Thus, the graph colouring imposes symme-
tries in the model. We call such models RDAG models, where the ‘R’ stands for
restricted, cf. [22].

Our first motivation for RDAG models is that vertex and edge symmetries
appear in various applications, such as in the study of longitudinal data [1, 43],
or clustered variables [19, 22]. The coloured directed graph gives an intuitive
pictorial description of the symmetry conditions in the model.

Our second motivation is to decrease the maximum likelihood threshold, the
minimum sample size required for the maximum likelihood estimate (MLE) to
exist almost surely, see [7]. In applications, it is desirable for the MLE to exist
when there is only a small number of samples; i.e., for the maximum likeli-
hood threshold to be small. Innovative ideas have been used to find maximum
likelihood thresholds in graphical models [5, 12, 20, 41] and for estimating the
MLE from too few samples [16, 44]. Removing edges from a graph can lower
the threshold [41, 23], but there is a trade-off: removing edges imposes more
conditional independence among the variables. This is why, instead, we aim to
decrease the maximum likelihood threshold by introducing symmetries.

We will use the following as our running example throughout the paper.
Example 0.1. Consider the coloured graph 1 3 2 , with blue (circular)
vertices {1, 2}, black (square) vertex 3 and two red edges. The RDAG model is

y1 = λy3 + ε1, y2 = λy3 + ε2, y3 = ε3,

where ε1, ε2 ∼ N(0, ω) and ε3 ∼ N(0, ω′), i.e. ω is the variance of blue vertices
1 and 2 and ω′ is the variance of black vertex 3. The third parameter λ is
the regression coefficient given by a red edge. We will see that the MLE exists
uniquely (almost surely) given one sample. For comparison, if we remove the
colours the resulting model needs two samples for the MLE to exist. We use this
example to model the dependence of two daughters’ heights on the height of their
mother, and we compute the MLE given some sample data, in Section 4.3.

As far as we are aware, RDAG models have not been defined before in the
literature; we comment on some related models. The assumption of equal vari-
ances from [31] is the special case of an RDAG model, where all vertex colours
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are the same. Special colourings encode exchangeability between variables, or
invariance under a group of permutations. A graphical model is combined with
group symmetries in the directed setting in [26] and in the undirected setting
in [4, 36]. RDAG models also relate to the fused graphical lasso [6], which pe-
nalises differences between parameters on different edges, whereas in an RDAG
model the parameters on edges of the same colour must be equal.

In this paper, we give a closed-form formula for the MLE in an RDAG model,
as a collection of least squares estimators, see Algorithm 1. We characterise the
existence and uniqueness of the MLE via linear algebraic properties of the sam-
ple data, see Theorem 4.4. We give upper and lower bounds on the threshold
number of samples required for existence and uniqueness of the MLE in Theo-
rem 5.3. Our results show that RDAG thresholds are less or equal to the DAG
thresholds, and that high symmetry decreases the thresholds. Finally, we com-
pare RDAG MLEs to uncoloured DAG MLEs via simulations in Section 6. Our
results hold with an assumption on the graph colouring, which we call com-
patibility (Definition 2.5). It is an open problem to extend our results to the
non-compatible setting, as well as to directed graphs with cycles. It is also an
open problem to find the exact maximum likelihood thresholds, see Problem 5.4.

The undirected analogue to RDAG models are the RCON models from [22].
Although a motivation for the graph colouring in RCON models is to lower the
maximum likelihood threshold, there are relatively few graphs for which the
threshold is known: colourings of the four cycle are studied in [41, §6], [38, §5],
while an example with five vertices is [41, Example 3.2]. In certain cases, RDAG
models are equivalent to RCON models. We determine precisely the conditions
under which this occurs in Theorem 3.4. As a consequence, we obtain an entire
class of RCON models where conditions for MLE existence and uniqueness can
be found by appealing to our results on RDAGs.

This paper has two appendices, where we explain some connections to invari-
ant theory. A Gaussian group model [2] is parametrised by a group. In [2], the
authors draw a dictionary between maximum likelihood estimation and stability
notions in invariant theory. This dictionary allows for the transfer of tools from
the algebraic subjects of representation theory and invariant theory to statistics:
maximum likelihood thresholds were computed for matrix normal models in [9]
and for tensor normal models in [10].

We extend the dictionary between maximum likelihood estimation and stabil-
ity notions to RDAGs in Theorem A.2. This requires us to extend the definitions
of stability beyond the setting of a group action, see Definition A.1. While not
evident in our final presentation, this perspective gave us the understanding
needed to obtain many of the results in this paper and we would like to stress
its importance for future work. We have far more tools at our disposal when a
model is backed by a group action, i.e., when it is a Gaussian group model. We
identify RDAGs that are Gaussian group models in Proposition B.2 and exhibit
additional tools that one can use in such cases. The two appendices offer two
alternative descriptions of the set of MLEs, see Propositions A.3 and B.6.
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1. Preliminaries

1.1. Multivariate Gaussian models

We consider m-dimensional Gaussian distributions with mean zero. Such a dis-
tribution is determined by its concentration (inverse covariance) matrix Ψ, a
real m×m positive definite matrix. The density function is

fΨ(y) = 1√
det(2πΨ−1)

exp
(
−1

2y
TΨy

)
, y ∈ Rm.

We refer to a multivariate Gaussian model by the set of concentration matrices
in the model. So, a model is a subset of PDm, the cone of m×m positive definite
matrices.

We study statistical models in PDm via a set of invertible matrices. We define

MA := {aTa | a ∈ A}, (1)

where A is a subset of GLm, the real invertible m ×m matrices. Many sets A
can correspond to the same model MA. For instance, the full cone PDm is MA

whenever A contains all invertible upper triangular matrices. When the set A
is a group, the model MA is called a Gaussian group model [2].

1.2. Maximum likelihood estimation

A maximum likelihood estimate (MLE) is a point in the model that maximizes
the likelihood of observing some data. For n samples from a Gaussian model
M ⊆ PDm, the data samples are the columns of a matrix Y ∈ Rm×n. Assuming
independent samples, the likelihood function is

LY (Ψ) =
n∏

i=1
fΨ(Yi),

where Yi is the ith column of Y . We work with the log-likelihood function
logLY , which has the same maximisers as LY . The log-likelihood function can
be written, up to additive and multiplicative constants, as

�Y (Ψ) = log det(Ψ) − tr(ΨSY ), (2)

where SY = 1
n

∑n
i=1 YiY

T
i is the sample covariance matrix. Four possibilities

arise when maximising the log-likelihood:

(a) �Y unbounded from above
(b) �Y bounded from above
(c) the MLE exists (i.e. �Y is bounded from above and attains its supremum)
(d) the MLE exists and is unique.
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The minimal number of samples needed for the MLE to exist almost surely
is the MLE existence threshold; the number of samples for the MLE to exist
uniquely almost surely is the uniqueness threshold.
Example 1.1. Let M = PDm. The unique maximiser of the likelihood is Ψ̂ =
S−1
Y , if SY is invertible. If SY is not invertible, the likelihood function is un-

bounded from above, see [39, Proposition 5.3.7]. The existence and uniqueness
thresholds are therefore both m, since with m samples the matrix SY will almost
surely be invertible.

For a model MA as in (1), we can rewrite the log-likelihood (2) at sample
matrix Y ∈ Rm×n as a function of a matrix a ∈ A:

�Y (aTa) = log det(aTa) − 1
n
‖a · Y ‖2, (3)

where ‖M‖ denotes the Frobenius norm of matrix M .

1.3. Directed Gaussian graphical models (DAG models)

A directed graph is G = (I, E), where I is a finite set of vertices, and E a set of
directed edges. We write j → i for an edge from j to i; the absence of such an
edge is denoted j �→ i. A directed acyclic graph (DAG) is a directed graph with
no directed cycles; i.e., no cycles of the form i → j → · · · → k → i. The parents
and children of i in G are, respectively, the vertex sets

pa(i) = {j ∈ I | (j → i) ∈ E} ch(i) = {k ∈ I | (i → k) ∈ E}.

We often take the vertex set I to be [m] = {1, 2, . . . ,m}.
We call a directed Gaussian graphical model on G a DAG model. A DAG

model is defined by the linear structural equation

y = Λy + ε, i.e. yi =
∑

j∈pa(i)

λijyj + εi, (4)

where y ∈ Rm, λij = 0 for j �→ i in G, and ε ∼ N(0,Ω) with Ω diagonal.
The coefficient λij is a regression coefficient, the effect of parent j on child i.
The model encodes conditional independence: a node is independent of its non-
descendants, after conditioning on its parents [42].
Remark 1.2 (The matrix Λ is strictly upper triangular). Throughout the paper,
we choose an ordering on the vertices of G so that Λ is upper triangular. That
is, if edge j → i is in E then j > i. Such an ordering is possible because G is
acyclic. Thinking of a vertex label as its age, the ordering makes parents older
than children.

Solving (4) for y gives y = (id−Λ)−1ε, where id denotes the m×m identity
matrix, and the acyclicity of G ensures that (id − Λ) is invertible. Hence y is
multivariate Gaussian with mean zero and concentration matrix

Ψ = (id − Λ)TΩ−1(id − Λ). (5)
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We define a set of matrices associated to the DAG G

A(G) = {a ∈ GLm | aij = 0 for i �= j with j �→ i in G}. (6)

Recall from (1) the notation MA(G) = {aTa : a ∈ A(G)}. The set of concen-
tration matrices of the form (5) is equal to the set MA(G). We prove this in
Lemma 2.9.

1.4. Undirected Gaussian graphical models

Multivariate Gaussian models can also be obtained from undirected graphs. An
undirected graph G = (I, E) is a set of vertices I and undirected edges E. The
model is the set of distributions with mean zero and concentration matrix Ψ with
Ψij = 0 whenever edge i j is not in E. That is, the variables at nodes i and
j are independent after conditioning on all others, see [39, Proposition 13.1.5].

1.5. Restricted concentration (RCON) models

In [22], the authors introduce restricted concentration (RCON) models, which
impose symmetries on the concentration matrix Ψ according to a graph colour-
ing. A coloured undirected graph is a tuple (G, c), where G = (I, E) is an undi-
rected graph and the map

c : I ∪ E → C
assigns a colour to each vertex and to each edge. The vertex i ∈ I has colour
c(i) ∈ C, and edge i j has colour c(ij) ∈ C.
Definition 1.3 (see [22, §3]). The RCON model on the coloured undirected graph
(G, c) consists of concentration matrices with

1. Ψij = 0 whenever i j is not in E
2. Ψii = Ψjj whenever c(i) = c(j),
3. Ψij = Ψkl whenever c(ij) = c(kl).

2. Introducing RDAG models

A colouring of a DAG assigns colours to the vertices and edges. A coloured DAG
is a tuple (G, c), where G = (I, E) is a DAG on vertices I and edges E, and

c : I ∪ E → C

is a colouring of the vertices and edges. Vertex i ∈ I has colour c(i) ∈ C, and
edge j → i has colour c(ij) ∈ C. We sometimes denote the vertex colour c(i) by
c(ii), with no ambiguity because a DAG cannot have loops.
Definition 2.1. The restricted DAG (RDAG) model on the coloured DAG (G, c)
is the set of concentration matrices Ψ = (id−Λ)TΩ−1(id−Λ), where Λ ∈ Rm×m

satisfies
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1. λij = 0 unless j → i in G
2. λij = λkl whenever edges j → i and l → k have the same colour

and the diagonal matrix Ω ∈ Rm×m has positive entries and satisfies

(3) ωii = ωjj if vertices i and j have the same colour.

The model is given by the linear structural equation y = Λy + ε, where ε ∼
N(0,Ω).
Example 2.2. Consider the coloured graph 1 3 2 from Example 0.1.
The RDAG model is parametrised by matrices

Λ ∈

⎧⎨⎩
⎛⎝0 0 λ

0 0 λ
0 0 0

⎞⎠ : λ ∈ R

⎫⎬⎭ and Ω ∈

⎧⎨⎩
⎛⎝ω 0 0

0 ω 0
0 0 ω′

⎞⎠ : ω, ω′ > 0

⎫⎬⎭ .

We will parametrise the RDAG model on (G, c) via the set

A(G, c) :=
{
a ∈ GLm

∣∣∣∣ aij = 0 for i �= j with j �→ i in G
aij = akl whenever c(ij) = c(kl)

}
. (7)

Note that A(G, c) is contained in the set A(G) from (6): the zero patterns of
A(G) and A(G, c) are the same, and A(G, c) has further equalities imposed by
the colouring c. Before we characterise which RDAG models can be parametrised
by A(G, c), we pause to motivate the use of this alternative parametrisation.
Remark 2.3 (Motivation for the parametrisation via A(G, c)). The RDAG model
on (G, c) will be the set MA as in (1), where A := A(G, c). This point of view
is motivated by connections to invariant theory for transitive DAG models in
[2, Section 5]. The alternative parametrisation has useful consequences. First,
it leads to a condition on the graph colouring, called compatibility, which is
indispensable in our results of Sections 4 and 5. Second, it is helpful when
comparing directed and undirected models in Section 3. Finally, it enables us to
generalise the connections to invariant theory from [2] to the setting of RDAGs,
see Appendices A and B.
Example 2.4. Returning to the example 1 3 2 , we have

A(G, c) =

⎧⎨⎩
⎛⎝d1 0 r

0 d1 r
0 0 d2

⎞⎠ : d1, d2 �= 0, r ∈ R

⎫⎬⎭ .

We now introduce a natural assumption on a colouring.
Definition 2.5. A colouring c of a directed graph is compatible, if:

(i) Vertex and edge colours are disjoint; and
(ii) If edges j → i and l → k have the same colour, then the child vertices i

and k also have the same colour, i.e. c(ij) = c(kl) =⇒ c(i) = c(k).

Note that compatibility does not impose equality of parent colours c(j) and c(l).



3976 V. Makam et al.

Remark 2.6 (Motivation for compatibility). In an RDAG model, we do not
impose equalities between Ω and Λ. The entry ωii is a variance, while λkl is a
regression coefficient, so setting them to be equal would be difficult to interpret.
Hence the vertex and edge colours can always be thought of as disjoint, as
in compatibility condition (i). Compatibility condition (ii) has the statistical
interpretation that the same regression coefficient appearing in an expression
for two variables implies that their error variances agree. This extra assumption
is indispensable in many of our results and proofs. It is a directed analogue to
the condition appearing in [22, Proposition 1].

The first use of compatibility condition (ii) is in relating an RDAG model on
(G, c) to the set A(G, c). As in (1), we consider the model

MA(G,c) =
{
aTa | a ∈ A(G, c)

}
.

Proposition 2.7. Fix a coloured DAG (G, c). The RDAG model on (G, c) is
equal to MA(G,c) if and only if the colouring c is compatible.

Before proving the proposition, we recall two matrix decompositions. The
LDL decomposition writes a positive definite matrix as Ψ = LDLT, where
D is diagonal with positive entries, and L is lower triangular and unipotent
(i.e. has ones on the diagonal). The LDL decomposition is closely related to
the factorisation Ψ = (id − Λ)TΩ−1(id − Λ) from (5): the LDL decomposition
is D = Ω−1 and L = (id − Λ)T. Hence an RDAG model imposes zeros and
symmetries in the LDL decomposition.

The second matrix decomposition is the Cholesky decomposition. It writes a
postive definite matrix as the product Ψ = aTa, where a is upper triangular with
positive diagonal entries. The model MA(G,c) imposes zeros and symmetries in
the Cholesky decomposition, as follows.

Lemma 2.8. Fix a coloured DAG (G, c) with compatible colouring c. Then
MA(G,c) is the set of matrices with Cholesky decomposition aTa for some a ∈
A(G, c).

Proof. The set MA(G,c) consists of all matrices Ψ of the form aTa for some
a ∈ A(G, c), see (1). The matrix a is upper triangular by the structure of G.
To get the Cholesky decomposition, it remains to modify a to have positive
diagonal entries. We replace a by ka, where k is the diagonal matrix with kii = 1
if aii > 0 and kii = −1 if aii < 0. Then ka flips the sign of all rows of a
with negative diagonal entry, hence it has all diagonal entries strictly positive.
The compatibility of the colouring ensures that aij = akl can only hold in
A(G, c) if aii = akk. Hence multiplying by k doesn’t break any edge compatibility
conditions, and ka ∈ A(G, c).

The LDL and Cholesky decompositions are both unique, since Ψ is (strictly)
positive definite. They are related by:

Cholesky from LDL: a = D1/2LT,
LDL from Cholesky: D = diag(a2

11, . . . , a
2
mm), LT = D−1/2a.
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The following lemma is proved by comparing zero patterns in the two decom-
positions.

Lemma 2.9. The DAG model on G is the model MA(G).

Proof. The LDL decomposition of Ψ = (id−Λ)TΩ−1(id−Λ) is given by D = Ω−1

and L = (id − Λ)T. The Cholesky decomposition has

a = D1/2LT = Ω−1/2(id − Λ), i.e. aij =
{
ω
−1/2
ii if i = j

−ω
−1/2
ii λij if i �= j.

(8)

We have containment of the DAG model inside MA(G), because if j �→ i in G,
then λij = 0 and therefore aij = 0. Conversely, given Ψ ∈ MA(G), its Cholesky
decomposition is aTa for some a ∈ A(G) by Lemma 2.8, since the colouring
that assigns all vertices and edges different colours satisfies A(G) = A(G, c) and
is compatible. Hence aij = 0 for i �= j unless j → i in G. We therefore have
(id − Λ)ij = Lji = 1

aii
aij = 0, where aii �= 0, and hence λij = 0.

We prove Proposition 2.7, by comparing symmetries in the two decomposi-
tions.

Proof of Proposition 2.7. Given some Ψ in the RDAG model, we show that its
Cholesky decomposition is Ψ = aTa with a ∈ A(G, c). By Lemma 2.9, a ∈ A(G)
and it remains to show that the colour conditions hold, i.e. that aij = akl
whenever c(ij) = c(kl). If c(ii) = c(kk), then ωii = ωkk since Ω respects the
colouring. This shows that aii = akk, using (8). If c(ij) = c(kl) for edges j → i
and l → k, then λij = λkl since Λ respects the colouring and, moreover, ωii =
ωkk by compatibility. This implies aij = akl, by (8).

Conversely, given Ψ ∈ MA(G,c), we show that Ψ is in the RDAG model. The
Cholesky decomposition is Ψ = aTa for a ∈ A(G, c), by Lemma 2.8. The entries
of Ω and Λ are ωii = a−2

ii and λij = −a−1
ii aij , by (8), which satisfy the RDAG

model conditions. Hence a compatible colouring implies the equivalence of the
RDAG model on (G, c) and MA(G,c).

If the colouring is not compatible, we exhibit some Ψ in the RDAG model that
is not in MA(G,c). Let Ψ = aTa be the Cholesky decomposition. If there is some
a′ ∈ A(G, c) with Ψ = (a′)Ta′ then, similar to the proof of Lemma 2.8, there is
a diagonal matrix o with entries ±1 with oa′ = a. First, if Definition 2.5(i) does
not hold, there is a vertex k and an edge j → i with c(k) = c(ij). The RDAG
model imposes no relation between ωkk and λij , so let Ψ be given by some Ω and
Λ with ωkk = 1 and λij = 0. Then okka

′
kk = akk = 1 and oiia

′
ij = aij = 0, by (8).

Hence, a′kk �= 0 = a′ij and therefore Ψ /∈ MA(G,c). Second, if Definition 2.5(ii)
does not hold, then there exist edges j → i and l → k with c(ij) = c(kl) but
c(i) �= c(k). We choose Ψ given by some Ω and Λ with ωii = 1, ωkk = 1

4 and
λij = λkl = −1. Then oiia

′
ij = aij = 1 and okka

′
kl = akl = 2, by (8). Thus,

|a′ij | = 1 �= 2 = |a′kl| and, again, we cannot have Ψ ∈ MA(G,c).

Example 2.10. We return to the graph 1 3 2 from Examples 2.2 and
2.4. The colouring is compatible, because the set {blue,black} of vertex colours
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is disjoint from the edge colour set {red}, and the children of both red edges
have the same colour. Hence Proposition 2.7 shows that the RDAG model is
equal to

MA(G,c) =

⎧⎨⎩
⎛⎝ d2

1 0 rd1
0 d2

1 rd1
rd1 rd1 2r2 + d2

2

⎞⎠ ∣∣∣∣∣ d1, d2 �= 0

⎫⎬⎭ . (9)

Remark 2.11. RDAG models can also be defined over the complex numbers.
Here, the parameters Λ can be complex, and we obtain a subset of PDm by
taking conjugate transposes, Ψ = (id−Λ)†Ω−1(id−Λ). For the MA character-
isation, we replace aTa by a†a. Many of our results and proofs can be modified
to hold in the complex setting. We return to complex RDAGs in Section B.2.

3. Comparison of RDAG and RCON models

Given a directed graph, we can forget the direction of each edge to give an
undirected graph. We characterise when the RDAG model on the coloured di-
rected graph is equal to the undirected model on the corresponding coloured
undirected graph in Theorem 3.4. We begin by comparing RDAG and RCON
models in two examples.
Example 3.1 (RDAG = RCON). We revisit our example 1 3 2 . The
corresponding RCON model has coloured undirected graph 1 3 2 ,
with blue (circular) vertices {1, 2}, black (square) vertex 3, and red edges. By
Definition 1.3, the RCON model is the set of positive definite matrices of the
form

Ψ =

⎛⎝δ1 0 	
0 δ1 	
	 	 δ2

⎞⎠ .

Since the colouring is compatible, the RDAG model is equal to MA(G,c) from (9).
Any matrix in MA(G,c) satisfies the equalities for the RCON model, so we have
containment of the RDAG model in the RCON model. Conversely, given Ψ in
the RCON model,

det(Ψ) = δ2
1(δ2 − 2	2δ−1

1 ) > 0 hence δ2 − 2	2δ−1
1 > 0,

since Ψ is positive-definite. Positive definiteness of Ψ also implies δ1, δ2 > 0.
We obtain real numbers d1 :=

√
δ1, r := 	/d1 and d2 :=

√
δ2 − 2	2δ−1

1 , which
shows that Ψ is of the form in (9).
Example 3.2 (RDAG �= RCON). Consider the RDAG model on 1 2 , the
graph with two blue (circular) vertices {1, 2} and a red edge. The colouring is
compatible, so by Proposition 2.7 the RDAG model is MA(G,c), where

A(G, c) =
{(

d r
0 d

) ∣∣∣∣ d �= 0
}
.
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The corresponding RCON model is given by the coloured undirected graph
1 2 . The RCON model consists of all Ψ ∈ PD2 with Ψ11 = Ψ22 and
Ψ12 = Ψ21, by Definition 1.3. Neither model is contained in the other: the
RCON model contains (

4 2
2 4

)
=

(
2 0
1

√
3

)(
2 1
0

√
3

)
but the diagonal entries 2 and

√
3 in the Cholesky decomposition do not satisfy

the conditions for A(G, c). Conversely, the matrix(
1 0
2 1

)(
1 2
0 1

)
=

(
1 2
2 5

)
is in the RDAG model, but not the RCON model, since Ψ11 �= Ψ22.

To characterize when an RDAG model is equal to its corresponding RCON
model, we give two constructions of coloured graphs obtained from some (G, c),
one that is built from a vertex and the other from an edge. As before, G = (I, E).

Fix a vertex i ∈ I. Recall that the children of i are the vertices k with
(i → k) ∈ E. Consider the subgraph on vertex set {i} ∪ ch(i) with edges i → k
for each k ∈ ch(i), and colours inherited from (G, c). We denote the subgraph
by Gi.

Now fix an edge (j → i) ∈ E. Consider vertices {i} ∪ (ch(i) ∩ ch(j)) with
vertex colours inherited from (G, c). For each k ∈ ch(i) ∩ ch(j), we introduce
two edges i → k, one with colour c(ki) and the other with colour c(kj). We
denote this graph by G(j→i).
Example 3.3. Consider the graph1

5

1 2 3

4

The vertex construction at vertex 5 and edge construction at edge 5 → 4 are:

G5 =
5

1 2 3 4

G(5→4) = 1 2 3 4

Given a DAG G, its corresponding undirected graph is denoted Gu. Similarly,
given a coloured DAG (G, c), its corresponding undirected coloured graph (where

1With three vertex colours (blue/circular, black/square, and purple/triangular) and four
edge colours (red/solid, green/squiggly, orange/dashed, and brown/dotted).
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the colour of a directed edge becomes the colour of the undirected edge) is
(Gu, c). Two coloured graphs (G, c) and (G′, c′) are isomorphic if the coloured
graphs are the same up to relabelling vertices. We denote an isomorphism by
G � G′ when the colouring is clear. An unshielded collider of a DAG G is an
induced subgraph j → i ← k that has no edge between j and k.

Theorem 3.4. Consider the RDAG model on (G, c) where colouring c is com-
patible. The RDAG model on (G, c) is equal to the RCON model on (Gu, c) if
and only if:

(a) G has no unshielded colliders;
(b) Gi � Gj for every pair of vertices i, j of the same colour; and
(c) G(j→i) � G(l→k) for every pair of edges j → i and l → k of the same

colour.

We prove Theorem 3.4 at the end of this section. It is proved via Proposi-
tions 3.8 and 3.9. First, we illustrate Theorem 3.4 in two examples.
Example 3.5. Our running example 1 3 2 satisfies the conditions of
Theorem 3.4: it has no unshielded colliders, the graphs G1 and G2 both consist
of a single blue vertex, and since ch(3) ∩ ch(1) = ∅ and ch(3) ∩ ch(2) = ∅ hold,
the graphs G(3→1) and G(3→2) consist only of a single blue vertex. The RDAG
and RCON models are therefore equivalent, as we saw in Example 3.1.
Example 3.6. The following graph also satisfies the conditions of Theorem 3.4:

9 10

1 2 3 4 5 6

7 8

(a) It has no unshielded colliders.
(b) For the black (square) vertices, the graphs Gi consist of one black vertex.

For the blue (circular) vertices, the Gi are isomorphic to

1 2 3 4

The purple (triangular) vertices have Gi isomorphic to G5 from Exam-
ple 3.3.

(c) All edges j → i have ch(j)∩ch(i) = ∅, except for the two brown edges. For
these, G(10→8) and G(9→7) are both isomorphic to G(5→4) from Example 3.3.

Hence the RDAG model on this coloured graph is equal to the RCON model
on the underlying undirected graph. Note that the two connected components
of (G, c) are not isomorphic. We will see why this is not required for the proof
of Theorem 3.4, i.e. why we can collapse vertices i and j in the definition of
G(j→i).
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One ingredient to our proof of Theorem 3.4 is the condition for a DAG model
to be equal to its corresponding undirected graphical model.

Theorem 3.7 (Gaussian special case of [3, Theorem 3.1], [18, Theorem 5.6]).
The DAG model on G is equal to the undirected Gaussian graphical model on
Gu if and only if G has no unshielded colliders.

We now prove Theorem 3.4 via two propositions.

Proposition 3.8. Let (G, c) be a coloured DAG with compatible colouring c.
The RDAG model on (G, c) is contained in the RCON model on (Gu, c) if and
only if

(a) G has no unshielded colliders;
(b) Gi � Gj for every pair of vertices i, j of the same colour; and
(c) G(j→i) � G(l→k) for every pair of edges j → i and l → k of the same

colour.

Proof. Since the colouring is compatible, the RDAG model is MA(G,c), by
Proposition 2.7. Let a ∈ A(G, c) be a general matrix. We think of it as hav-
ing indeterminate entries, one for each vertex colour and one for each edge
colour.

If the RDAG model is contained in the RCON model, we must have (aTa)ij =
0 whenever aij = aji = 0. This holds iff there are no unshielded colliders in
G, by Theorem 3.7. Moreover, certain equalities must hold on aTa. We have
vertex colour condition (aTa)ii = (aTa)jj whenever c(i) = c(j) and edge colour
condition (aTa)ij = (aTa)kl whenever c(ij) = c(kl). These give the polynomial
identities

a2
ii +

∑
k∈ch(i)

a2
ki = a2

jj +
∑

l∈ch(j)

a2
lj whenever c(i) = c(j) (10)

aiiaij +
m∑

p�=i,j

apiapj = akkakl +
m∑

q �=k,l

aqkaql whenever c(ij)=c(kl). (11)

We show that (10) is equivalent to (b) and that (11) is equivalent to (c).
Given two vertices i, j with c(i) = c(j), we have a2

ii = a2
jj . The sums in (10)

are equal if and only if |ch(i)| = |ch(j)| and the edge colours in Gi and Gj agree
(counted with multiplicity). By compatibility, the vertex colours also agree,
hence (10) is equivalent to Gi � Gj .

Next, we consider (11). No terms ajiajj and alkall appear, since there is
no edge i → j or k → l. The compatibility of the colouring gives aii = akk.
Hence aiiaij = akkakl. A summand in (11) vanishes unless p ∈ ch(i) ∩ ch(j) or
q ∈ ch(k)∩ch(l). The sums are equal if and only if |ch(i)∩ch(j)| = |ch(k)∩ch(l)|
and the graphs G(j→i) and G(l→k) are isomorphic on their edge colours. By
compatibility of the colouring, the vertex colours of the children also agree and
c(i) = c(k), hence (11) is equivalent to G(j→i) � G(l→k).

Proposition 3.9. Let (G, c) be a coloured DAG with compatible colouring c
such that
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(a) G has no unshielded colliders;
(b) Gi � Gj for every pair of vertices i, j of the same colour; and
(c) G(j→i) � G(l→k) for every pair of edges j → i and l → k of the same

colour.

Then the RCON model on (Gu, c) is contained in the RDAG model on (G, c).
Proof. Given a matrix Ψ in the RCON model on (Gu, c), we show that it is
contained in the RDAG model on (G, c) by showing that the Cholesky decom-
position Ψ = aTa satisfies the conditions of the set A(G, c) in (7). The matrix a
is upper triangular. Completing it one column at a time shows that its entries
are

al,l =
(
Ψl,l −

∑
p∈ch(l)

a2
p,l

)1/2
(12)

ai,j =
(
Ψi,j −

∑
p∈ch(i)∩ch(j)

ap,iap,j

)
a−1
i,i . (13)

Note that the expression under the square root in (12) is a positive real number,
see [40, Lecture 23]. We need to show that aij = 0 for i �= j with j �→ i (the
support conditions) and that aij = akl whenever c(ij) = c(kl) (the colour
conditions).

First we show that a satisfies the support conditions of A(G, c). If there is
no edge from j to i in G, then Gu has no edge between i and j, so Ψi,j =
0. Moreover, all products ap,iap,j vanish, otherwise i → p ← j would be an
unshielded collider. Hence aij = 0 if j �→ i in G.

Next, we show that a satisfies the colour conditions of A(G, c). We prove this
inductively over the top left k×k blocks of a. If k = 1 there are no symmetries to
check. We assume that the top left k×k submatrix of a satisfies the symmetries.
For the induction step, we compare a1,k+1, a2,k+1, . . . , ak+1,k+1 with each other
and with ai,j , i, j ∈ [k].

If there is an edge (k + 1) → 1 with same colour as j → i for i, j ∈ [k],
we need to show that a1,k+1 = ai,j . First, a11 = aii by compatibility and
the induction hypothesis, and Ψi,j = Ψ1,k+1 since Ψ is in the RCON model.
Moreover, all apq for p, q ∈ [k] respect the symmetries. Since G(j→i) � G(k+1→1),
the expressions (13) for ai,j and a1,k+1 are equal. Proceeding inductively, we
show that all entries a2,k+1, . . . , ak,k+1 respect the symmetries of c.

Finally, if vertex k+ 1 has same colour as vertex l ∈ [k], we show ak+1,k+1 =
al,l. We have Gl � Gk+1 by assumption (b) and Ψl,l = Ψk+1,k+1, since Ψ is in
the RCON model. Furthermore, we have shown that all ap,q, where p ∈ [k] and
q ∈ [k + 1], satisfy colouring c. Hence (12) implies al,l = ak+1,k+1.

Proof of Theorem 3.4. If any of conditions (a),(b), and (c) do not hold, this rules
out containment of the RDAG model in the RCON model, by Proposition 3.8,
and hence rules out the two models being equal. If conditions (a),(b),(c) hold,
we have containment of the RDAG model inside the RCON model (by Propo-
sition 3.8) and the reverse containment (by Proposition 3.9).
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4. MLE: existence, uniqueness, and an algorithm

In this section we characterise the existence and uniqueness of the MLE in
an RDAG model via linear dependence conditions on certain matrices. Our
description specialises to give the characterisation of existence and uniqueness
of the MLE in a usual DAG model in terms of linear dependence among the
rows of the sample matrix.

Let αs be the number of vertices of colour s. For an edge j → i, vertex j is
called the source of the edge and i is called the target. The parent relationship
colours are the colours of all edges with a target of colour s:

prc(s) = {c(ij) | there exists j → i in G with c(i) = s}, βs := |prc(s)|.
A sample matrix is Y ∈ Rm×n; its m rows index the vertices in G, and its
columns are the n samples. For each vertex colour in G we define an augmented
sample matrix.
Definition 4.1. The augmented sample matrix of sample matrix Y and vertex
colour s, denoted MY,s, has size (βs+1)×αsn. We construct it row by row. Each
row consists of αs blocks, each a vector of length n. For notational simplicity,
we assume for now that the vertices of colour s are the set {1, 2, . . . , αs} ⊂ I.
Then the top row of MY,s is(

Y (1) Y (2) . . . Y (αs)
)
∈ Rαsn,

where Y (i) ∈ Rn is the ith row of sample matrix Y ∈ Rm×n. The other rows of
MY,s are indexed by the parent relationship colours prc(s). The row indexed by
t ∈ prc(s) is ⎛⎜⎜⎝ ∑

1←j
c(1j)=t

Y (j)
∑
2←j

c(2j)=t

Y (j) · · ·
∑
αs←j

c(αsj)=t

Y (j)

⎞⎟⎟⎠ .

Note that the sum at the kth block is zero if there are no j → k of colour t. Let
M

(i)
Y,s denote the ith row of MY,s, where we index from 0 to βs.

Example 4.2. Our running example 1 3 2 has two augmented sample
matrices, one for each vertex colour:

MY,◦ =
(
Y (1) Y (2)

Y (3) Y (3)

)
◦
→ ∈ R2×2n and MY,� =

(
Y (3)) ∈ R1×n. (14)

Example 4.3. The RDAG model on the coloured DAG

1

3 4 5 6 7

2
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has MY,◦ =

⎛⎜⎜⎜⎜⎜⎜⎝

Y (1) Y (2)

Y (3) 0
0 Y (3) + Y (5) + Y (6)

Y (5) Y (4)

Y (6) 0
Y (4) + Y (7) 0

⎞⎟⎟⎟⎟⎟⎟⎠
◦

Theorem 4.4. Consider the RDAG model on (G, c) where colouring c is com-
patible, and fix sample matrix Y ∈ Rm×n. The following possibilities characterise
maximum likelihood estimation given Y :

(a) �Y unbounded from above ⇔ ∃ s ∈ c(I) : M (0)
Y,s ∈ span

{
M

(i)
Y,s : i ∈ [βs]

}
(b) MLE exists ⇔ ∀ s ∈ c(I) : M (0)

Y,s /∈ span
{
M

(i)
Y,s : i ∈ [βs]

}
(c) MLE exists uniquely ⇔ ∀ s ∈ c(I) : MY,s has full row rank.

We prove Theorem 4.4 in Section 4.2.
Example 4.5. For our running example 1 3 2 , Theorem 4.4 says that
the MLE exists uniquely provided Y (3) �= 0 and

(
Y (1) Y (2)) is not parallel to(

Y (3) Y (3)). This holds almost surely as soon as we have one sample, as we
mentioned in Example 0.1.
Example 4.6. Returning to Example 4.3, the MLE given Y exists provided
MY,� =

(
Y (3) · · · Y (7)) �= 0, and

(
Y (1) Y (2)) is not in the span of the

other rows of MY,◦. The MLE is unique if and only if MY,◦ is full row rank,
since this also implies MY,� �= 0.

The proof of Theorem 4.4 gives Algorithm 1 for finding the MLE in an RDAG
model with compatible colouring. The MLE is returned as entries of the matrices
Λ and Ω. We give the MLE in a closed-form formula, as a collection of least
squares estimators.
Remark 4.7. In Algorithm 1, the entries of Ω are given as {ωss : s ∈ c(I)}. The
entries of Λ are returned as {λs,t : s ∈ c(I), t ∈ prc(s)}, which equals the set
of edge colours by compatibility, since edge colour t only appears in prc(s) for
one s.

The proof of Theorem 4.4 directly gives a description of the set of MLEs.

Corollary 4.8. Consider the RDAG model on (G, c) where colouring c is com-
patible, with sample matrix Y ∈ Rm×n. If (Λ,Ω) and (Λ′,Ω′) are two MLEs,
then Ω = Ω′ and∑

t∈prc(s)

(λs,t − λ′
s,t)M

(t)
Y,s = 0, for all s ∈ c(I).

4.1. Usual DAG models

We recall the characterisation of MLE existence and uniqueness for usual Gaus-
sian graphical models, as linear dependence conditions on the sample matrix.
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Algorithm 1: Computing the MLE for an RDAG model
input : A coloured DAG (G, c) and sample matrix Y
output: An MLE given Y in the RDAG model on (G, c), if one exists
for s ∈ c(I) do

αs := |c−1(s)|;
βs := |prc(s)|;
construct matrix MY,s ∈ R(βs+1)×αsn;
PY,s := orthogonal projection of M(0)

Y,s onto span{M(t)
Y,s : t ∈ [βs]};

if PY,s = M
(0)
Y,s then

return MLE does not exist;
else

coefficients λs,t are such that PY,s =
∑

t∈prc(s) λs,tM
(t)
Y,s;

ωss := (αsn)−1‖PY,s −M
(0)
Y,s‖2;

end
end
return MLE for Λ and Ω

For a DAG G on m nodes, and n data samples, the sample matrix is Y ∈ Rm×n.
For a node i in G we denote by Y (i) the ith row of Y , by Y (pa(i)) the sub-matrix
of Y with rows indexed by the parents of i in G, and by Y (pa(i)∪i) the sub-matrix
of Y with rows indexed by node i and its parents.

Theorem 4.9. Consider the DAG model on G, with m nodes, and fix sample
matrix Y ∈ Rm×n. The following possibilities characterise maximum likelihood
estimation given Y :

(a) �Y unbounded from above ⇔ ∃ i ∈ [m] : Y (i) ∈ span
{
Y (j) : j ∈ pa(i)

}
(b) MLE exists ⇔ ∀ i ∈ [m] : Y (i) /∈ span

{
Y (j) : j ∈ pa(i)

}
(c) MLE exists uniquely ⇔ ∀ i ∈ [m] : Y (pa(i)∪i) has full row rank.

The above result is known to experts working in the area. Closely related
results are in [23, Section 5.4.1] and [12], but we are not aware of a statement
in the literature that matches the above. The result follows from viewing maxi-
mum likelihood estimation in a DAG as a sequence of regression problems. The
acyclicity ensures that the sub-problems are uncoupled. We give a proof for
completeness and to see its generalisation in Theorem 4.4.

Proof. We denote the entries of the MLEs Λ and Ω by λ̂ij and ω̂kk. The negative
of the log-likelihood �Y , in terms of the parameters ωii and λij , is

m∑
i=1

⎛⎝logωii + 1
nωii

‖Y (i) −
∑

j∈pa(i)

λijY
(j)‖2

⎞⎠ .

We minimise the above expression. Each parameter only appears in one sum-
mand. In the ith summand, the λ̂ij always exist: they are coefficients of each
Y (j) in the orthogonal projection of Y (i) onto the span of {Y (j) : j ∈ pa(i)}.
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The λ̂ij are unique if and only if Y (pa(i)) has full row rank. Let ζi be the residual
‖Y (i)−

∑
j∈pa(i) λ̂ijY

(j)‖2. Let ω̂ii minimise log(ωii)+ ζi
nωii

. If ζi = 0, equivalently
if Y (i) ∈ span

{
Y (j) : j ∈ pa(i)

}
, then in the limit ωii → 0, the log-likelihood

tends to infinity and ω̂ii does not exist. Otherwise, the minimum is attained
uniquely at ω̂ii = ζi/n. Combining these cases gives the theorem.

4.2. Proof of Theorem 4.4

The proof of Theorem 4.4 will be similar to the proof for uncoloured models in
Theorem 4.9. We start by proving the following lemma.

Lemma 4.10. Fix α > 0 and, for γ ≥ 0, consider the family of functions

fγ : R>0 → R, x �→ α log(x) + γ

x
.

(i) If γ = 0, then fγ is neither bounded from below nor bounded from above.
(ii) If γ > 0, then fγ attains a global minimum at x0 = γ

α with function value
fγ( γ

α ) = α(log(γ) − log(α) + 1).
(iii) Given γ1 ≥ γ2 > 0, we have fγ1(

γ1
α ) ≥ fγ2(

γ2
α ) at the global minima.

Proof. Part (i) follows from the properties of log. To prove part (ii), one com-
putes f ′

γ(x) = α
x − γ

x2 for x > 0. For x > 0 we have

f ′
γ(x) = 0 ⇔ α

x
= γ

x2 ⇔ αx = γ ⇔ x = γ

α
.

Thus x0 := γ
α is the only possible local extremum of fγ . For x > 0,

f ′
γ(x) > 0 ⇔ α

x
>

γ

x2 ⇔ αx > γ ⇔ x >
γ

α
.

and similarly one has f ′
γ(x) < 0 if and only if x < γ

α = x0. Therefore, x0 is a
global minimum of fγ . One directly verifies the function value for fγ(x0), and
so part (iii) follows from the monotonicity of the logarithm.

Proof of Theorem 4.4. Since colouring c is compatible, the RDAG model equals
MA(G,c), by Proposition 2.7. That is, for Ψ = (id−Λ)TΩ−1(id−Λ) in the RDAG
model, the matrix a = Ω−1/2(id − Λ) is in MA(G,c) and satisfies Ψ = aTa. As
usual, let αs := |c−1(s)| and βs := |prc(s)|. The entry of Ω at vertex colour
s is denoted ωss and the edge colour entries of Λ that point towards colour s
are labelled by λs,t, t ∈ [βs]. Using the construction of the matrices MY,s ∈
R(βs+1)×αsn and that det(id − Λ) = 1, we compute

−�Y (Ψ) = − log det(Ψ) + tr(ΨSY ) = log det(Ω) + 1
n
‖a · Y ‖2

= log
( ∏

s∈c(I)

ωαs
ss

)
+ 1

n

∑
s∈c(I)

‖ω−1/2
ss

(
M

(0)
Y,s −

∑
t∈[βs]

λs,tM
(t)
Y,s

)
‖2

=
∑

s∈c(I)

αs log(ωss) + 1
nωss

‖M (0)
Y,s −

∑
t∈[βs]

λs,tM
(t)
Y,s‖2.

(15)
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An MLE is a minimiser of the above expression. Each parameter occurs in
exactly one of the summands over s ∈ c(I), because the prc(s) partition the
edge colours by compatibility. We therefore minimise each summand separately.
By Lemma 4.10(iii) we can first determine λ̂s,t, t ∈ [βs] that minimise

‖M (0)
Y,s −

∑
t∈[βs]

λs,tM
(t)
Y,s‖2. (16)

Such λ̂s,t always exist: they are coefficients in the orthogonal projection PY,s of
M

(0)
Y,s onto span

{
M

(t)
Y,s : t ∈ [βs]

}
; i.e.,

PY,s =
∑
t∈[βs]

λ̂s,tM
(t)
Y,s.

Furthermore, λ̂s,t, t ∈ [βs] are unique if and only if the vectors M (t)
Y,s, t ∈ [βs] are

linearly independent. Denote the minimum value of (16) by ζs. We will apply
Lemma 4.10 several times with γs := ζs/n.

If M (0)
Y,s ∈ span

{
M

(t)
Y,s : t ∈ [βs]

}
for some s, then ζs = 0 and the summand

αs log(ωss)+ζs/(nωss) is not bounded from below for ωss > 0, by Lemma 4.10(i).
Hence �Y is not bounded from above, e.g. by setting ωs′,s′ = 1 and λs′,t′ = 0
for all s′ ∈ c(I) \ {s} and all t′ ∈ [βs′ ]. This proves “⇐” of (a).

If M
(0)
Y,s /∈ span

{
M

(t)
Y,s : t ∈ [βs]

}
, equivalently ζs > 0, then the summand

αs log(ωss)+ζs/(nωss) has unique minimiser ω̂ss = ζs/(nαs), by Lemma 4.10(ii).
Hence, an MLE exists if ζs > 0 for all s ∈ c(I), which proves “⇐” in (b). As the
right-hand sides of (a) and (b) are opposites, we have proved (a) and (b).

Since the ω̂ss are uniquely determined (if they exist), an MLE (if it exists)
is unique if and only if for all s ∈ c(I) the vectors M

(t)
Y,s, t ∈ [βs] are linearly

independent. In combination with the condition for MLE existence from part
(b) we deduce (c).

Remark 4.11 (Comparison with usual DAG models). The framework of RDAG
models includes usual DAG models as a special case; namely, when each colour
is used only once. In this case, Theorem 4.4 specialises to Theorem 4.9. We
see in the next section that imposing colours in a DAG reduces the threshold
number of samples required for existence and uniqueness of the MLE.

4.3. Illustrative examples

In this section we apply RDAG models to some small illustrative examples. We
first apply our running example to model the effect of a mother’s height on her
two daughters’ heights.
Example 4.12. The RDAG model on coloured graph 1 3 2 is given by

y1 = λy3 + ε1, y2 = λy3 + ε2, y3 = ε3, ε1, ε2 ∼ N(0, ω), ε3 ∼ N(0, ω′).
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Let variable 3 be the height (in cm) of a woman and let variables 1 and 2 be,
respectively, the heights of her younger and older daughter. Vertices 1 and 2
both being blue indicates that, conditional on the mother’s height, the variance
of the daughter’s heights is the same. The edges both being red encodes that
the dependence of a daughter’s height on the mother’s height is the same for
both daughters.

We saw in Example 4.5 that the MLE exists almost surely given one sample.
We use Algorithm 1 to find the MLE, given one sample where the the younger
daughter’s height is 159.75cm, the older daughter’s height is 161.56, the mother’s
height is 155.32, and the population mean height is 163.83cm. Mean-centring
the data gives (

Y (1) Y (2) Y (3)) =
(
−4.08 −2.27 −8.51

)
.

The only black vertex is 3, and it has no parents, hence ω′ = ‖Y (3)‖2 = 72.42.
The orthogonal projection of

(
Y (1) Y (2)) onto span

{(
Y (3) Y (3))} has coeffi-

cient λ = 0.37 and residual ω =
[
(−3.175+4.08)2 +(−3.175+2.27)2

]
/2 = 0.82.

As we would expect, the regression coefficient λ is positive and the variance
of the daughters’ heights conditional on the mother’s height is lower than the
variance of the mother’s height.

We now consider multiple measurements taken in each generation.
Example 4.13. We consider measurements of the snout length and head length
of dogs. These are the first two of the seven morphometric parameters in the
study of clinical measurements of dog breeds in [28]. We compare two RDAG
models:

1 5 3

2 6 4

vs.
1 5 3

2 6 4

The black/square vertices 1 and 3 are the snout lengths of the two offspring.
Blue/circular vertices 2 and 4 are their head lengths. The purple/triangular
vertex 5 is the snout length of the parent and grey/pentagonal vertex 6 is the
head length of the parent. The edges encode the dependence of the offsprings’
traits on those of the parents.

Maximum likelihood estimation in the left hand model is two copies of Ex-
ample 4.12, one on the three odd variables, and one on the three even variables.
Thus, given one sample, a unique MLE exists almost surely. For the right hand
model, Theorem 4.4 says an MLE exists provided Y (5) �= 0, Y (6) �= 0 and nei-
ther

(
Y (1) Y (3)) nor

(
Y (2) Y (4)) are in span

{(
Y (5) Y (5)) , (Y (6) Y (6))}.

Hence an MLE exists almost surely with one sample. Moreover, the augmented
sample matrices MY,◦ and MY,� have full row rank almost surely provided
n ≥ 2, hence the MLE exists uniquely with two samples, by Theorem 4.4.

The vertex colours in an RDAG model could correspond to colours in an
experiment, as follows. Fluorescent reporters can be used to take measurements
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in a cell. In [37], the authors quantify data in a single living bacteria using
fluorescent reporters in red, cyan, yellow, and green, see [37, Figure 2a]. Given
such measurements taken for a parent cell and its daughter cells, we could
consider analogues of Example 4.13 in which, for example, the red fluorescence
in a daughter cell only depends on the red fluorescence in the parent, or larger
models in which there can also be dependence on the fluorescence of other
colours.

5. Maximum likelihood thresholds

In the previous section we gave a characterisation of the existence and unique-
ness of the MLE based on linear independence conditions. Here we turn this into
results that depend only on the coloured graph, and that hold for a generic sam-
ple matrix. We give upper and lower bounds on the thresholds for almost sure
existence and uniqueness of the MLE. The bounds hold whenever the sample
matrix doesn’t have extra linear dependencies among its rows.

For a fixed number of samples, the MLE in an RDAG model may exist but
not be unique almost surely, which cannot happen in an uncoloured model.
In fact, Example 5.5 gives a family of models for which the gap between the
existence and uniqueness thresholds becomes arbitrarily large.

As well as assuming compatibility of the colouring, we often assume in this
section that there are no edges between vertices of the same colour. Some of
our bounds involve the notion of generic rank. For this, a set Z ⊆ RN is
Zariski-closed if it is the common zero locus of some polynomials p1, . . . , pk ∈
R[x1, . . . , xN ]; see [27, Section 2.1] or [39, Section 3.2]. A property holds for
generic Y ∈ Rm×n if it holds for all Y ∈ Rm×n\Z where Z � Rm×n is
Zariski-closed. A generic property holds almost surely with respect to absolutely
continuous measures, since a Zariski-closed Z � Rm×n has Lebesgue measure
zero.
Definition 5.1. Let MY be a matrix whose entries are linear combinations of
the entries of a matrix Y . The generic rank of MY is its rank for generic Y .

For Y ∈ Rm×n, we often study the generic rank of MY by considering it as
a symbolic matrix whose entries are linear forms in the mn indeterminates Yij .
Example 5.2. The graph2

1

3 4 5 6 7

2

has MY,◦ =

⎛⎜⎜⎜⎜⎜⎜⎝

Y (1) Y (2)

Y (3) Y (3)

Y (4) Y (4)

Y (5) Y (5)

Y (6) Y (6)

Y (7) Y (7)

⎞⎟⎟⎟⎟⎟⎟⎠
◦

2With two vertex colours (blue/circular and black/square) and five edge colours (red/solid,
orange/dashed, green/squiggly, purple/zigzag, and brown/dotted).
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When n = 1, the matrix MY,◦ has generic rank two. Removing its top row gives
a 5 × 2 matrix of generic rank one.

Define the augmented sample matrix MY,s ∈ R(βs+1)×αsn as in Definition 4.1.
We let M ′

Y,s ∈ Rβs×αsn be obtained from MY,s by removing its top row. As
before, αs is the number of vertices of colour s and βs is the number of edge
colours of edges to a vertex of colour s. Let rs be the generic rank of M ′

Y,s when
n = 1. Let mlte (resp. mltu) denote the minimal number of samples needed for
almost sure existence (resp. uniqueness) of the MLE.

Theorem 5.3. Consider the RDAG model on (G, c) where colouring c is com-
patible, and (G, c) has no edges between vertices of the same colour. For vertex
colour s, set l(s) := (rs − 1)(αs − 1)−1 if αs ≥ 2 and l(s) := βs if αs = 1. We
have the following bounds on the thresholds mlte and mltu

max
s

�l(s)� + 1 ≤ mlte ≤ max
s

⌊
βs

αs

⌋
+ 1, (17)

max
s

⌊
βs

αs

⌋
+ 1 ≤ mltu ≤ max

s
(βs + 2 − rs) . (18)

We prove Theorem 5.3 in Section 5.1 below. It remains an open problem to
turn the bounds in Theorem 5.3 into formulae for mlte and mltu.

Problem 5.4. Determine the maximum likelihood thresholds mlte and mltu
of an RDAG model, as formulae involving properties of the graph G and its
colouring c.

Note that the upper bounds for existence and uniqueness are both at most
maxs βs + 1, which is the threshold for uniqueness in the (uncoloured) DAG
case, see [12]. Hence the RDAG thresholds are always at least as small as the
DAG threshold.
Example 5.5. We find the existence and uniqueness thresholds for the RDAG
on the graph in Example 5.2. The black (square) vertices have no parents, so
the matrix MY,� is full rank as soon as n ≥ 1. The thresholds are therefore
determined by the matrix MY,◦. The generic rank of M ′

Y,◦ is one when n = 1,
i.e. r◦ = 1. Theorem 5.3 gives the bounds

r◦ − 1
α◦ − 1 + 1 = 1 ≤ mlte and mltu ≤ β◦ + 2 − r◦ = 5 + 2 − 1 = 6.

We will later see in Proposition 5.10 that mltu ≤ β◦ + 1 − r◦ = 5, since r◦ �=
β◦ + 1 − (β◦/α◦). In fact, the bounds 1 ≤ mlte and mltu ≤ 5 are attained,
as follows. When n = 1, the row M

(0)
Y,◦ = (Y (1), Y (2)) is almost surely not

contained in the span of the other rows of MY,◦, hence mlte = 1. On the other
hand, we need at least n = 5 samples for generic linear independence of the
rows (Y (3), Y (3)), . . . , (Y (7), Y (7)).

This example extends to an arbitrary number of vertices, i.e. the graph with
k + 2 vertices, 2 blue/circular and k black/square, and 2k edges of k colours
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(arranged as in the k = 5 case above). Repeating the above argument gives
mlte = 1 and mltu = k.
Remark 5.6. Theorem 5.3 applies to all RDAG models with compatible colour-
ing that are equal to some RCON model, because such models never have edges
between vertices of the same colour, as follows. Take some vertex i of minimal
index with i ← j in G having c(i) = c(j). Then no children of i have colour c(i),
therefore Gi �= Gj , a contradiction to Theorem 3.4(b).

We modify the edges from Examples 5.2 and 5.5 to see how the thresholds
change.
Example 5.7. Consider the following DAGs, both with compatible colouring

1

3 4 5 6 7

2

1

3 4 5 6 7 .

2

Given sample matrix Y ∈ R7×n, we respectively obtain

MY,◦ =

⎛⎜⎜⎜⎜⎜⎜⎝

Y (1) Y (2)

Y (3) 0
Y (4) 0
Y (5) 0
Y (6) 0
Y (7) Y (4)

⎞⎟⎟⎟⎟⎟⎟⎠
◦

MY,◦ =

⎛⎜⎜⎜⎜⎜⎜⎝

Y (1) Y (2)

Y (3) 0
0 Y (3) + Y (5) + Y (6)

Y (5) Y (4)

Y (6) 0
Y (4) + Y (7) 0

⎞⎟⎟⎟⎟⎟⎟⎠
◦

In both cases we have α◦ = 2, β◦ = 5, and r◦ = 2. Thus, Theorem 5.3 gives the
bounds

2 =
⌊
r◦ − 1
α◦ − 1

⌋
+ 1 ≤ mlte ≤

⌊
β◦
α◦

⌋
+ 1 = 3

3 =
⌊
β◦
α◦

⌋
+ 1 ≤ mltu ≤ β◦ + 2 − r◦ = 5.

In fact, Proposition 5.10 gives an upper bound of 4 on mltu, since r◦ �= β◦ +1−
(β◦/α◦).

First, we study the left-hand RDAG. When n = 2 the row Y (2) ∈ R1×2 is
generically not in the span of Y (4), hence M

(0)
Y,◦ = (Y (1), Y (2)) is not in the

linear span of the other five rows of MY,◦, and we deduce mlte = 2. For generic
uniqueness of an MLE we need MY,◦ ∈ R6×2n to have full row rank six. For
n ≥ 2, the submatrix (

Y (2)

Y (4)

)
∈ R2×n
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generically has rank two. Therefore, MY,◦ has rank at most five if n = 3, but
n = 4 suffices for MY,◦ generically having full row rank. We conclude mltu = 4.

Next, we study the right-hand RDAG. For n = 2, M
(0)
Y,◦ = (Y (1), Y (2)) is

generically contained in the linear span of the other rows of MY,◦. From the
bounds we conclude that mlte = 3. For uniqueness, when n = 3 the submatrices⎛⎝ Y (3)

Y (6)

Y (4) + Y (7)

⎞⎠ ,

⎛⎝ Y (2)

Y (3) + Y (5) + Y (6)

Y (4)

⎞⎠ ∈ R3×3

of MY,◦ generically have rank three, and the zero pattern then ensures that MY,◦
has full row rank six. Combining with the lower bound 3 ≤ mltu gives mltu = 3.

5.1. Proof of Theorem 5.3

For fixed vertex colour s, we define mlte(s) to be the smallest n such that the
top row of MY,s is almost surely not in the span of the other βs rows, and define
mltu(s) to be the smallest n such that the matrix MY,s is almost surely of full
row rank βs + 1. To prove Theorem 5.3, we use the following lemma.

Lemma 5.8. Consider the RDAG model on (G, c) where colouring c is com-
patible, and fix a vertex colour s. For n ≥ βs and generic Y ∈ Rm×n the row
vectors M

(1)
Y,s, . . . ,M

(βs)
Y,s are linearly independent.

Proof. We think of the mn entries of Y as indeterminates. Let M ′
Y,s ∈ Rβs×αsn

be the matrix with rows M
(1)
Y,s, . . . ,M

(βs)
Y,s . We construct an invertible βs × βs

submatrix of M ′
Y,s.

Without loss of generality, let 1, 2, . . . , αs be the vertices of colour s. The
matrix M ′

Y,s has αs many βs × n blocks. For each parent relationship colour
pt, t ∈ [βs] there is some vertex i = i(t) ∈ [αs] such that there is an edge of
colour pt pointing towards vertex i = i(t). That is, the ith block of M ′

Y,s has
non-zero entries in the tth row. Let Ct be the tth column of that block, which
exists as n ≥ βs. By construction, the tth entry of Ct is non-zero. We show that
the matrix C =

(
C1 C2 . . . Cβs

)
, is invertible.

An entry of C is either a sum of variables or it is zero. By construction, column
Ct only contains (sums of) elements of the tth column of Y . The same variable
Yj,t cannot occur in two different entries of Ct, because there is at most one edge
from j to vertex i(t). Altogether, the entries of C are (possible empty) sums of
variables and each variable occurs in at most one entry of C. The determinant
is an alternating sum over products of permutations, and it is enough to show
that one product is non-zero. By construction, C11C22 · · ·Cβsβs �= 0. Thus, M ′

Y,s

has rank βs for n ≥ βs.

Proposition 5.9. Consider the RDAG model on (G, c) where colouring c is
compatible, with no edges between any vertices of colour s. If αs = 1, then
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mlte(s) = βs + 1, while if αs ≥ 2 we have⌊
rs − 1
αs − 1

⌋
+ 1 ≤ mlte(s) ≤

⌊
βs

αs

⌋
+ 1.

Proof. If αs = 1, the equality mlte(s) = βs + 1 is known from the uncoloured
case, see [12, Theorem 1]. It remains to consider αs ≥ 2. For the upper bound,
we show that if n > βs

αs
, then the top row of MY,s is generically not in the span

of the other rows. Since there are no edges between two vertices of colour s, the
nαs entries of the top row M

(0)
Y,s are all independent, from each other and from

the entries of the other rows. If βs < αsn, the other βs rows do not span Rnαs ,
so a generic choice of top row will not lie in their span.

For the lower bound, consider the βs ×αs matrix M ′
Y,s for n = 1. Its generic

rank is denoted rs. We consider the 1 × n matrix blow up, where the scalar
variables Y (i) are replaced by generic row vectors of length n, to give a βs×αsn
matrix. We consider the rank of this matrix as n increases. The maximum rank
is βs, which occurs for n ≥ βs by Lemma 5.8. Moreover, the rank is a (weakly)
concave function in n [8, Corollary 2.8]. Since the rank is positive integer valued,
it cannot be the same at two distinct n unless it is at its maximum. Hence the
rank for fixed n is at least min(rs + n− 1, βs). Therefore, the top row is in the
span of the others whenever

min(rs + n− 1, βs) ≥ nαs, in particular, whenever αsn ≤ rs + n− 1 ≤ βs,

i.e. for n ≤ min
(⌊

rs−1
αs−1

⌋
, βs + 1 − rs

)
. Hence

mlte(s) ≥ min
(⌊

rs − 1
αs − 1

⌋
+ 1, βs + 2 − rs

)
.

We exclude the possibility that the smaller of the two arguments in the minimum
is βs + 2 − rs by appealing to Proposition 5.10.

Proposition 5.10. Consider the RDAG model on (G, c) where colouring c is
compatible, with no edges between any vertices of colour s. Then⌊

βs

αs

⌋
+ 1 ≤ mltu(s) ≤ βs + 2 − rs.

Moreover, if rs �= βs + 1 − (βs/αs) then mltu(s) ≤ βs + 1 − rs.

Proof. For the lower bound, we observe that if αsn ≤ βs, the βs + 1 rows of
MY,s will be linearly dependent. Hence, we need n > βs

αs
.

For the upper bound, let M ′
Y,s and rs be as above. Recall from the proof of

Proposition 5.9 that, for n samples, rk(M ′
Y,s) ≥ min(rs + n− 1, βs) generically.

Thus, for n = βs + 1 − rs the matrix M ′
Y,s generically has full row rank βs. It

remains to consider the top row of MY,s. We must have βs ≤ αsn, otherwise
the βs × αsn matrix could not have full row rank. We look separately at the
possible cases: βs < nαs and βs = nαs. If βs < nαs, the row vector M (0)

Y,s ∈ Rnαs
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is generically not in the span of the βs rows of M ′
Y,s, because there are no edges

between vertices of colour s. Thus, MY,s generically has full row rank βs + 1,
and mltu(s) ≤ n = βs+1−rs. If βs = nαs, equivalently if rs = βs+1−(βs/αs),
an additional sample ensures rk(MY,s) = βs + 1 generically.

Proof of Theorem 5.3. We have mlte = maxs mlte(s) and mltu = maxs mltu(s)
by Theorem 4.4 parts (b) and (c). Taking the maximum of the lower and upper
bounds in Propositions 5.9 and 5.10, over all vertex colours, gives the stated
bounds.

5.2. A randomised algorithm

Proposition 5.11. For an RDAG model on (G, c), where colouring c is com-
patible, there is a randomised algorithm for computing the thresholds mlte and
mltu.

Proof. It suffices to give a randomised algorithm to compute mlte(s) and mltu(s)
for fixed vertex colour s. The rank of a symbolic matrix can be computed (ef-
ficiently) by a randomised algorithm, see e.g. [24, 35]. Hence, thinking of the
entries of Y ∈ Rm×n as indeterminates, we can compute for any n ≥ 1 the
rank of the symbolic (βs + 1) × αsn matrix MY,s as well as the rank of the
symbolic βs × αsn matrix M ′

Y,s. We obtain mlte(s) as the smallest n such that
rk(MY,s) > rk(M ′

Y,s) and mltu(s) as the smallest n such that rk(MY,s) = βs+1.
The algorithm terminates by the upper bound of βs + 1 for both mlte(s) and
mltu(s).

6. Simulations

In the previous section, we gave upper and lower bounds for the maximum
likelihood thresholds for RDAG models, see Theorem 5.3. Our bounds quan-
tify how the graph colouring serves to decrease the number of samples needed
for existence and uniqueness of the MLE. In this section, we assume that the
number of samples is above the maximum likelihood threshold. We explore via
simulations the distance of an MLE to the true model parameters. We compare
the RDAG model estimate from Algorithm 1 to the usual (uncoloured) DAG
model MLE.

The details of our simulations are as follows. We used the NetworkX Python
package [21] to build an RDAG model via the following steps. We first build
a DAG by generating an undirected graph according to an Erdős–Rényi model
that includes each edge with fixed probability, and then directing the edges so
that j → i implies j > i. We assign edge colours randomly, after fixing the total
number of possible edge colours. We choose the unique vertex colouring with
the largest number of vertex colours that satisfies the compatibility assumption
from Definition 2.5. We sample edge weights λst from a uniform distribution on
[−1,−0.25] ∪ [0.25, 1] and we sample noise variances ωss uniformly from [0, 1].
Our code is available at https://github.com/seigal/rdag.

https://github.com/seigal/rdag
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Fig 1. We generated RDAGs on 10 vertices, with each edge present with probability 0.5 and
5 edge colours. We sampled from the distribution n ∈ {5, 10, 100, 1000, 10000} times. For
each n we generated 50 random graphs and computed the RDAG MLE and the DAG MLE,
comparing them to the true parameter values on a log scale. The results are displayed in a
violin plot, with blue for the RDAG MLE and orange for the DAG MLE.

The RDAG MLE is generally closer to the true model parameters than the
DAG MLE, see Figure 1. As we would expect, both estimates get closer to the
true parameters as the number of samples from the distribution increases. At a
high number of samples, the difference between the RDAG MLE and the DAG
MLE is smaller than at a low number of samples.

Next we examined how the RDAG MLE was affected by the number of edge
colours, see Figure 2. The RDAG MLE is closest to the true parameters when
the number of edge colours is small; i.e., when there are fewer parameters to
learn. As the number of edge colours increases, the difference between the RDAG
MLE and the DAG MLE decreases. Note that the DAG model is the setting
where each vertex and edge has its own colour.

Finally, we looked at how the RDAG MLE and DAG MLE are affected by
the edge density of the graph, see Figure 3. The RDAG MLEs get closer to
the true parameter values as the edge density increases: more edges have the
same weight, so more samples contribute to estimating each edge weight. By
comparison, the DAG MLEs get further from the true parameters as the edge
density increases, because there are more parameters to learn.

7. Conclusion

In this paper, we introduce RDAG models, characterize their maximum like-
lihood estimation via linear independence conditions and obtain their MLEs
via least squares estimators. We bound the maximum likelihood thresholds for
RDAG models and relate RDAG models to their undirected analogues. We im-
plement an algorithm to compute the MLE and use it to explore the distance
between the MLE and true parameters in simulations.

We hope that our models and results will be useful for settings in which
parameters may be shared between different parts of a graphical model, to
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Fig 2. We generated RDAGs on 20 vertices, each edge present with probability 0.5 and number
of edge colours in {2, 5, 10, 50, 100}. We sampled from the distribution 100 times and compared
the MLE to the true parameter values on a log scale. The DAG MLE is shown in orange for
comparison.

reduce maximum likelihood thresholds and/or to capture known symmetries
of a set-up. In particular, our results may apply to situations in which only
few samples are available. Furthermore, our results may be used for maximum
likelihood estimation in RCON models whenever the conditions of Theorem 3.4
hold.

Future work One limitation of our approach is that we assume the coloured
graph is known as input. That is, we study maximum likelihood estimation
and do not consider the topic of model selection for RDAGs. This would be an
interesting direction for future study, building on related work for uncoloured
graphs, such as [33].

Moreover, we require assumptions on the input graph: the absence of bidi-
rected edges (i.e., the independence of errors), acyclicity, and the compatibility
of the colouring. There are likely to be situations where these assumptions do
not give a well-fitting graph. Therefore, it would be beneficial to be able to
estimate parameters in general linear structural equation models (see [14]) with
symmetries given by colourings of vertices and (bi)directed edges. It seems nat-
ural to try to generalize existing results regarding identifiability of the model
parameters [13], as well as results on MLE computation, maximum likelihood
thresholds etc. One would hope that symmetries might again give rise to prop-
erties such as smaller maximum likelihood thresholds.

Another direction we leave open for future work is to find exact maximum
likelihood thresholds for RDAG models (Problem 5.4).

Appendix A: Connections to stability

We give a characterization of maximum likelihood estimation for RDAG models,
via stability under a group action. We generalise the definitions of stability to
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Fig 3. We generated RDAGs on 10 vertices, each edge present with probability in
{0.1, 0.3, 0.5, 0.7, 0.9} and 5 edge colours. For each edge probability we generated 50 random
graphs, sampled from each one 100 times, and compared the RDAG and DAG MLEs. As
above, blue is the RDAG MLE and orange is the DAG MLE.

a set rather than a group. This offers an alternative to Corollary 4.8 for the set
of MLEs.

Fix a set of invertible m ×m matrices A, with entries in R. Consider some
Y ∈ Rm×n. By analogy to an orbit and stabiliser under a group action, we
define the orbit and stabiliser under a set A to be, respectively,

A · Y := {aY | a ∈ A}, AY := {a ∈ A | aY = Y }.

This allows us to define stability notions analogous to the group situation.

Definition A.1. We say that the matrix Y ∈ Rm×n, under the set A, is

(i) unstable if there exist an ∈ A with anY → 0 as n → ∞, i.e. 0 is contained
in the Euclidean closure A · Y

(ii) semistable if Y is not unstable, i.e. 0 /∈ A · Y
(iii) polystable if Y �= 0 and the set A · Y is Euclidean closed
(iv) stable if Y is polystable and AY is finite.

The above notions of stability are usually studied for A a reductive group [11,
29]. They were studied for reductive and non-reductive groups in [2]. We are not
aware of these definitions being used before without any group structure on A.

We relate maximum likelihood estimation for an RDAG model to these sta-
bility notions. For coloured graph (G, c), we recall the definition of A(G, c)
from (7). Given a set A ⊆ GLm, we define ASL = {a ∈ A | det(a) = 1}
and A±

SL = {a ∈ A | det(A) = ±1}.

Theorem A.2. Consider an RDAG model on (G, c) with compatible colour-
ing c and sample matrix Y ∈ Rm×n. Then stability under A(G, c)SL relates to
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maximum likelihood estimation:
(a) Y unstable ⇔ �Y unbounded from above
(b) Y semistable ⇔ �Y bounded from above
(c) Y polystable ⇔ MLE exists
(d) Y stable ⇔ MLE exists uniquely.

Proposition A.3. Fix the RDAG model on (G, c) and set A := A(G, c)SL. If
λaTa is an MLE given Y , where a ∈ A and λ > 0 is a scalar, then the set of
MLEs given Y are in bijection with AY under mapping b ∈ AY to λ(a + b −
id)T(a + b− id).

Theorem A.2 applies to any DAG model, see Remark 4.11. Therefore, The-
orem A.2 generalises [2, Theorem 5.3] in multiple ways. First, it extends from
transitive DAGs3 to all DAGs. Second, it extends from uncoloured DAG mod-
els to RDAG models. Third, it adds part (d) about stable samples. Moreover,
Proposition A.3 gives a bijection between the MLEs and the stabilising set.

To prove Theorem A.2 and Proposition A.3, we first we generalise [2, Propo-
sition 3.4 and Theorem 3.6] to no longer require that A is a group. We say that
a set A is closed under non-zero scalar multiples if a ∈ A implies ta ∈ A for all
t ∈ R×.

Proposition A.4. Let A be a set of real invertible m × m matrices, closed
under non-zero scalar multiples. There is a correspondence between stability
under A±

SL and maximum likelihood estimation in the model MA given sample
matrix Y ∈ Rm×n:

(a) Y unstable ⇔ likelihood �Y unbounded from above
(b) Y semistable ⇔ likelihood �Y bounded from above
(c) Y polystable ⇒ MLE exists.

The MLEs, if they exist, are the matrices λaTa, where ‖a · Y ‖ > 0 is minimal
in A±

SL · Y and λ ∈ R>0 is the unique global minimum of

R>0 → R, x �→ x

n
‖a · Y ‖2 −m log(x).

If for all a ∈ A there exists an orthogonal matrix o = o(a) such that oTa ∈ A
and det(oTa) > 0, then A±

SL can be replaced by ASL.

Proof. This is proved using the same argument as [2, Proposition 3.4 and The-
orem 3.6]. Maximising �Y over MA is equivalent to minimising

f : A → R, a �→ 1
n
‖a · Y ‖2 − log det(aTa).

We write a ∈ A as τb, where τ ∈ R>0 and b ∈ A±
SL. Setting x := τ2 we compute

f(a) = τ2

n
‖b · Y ‖2 − log det(τ2bTb) = x

n
‖b · Y ‖2 −m log(x).

3A DAG is transitive if whenever k → j and j → i are in G then so is k → i. It is exactly
the condition to make A(G) a group, see [2, Proposition 5.1].
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The infimum of the function x �→ xC −m log(x) increases as C ≥ 0 increases,
hence

sup
a∈A

�Y (aTa) = − inf
a∈A

f(a) = − inf
x∈R>0

(
x

n

(
inf

b∈A±
SL

‖b · Y ‖2

)
−m log(x)

)
. (19)

We have infa∈A f(a) = −∞ if and only if infb∈A±
SL

‖b · Y ‖2 = 0, i.e. if and only
if Y is unstable. This shows parts (a) and (b).

To prove (c) assume that Y is polystable under A±
SL. Then C := infb∈A±

SL
‖b ·

Y ‖2 is strictly positive, as Y is semistable. Since A±
SL · Y is closed in Rm×n, we

see that C is attained in the compact set (A±
SL ·Y )∩{Z ∈ Rm×n | ‖Z‖2 ≤ C+1}.

Thus, an MLE given Y exists. If an MLE exists, then the inner and outer infima
in (19) are attained, and any MLE has the form in the statement.

Finally, assume that for each a ∈ A there exists an orthogonal matrix o =
o(a) with oTa ∈ A and det(oTa) > 0. Then we can write a = τob, where
τ := m

√
det(oTa) and b := τ−1oTa. By construction, det(b) = 1 and as A is

closed under non-zero scalar multiples we have b ∈ ASL. Setting x := τ2, we
derive the same computation for f(a) (now with b ∈ ASL), since o is orthogonal.
The rest of the proof then works with ASL instead of A±

SL.

Remark A.5. Given an RDAG model MA(G,c) with compatible colouring, we
can always apply Proposition A.4 using stability under A(G, c)SL instead of
the bigger set A(G, c)±SL, as follows. If αs – the number of vertices of colour
s – is even for all s ∈ c(I), then A(G, c) only contains matrices of positive
determinant, so A(G, c)±SL = A(G, c)SL. If αs is odd for some vertex colour s,
then A(G, c) contains a diagonal orthogonal matrix ô with determinant −1.
By compatibility, A(G, c) is invariant under left-multiplication with diagonal
matrices from A(G, c). Hence, for a ∈ A we can choose o(a) = ô if det(a) < 0
and o(a) = id otherwise, to satisfy the required assumptions in Proposition A.4.

Next, we return to the linear independence condition in Theorem 4.4(b).

Lemma A.6. Consider the RDAG model on (G, c) where colouring c is com-
patible, and set A := A(G, c)SL. Assume for a non-zero Y ∈ Rm×n that M (0)

Y,s /∈
span

{
M

(1)
Y,s, . . . ,M

(βs)
Y,s

}
for all s ∈ c(I). Then Y is polystable under A and A ·Y

is Zariski closed.

Proof. The hypotheses in the statement imply that the log-likelihood �Y is
bounded from above, by Theorem 4.4(b). Since A(G, c) is closed under non-zero
scalar multiples, Y is semistable under A = A(G, c)SL by Proposition A.4(b)
and Remark A.5.

We now study the orbit A · Y . Let T be the set of diagonal matrices in A
and U the unipotent matrices in A. Then A = T · U by compatibility and, in
fact, any a ∈ A admits a unique decomposition a = tu with t ∈ T , u ∈ U .
For s ∈ c(I), recall the construction of MY,s ∈ R(βs+1)×αsn from Definition 4.1.
Setting Vs := R1×αsn we can identify Rm×n ∼=

⊕
s Vs such that the rows of

vertex colour s belong to Vs. By definition of MY,s, and since the prc(s) partition
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c(E), the set U · Y is H :=
∏

s Hs with

Hs =
{
M

(0)
Y,s + as,1M

(1)
Y,s + . . . + as,βsM

(βs)
Y,s | as,t ∈ R

}
.

The affine space Hs is M
(0)
Y,s + Xs, where Xs := span

{
M

(1)
Y,s, . . . ,M

(βs)
Y,s

}
. Since

M
(0)
Y,s /∈ Xs for all s ∈ c(I) by assumption, we have 0 /∈ Hs and hence Hs has at

least codimension one in Vs. We define the linear subspace Ks :=
(
RM

(0)
Y,s

)
⊕Xs

of Vs. Since T acts on each Vs with the non-zero scalar of colour s, we have

A · Y = T · (U · Y ) = T ·H = T ·
∏
s

Hs ⊆
⊕
s

Ks ⊆
⊕
s

Vs.

It suffices to show that A · Y is Zariski-closed in
⊕

s Ks. Each Hs is an affine
subspace of Ks with codimension one. Therefore, there exists a linear form
ps ∈ K∗

s such that Hs = VKs(ps − 1), where V(·) denotes the vanishing locus.
We finish the proof by showing that A · Y = V

(∏
s p

αs
s − 1

)
in

⊕
s Ks. First,

given W = (Ws)s ∈ A · Y = T · H we can write W = a · Z with a ∈ T and
Z = (Zs)s ∈ H. Then(∏

s

pαs
s

)
(W ) =

∏
s

ps(Ws)αs =
∏
s

(
asps(Zs)

)αs =
∏
s

(as)αs = 1

by the choice of ps ∈ K∗
s and since det(a) =

∏
s a

αs
s = 1. On the other hand,

suppose W = (Ws)s ∈ V
(∏

s p
αs
s − 1

)
⊆

⊕
s Ks. Set as := ps(Ws), then we

have
∏

s a
αs
s = 1, so the as define some a ∈ T . Moreover, W ′ := (a−1

s Ws)s ∈ H
by definition of the as and hence W = a ·W ′ is contained in T ·H = A · Y .

Proposition A.7. Consider an RDAG model on (G, c) with compatible colour-
ing c and A := A(G, c)SL. Let Y ∈ Rm×n be a sample matrix. Stability under A
relates to linear independence conditions on the matrices MY,s:

(a) Y unstable ⇔ M
(0)
Y,s ∈ span

{
M

(i)
Y,s : i ∈ [βs]

}
for some s ∈ c(I)

(b) Y semistable ⇔ Y polystable
(c) Y polystable ⇔ M

(0)
Y,s /∈ span

{
M

(i)
Y,s : i ∈ [βs]

}
for all s ∈ c(I)

(d) Y stable ⇔ MY,s has full row rank for all s ∈ c(I)

Proof. Proposition A.4 in combination with Theorem 4.4 yields part (a) and
the forwards direction of (c), while Lemma A.6 gives the backwards direction
of (c). We obtain part (b) as a direct consequence of (a) and (c).

For part (d), it suffices to see that a polystable Y has a trivial stabiliser AY if
and only if for all s ∈ c(I) the rows M (1)

Y,s, . . . ,M
(βs)
Y,s are linearly independent. So

let Y be polystable. By construction of MY,s, a matrix a ∈ A satisfies aY = Y
if and only if

asM
(0)
Y,s +

∑
t∈[βs]

as,tM
(t)
Y,s = M

(0)
Y,s, (20)
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for all s ∈ c(I), where as ∈ R× is the entry of a for vertex colour s, and
as,t ∈ R is the entry of a for the parent relationship colour encoded by (s, t),
where t ∈ [βs]. We note that (20) implies as = 1 and

∑
t∈[βs] as,tM

(t)
Y,s = 0, by

polystability of Y and part (c).
If M

(1)
Y,s, . . . ,M

(βs)
Y,s are linearly independent, then (20) has exactly one so-

lution, namely as = 1 and as,t = 0 for all t ∈ [βs]. Thus, if M
(1)
Y,s, . . . ,M

(βs)
Y,s

are linearly independent for all s ∈ c(I), then AY = {id}. On the other
hand, if for some s ∈ c(I) the rows M

(1)
Y,s, . . . ,M

(βs)
Y,s are linearly dependent,

then
∑

t∈[βs] as,tM
(t)
Y,s = 0 has infinitely many solutions. Distinct solutions give

distinct unipotent matrices a ∈ A by using as,t as the entry for edge colour
t ∈ prc(s), and setting all other off-diagonal entries of a to zero. Such a unipo-
tent matrix a ∈ A satisfies aY = Y , since the sets prc(s) are disjoint, so the as,t
do not affect any rows of Y with a different vertex colour. In conclusion, AY is
infinite if M (1)

Y,s, . . . ,M
(βs)
Y,s are linearly dependent for some s ∈ c(I).

Proof of Theorem A.2. Combine Proposition A.7 with Theorem 4.4.

We now turn to Proposition A.3. As above, A := A(G, c)SL for an RDAG
with compatible colouring. Denote the set of diagonal (respectively unipotent)
matrices in A by T (respectively U). By compatibility of the colouring, A = T ·U
and in fact any a ∈ A admits a unique factorisation a = tu with t ∈ T , u ∈ U .

Lemma A.8. Consider the RDAG model on (G, c) where colouring c is com-
patible. For A := A(G, c)SL write A = T ·U as above. If Y ∈ Rm×n is polystable
under A, then the following hold:

(a) U · Y contains a unique element Ỹ of minimal norm.
(b) For t ∈ T and u ∈ U , ‖tu · Y ‖ ≥ ‖t · Ỹ ‖ with equality if and only if

u · Y = Ỹ .
(c) Let a, ã ∈ A be such that a · Y and ã · Y are of minimal norm in A · Y .

Then there is an orthogonal t ∈ T such that ta · Y = ã · Y .

Proof. For part (a), we recall that the prc(s), s ∈ c(I), partition the edge colours
c(E). Therefore, when minimising

‖uY ‖2 =
∑

s∈c(I)

∥∥∥M (0)
uY,s

∥∥∥2
=

∑
s∈c(I)

∥∥∥M (0)
Y,s +

∑
t∈[βs]

us,tM
(t)
Y,s

∥∥∥2

over u ∈ U we can minimise each summand separately. For each s ∈ c(I), the
affine space M

(0)
Y,s+span

{
M

(t)
Y,s : t ∈ [βs]

}
has a unique element of minimal norm,

call it Ms. Hence, U · Y has a unique element of minimal norm, Ỹ , determined
by M

(0)
Ỹ ,s

= Ms for all s ∈ c(I). (Note that there may be several u ∈ U with
uY = Ỹ .)

To prove part (b), we use (the proof of) part (a) to obtain∥∥M (0)
tuY,s

∥∥2 =
∥∥ts M (0)

uY,s

∥∥2 = |ts|2
∥∥M (0)

uY,s

∥∥2 ≥ |ts|2
∥∥M (0)

Ỹ ,s

∥∥2 =
∥∥M (0)

tỸ ,s

∥∥2 (21)
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for all s ∈ c(I), hence ‖tu ·Y ‖ ≥ ‖tỸ ‖. The latter inequality is strict if and only
if there is strict inequality in (21) for at least one s. By uniqueness of Ỹ , this is
the case if and only if uY �= Ỹ .

For (c), write a = tu with t ∈ T and u ∈ U . Since aY is of minimal norm in
A ·Y , we deduce uY = Ỹ using (b). Thus, aY ∈ T · Ỹ and similarly ãY ∈ T · Ỹ .
As T · Ỹ ⊆ A · Y the matrices aY and ãY are also of minimal norm in T · Ỹ .
We note that T is a group isomorphic to the reductive group {(ts)s∈c(I) | ts ∈
R×,

∏
s t

αs
s = 1}. Hence the Kempf-Ness theorem, see [2, Theorem 2.2], for the

action of T implies that there is some orthogonal t ∈ T that relates the minimal
norm elements aY and ãY in T · Ỹ .

We conclude this appendix with a proof of Proposition A.3.

Proof of Proposition A.3. Recall that A = A(G, c)SL = T · U , where T is the
diagonal matrices in A, and U the unipotent matrices in A. If aY = Y , then for
all s ∈ c(I),

M0
Y,s = asM

(0)
Y,s +

∑
t∈[βs]

as,tM
(t)
Y,s.

We have M
(0)
Y,s /∈ span

{
M

(t)
Y,s : t ∈ [βs]

}
, since Y is polystable. Hence as = 1 for

all s, i.e. a ∈ U and therefore AY = UY . We set NY := UY − id, which consists
of strictly upper triangular matrices. It suffices to show that for fixed MLE λaTa
the map

ϕ : NY → {MLEs given Y }
b �→ λ(a + b)T(a + b)

is well-defined and bijective. Note that bY = 0 for any b ∈ NY . Therefore,
(a + b)Y = aY is of minimal norm in A · Y and thus ϕ(b) is an MLE by
Proposition A.4.

For surjectivity, let λãTã be another MLE given Y . Then aY and ãY are of
minimal norm in A · Y , hence there is an orthogonal t ∈ T with aY = tãY by
Lemma A.8(c). We set b := tã − a so that b · Y = 0 and (id + b)Y = Y . By
compatibility of the colouring we have tã ∈ A and thus all entries of b = tã− a
obey the colouring c. However, bY = 0 implies bs = 0 for all s by polystability
of Y , hence b ∈ NY . We compute ϕ(b) = λ(tã)T(tã) = λãTã using orthogonality
of t.

For injectivity, let b, b′ ∈ NY be such that ϕ(b) = ϕ(b′). Let t ∈ T be defined
by ts = 1 if as > 0 and ts = −1 if as < 0. Then t is orthogonal and thus

(ta + tb)T(ta + tb) = (a + b)T(a + b).

Similarly, (ta + tb′)T(ta + tb′) = (a + b′)T(a + b′). Then ϕ(b) = ϕ(b′) implies

(ta + tb)T(ta + tb) = (ta + tb′)T(ta + tb′). (22)

Moreover, tb, tb′ are strictly upper triangular and ta ∈ A has positive diago-
nal entries, by construction of t. Hence, applying uniqueness of the Cholesky
decomposition to (22) gives ta + tb = ta + tb′, and we deduce b = b′.
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Appendix B: Connections to Gaussian group models

A model is a Gaussian group model if it is equal to MA, see (1), where the
set A a group. In this case, the second term in the log-likelihood (3) is the
minimisation of the norm over a group orbit. This perspective was used in [2]
to relate existence of the MLE to notions of stability under a group action. In
this appendix, we characterise when the set of matrices A(G, c) from (7) is a
group. We use Popov’s criteron to study stability, and give our third and final
description of the set of MLEs in an RDAG model.

B.1. The butterfly criterion

Suppose (G, c) is a coloured DAG with compatible c. We give necessary and
sufficient conditions for A(G, c) to be a group. We call a subset A ⊆ GLm linear
if A = L ∩ GLm, where L is a linear subspace of m×m matrices.
Lemma B.1. Let A ⊆ GLm be a linear subspace of matrices containing the
identity matrix. Then A is a group if and only if it is closed under multiplication.
Proof. A group is closed under multiplication. Conversely, if A is closed under
multiplication, to be a group it must also be closed under inverses. For a matrix
a ∈ A, its characteristic polynomial is fa(t) = tm + c1t

m−1 + · · · + cm. We
know cm �= 0 because cm is (up to sign) the determinant of a. This means
a · 1

−cm
(am−1 + c1a

m−2 + · · · + cm−1id) = id. Suppose L is the linear subspace
of matrices such that A = L ∩ GLm. Then a−1 = 1

−cm
(am−1 + c1a

m−2 + · · · +
cm−1id) ∈ L ∩ GLm = A, since id ∈ A.

For a pair of vertices i, j ∈ I, define b(ij) = {k | i ← k, k ← j ∈ G}. Let Gb(ij)
denote the coloured subgraph on {i} ∪ {j} ∪ b(ij), with edges i ← k, k ← j for
each k ∈ b(ij), and colours inherited from c. We call Gb(ij) a butterfly graph.
Proposition B.2 (The butterfly criterion). Consider the RDAG model on (G, c)
where colouring c is compatible. The set A(G, c) is a group if and only if
(a) G is transitive; and
(b) if c(ij) = c(kl) for edges j → i, l → k in G, then Gb(ij) � Gb(kl).

Proof. Observe that A(G, c) is a group if and only if it is closed under multipli-
cation, since it is a linear subspace of GLm that contains the identity matrix.
Hence, by Lemma B.1, we need to characterize when A(G, c) is closed under
multiplication. We have gh ∈ A(G, c) for g, h ∈ A(G, c) if and only if

1. (gh)ii = (gh)jj whenever c(i) = c(j);
2. (gh)ij = (gh)kl whenever j → i, l → k in G have c(ij) = c(kl); and
3. (gh)ij = 0 whenever j �→ i in G.
For (1), observe that (gh)ii = giihii. Thus, if c(i) = c(j) then (gh)ii = (gh)jj .

For (2), take j → i, l → k in G with c(ij) = c(kl). Then

(gh)ij = giihij + gijhjj +
∑

p∈b(ij)

giphpj
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and (gh)kl = gkkhkl + gklhll +
∑

q∈b(kl)

gkqhql,

hence (gh)ij = (gh)kl if Gb(ij) � Gb(kl). Conversely, assume (gh)ij = (gh)kl as a
polynomial identity in the unknown entries of matrices g and h. By compatibil-
ity, c(i) = c(k), so giihij = gkkhkl. Vertex and edge colours are disjoint and the
sums over b(ij) and b(kl) only involve edge colours. Thus, (gh)ij = (gh)kl implies
gijhjj = gklhll, so hjj = hll, and the sum over b(ij) must equal the sum over
b(kl). This means c(j) = c(l), and the two collections (c(ip), c(pj)), p ∈ b(ij)
and (c(kq), c(ql)), q ∈ b(kl) of ordered pairs counted with multiplicity agree.
Compatibility ensures the correct colours on the vertices in b(ij) and b(kl) as
well, hence Gb(ij) � Gb(kl).

For (3), observe that if j �→ i in G then gij = 0 = hij and therefore (gh)ij =∑
k∈b(ij) gikhkj . The latter is zero for all g, h ∈ A(G, c) if and only if b(ij) = ∅.

Thus, condition (3) is equivalent to the following: if j �→ i in G, then there
does not exist k ∈ I with j → k and k → i in G, i.e. G must be transitive, by
contraposition. We have shown that (1), (2) and (3) are satisfied if and only if
conditions (a) and (b) hold.

Example B.3. Surprisingly, two graphs can have all the same butterfly graphs
without being isomorphic. We present an example. Consider the coloured graph
with 10 black (square) vertices, and edges that are red (solid), green (squiggly),
orange (dashed) or brown (dotted).

c1 b1

c2 b2

d1 a1

c3 b3

c4 b4

We add some further edges: four purple edges a1 → ci, four blue edges bi → d1,
and a yellow edge a1 → d1. Now consider the graph obtained by exchanging the
green (squiggly) and orange (dashed) edges.

The butterfly graphs for the two graphs are the same, as follows. On the
yellow edge, the butterfly graphs both have four paths consisting of a brown
edge followed by a blue edge, and four that are a purple edge followed by a
brown edge. Similarly, we can check the butterfly graphs at the other edge
colours.
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However, the two coloured graphs are not isomorphic. Indeed, the only way
to get an isomorphism is to permute the b-layer and the c-layer. The red (solid)
edges give the identity permutation, the orange (dashed) edges give the cycle
σ = (1 4 3 2), and the green (squiggly) edges give σ2. Hence an isomorphism
would need to consist of permutations μ1 and μ2 of {1, 2, 3, 4} with μ1idμ2 = id,
μ1σμ2 = σ2, μ1σ

2μ2 = σ. The first condition implies μ2 = μ−1
1 , hence σ and

σ2 need to be simultaneously conjugate to σ2 and σ respectively. This implies
(σ2)2 = σ, a contradiction because σ4 = id.

B.2. Popov’s criterion

If A(G, c) is a group, we can prove the important Lemma A.6 differently, via a
criterion of Popov [32, Theorem 4]. The criterion characterises when an orbit
under a connected solvable group is closed, provided the underlying field is
algebraically closed. Due to the latter assumption, we work in this subsection
with RDAG models defined over the complex numbers, and note that many of
our results and proofs carry over to the complex case, see Remark 2.11. We start
by describing Popov’s criterion for the group G := A(G, c)SL.

Since G ⊆ GLm(C) is a group of invertible upper triangular matrices, it is
solvable. We decompose G = T · U ⊆ GLm as a semi-direct product, where T
is the subgroup of diagonal matrices in G, and U is the subgroup of unipotent
matrices in G. The group G acts on Cm×n by left-multiplication. Let fk,l ∈
C[Cm×n], k ∈ [m], l ∈ [n], be the coordinate functions on Cm×n. Let xs be the
coordinate function corresponding to vertex colour s ∈ c(I), and let xs,t be the
coordinate function for the edge colour t ∈ prc(s). Given a tuple of samples
Y ∈ Cm×n we consider the orbit map

μG·Y : G → Cm×n

g �→ g · Y or, on coordinate rings, μ∗
G·Y (fk,l) =

m∑
j=1

xc(kj)Yj,l.

We define

RY := μ∗
G·Y

(
C[Cm×n]

)
= C

[ m∑
j=1

Yj,l xc(kj)

∣∣∣ k ∈ [m], l ∈ [n]
]
⊆ C[G].

Since RY is a C-algebra, we obtain the semigroup

XG·Y :=
{

(ds)s∈c(I) ∈ X(T )
∣∣∣ ∏
s∈c(I)

xds
s ∈ RY

}
,

where X(T ) ∼= Z|c(I)|/
(
Z · (αs)s∈c(I)

)
is the character group of T .

Theorem B.4 (Popov’s Criterion, [32, Theorem 4]). Let G and Y be as above.
The orbit G · Y is Zariski closed if and only if XG·Y is a group.

Remark B.5. The group G = A(G, c)SL may not be connected as required in
[32, Theorem 4]. However, the orbit G ·Y is Zariski-closed if and only if G◦ ·Y is
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Zariski-closed, where G◦ is the identity component of G. Thus, after restricting
to G◦ = T ◦U we may assume that G is connected. Restricting to T ◦ amounts
to restricting to the torsion-free part of X(T ): if α is the greatest common
divisor of all αs, s ∈ c(I), then T ◦ ∼=

{
(gs)s∈c(I) |

∏
s g

αs/α
s = 1

}
and X(T ◦) =

Z|c(I)|/
(
Z · (αs/α)s∈c(I)

)
.

Second Proof of Lemma A.6. The matrix Y is semistable by Proposition A.4(b)
and Theorem 4.4(b). Fix s ∈ c(I) and let M†

Y,s be the Hermitian transpose of
MY,s. Since M

(0)
Y,s /∈ span

{
M

(1)
Y,s, . . . ,M

(βs)
Y,s

}
we have

ker(M†
Y,s) ⊆ span{e1, . . . , eβs} ⊆ Cβs+1.

Therefore, e0 is in the orthogonal complement of ker(M†
Y,s), i.e. in the image of

MY,s, so there is some z ∈ Cαsn with MY,sz = e0. By construction of the matrix
MY,s, the equation(
xs xs,1 xs,2 · · · xs,βs

) (
MY,sz

)
=

(
xs xs,1 xs,2 · · · xs,βs

)
e0 = xs

shows that xs is a C-linear combination of the
∑m

j=1 xc(kj)Yj,l, where k ∈ c−1(s)
and l ∈ [n]; the coefficients are given by z ∈ Cαsn. In particular, xs ∈ RY .
Since the coordinate functions xs, s ∈ c(I) generate the character group X(T )
(thinking of characters as algebraic group morphisms G → C×), we conclude
XG·Y = X(T ). Hence, XG·Y is a group and G · Y is Zariski closed by Popov’s
criterion, Theorem B.4.

B.3. Bijection between the stabiliser and the set of MLEs

So far we have given two descriptions of the set of MLEs given Y in an RDAG
model. Corollary 4.8 gives a linear space of possible Λ, while Proposition A.3
gives an additive bijection between the MLEs and the stabiliser. Here we give an
alternative (multiplicative) bijection between the set of MLEs and the stabiliser,
when A(G, c) is a group. This is similar to [2, Proposition 3.9], which gives a
multiplicative surjection between the MLEs and the stabiliser, for a Gaussian
group model on a reductive group.

Proposition B.6. Consider the RDAG model on (G, c) where colouring c is
compatible and A(G, c) is a group. Set A := A(G, c)SL and let Y ∈ Rm×n be
polystable under A. Given an MLE λaTa, where a ∈ A and λ is as in Proposi-
tion A.4, we have a bijection

ϕ : AY → {MLEs given Y }
g �→ λgTaTag.

Proof. For g ∈ AY we have ag · Y = aY , which is of minimal norm in A · Y
as λaTa is an MLE. Hence, ϕ(g) = λ(ag)T(ag) is another MLE given Y , by
Proposition A.4, and we see that ϕ is well-defined. For surjectivity, let λãTã be
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another MLE given Y . Then aY and ãY are of minimal norm in A · Y , hence
there is an orthogonal t ∈ T with taY = ãY by Lemma A.8(c). We obtain
g := a−1t−1ã ∈ AY , where we crucially used that A(G, c) (and hence A) is a
group. The orthogonality of t gives ϕ(g) = λãTã.

To prove injectivity, let g, g′ ∈ AY be such that ϕ(g) = ϕ(g′). The latter
implies gTaTag = g′TaTag′, which shows that h := ag′g−1a−1 is orthogonal.
Therefore, h is diagonal, because any orthogonal upper triangular matrix is
diagonal. Moreover, using g, g′ ∈ AY we have haY = aY , i.e. h ∈ AaY . Note Y
and aY have the same orbit (closure), where we again use that A is a group.
Thus, aY is polystable as Y is polystable. Combining this with h(aY ) = aY
and h diagonal implies h = id. Finally, id = h = ag′g−1a−1 shows g = g′.
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