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Abstract
Wecount singular vector tuples of a systemof tensors assigned to the edges of a directed
hypergraph. To do so, we study the generalisation of quivers to directed hypergraphs.
Assigning vector spaces to the nodes of a hypergraph and multilinear maps to its
hyperedges gives a hyperquiver representation. Hyperquiver representations gener-
alise quiver representations (where all hyperedges are edges) and tensors (where there
is only one multilinear map). The singular vectors of a hyperquiver representation
are a compatible assignment of vectors to the nodes. We compute the dimension and
degree of the variety of singular vectors of a sufficiently generic hyperquiver repre-
sentation. Our formula specialises to known results that count the singular vectors and
eigenvectors of a generic tensor. Lastly, we study a hypergraph generalisation of the
inverse tensor eigenvalue problem and solve it algorithmically.

Keywords Tensors · Singular vectors · Eigenvectors · Quiver representations · Chern
classes · Inverse eigenvalue problems

Mathematics Subject Classification 14D21 · 14C17 · 15A69 · 15A18 · 16G20 · 05C65

1 Introduction

The theory of quiver representations provides a unifying framework for some funda-
mental concepts in linear algebra [8]. In this paper, we introduce and study a natural

Communicated by JM Landsberg.

B Anna Seigal
aseigal@seas.harvard.edu

Tommi Muller
tommi.muller@maths.ox.ac.uk

Vidit Nanda
nanda@maths.ox.ac.uk

1 Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

2 School Of Engineering And Applied Sciences, Harvard University, 29 Oxford Street, Cambridge,
MA 02138, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-025-09692-z&domain=pdf


Foundations of Computational Mathematics

generalisation of quiver representations, designed to analogously serve the needs of
multilinear algebra.

Quiver Representations and Matrix Spectra. A quiver Q consists of finite sets
V and E , whose elements are called vertices and edges respectively, along with two
functions s, t : E → V sending each edge to its source and target vertex. It is cus-
tomary to write e : i → j for the edge e with s(e) = i and t(e) = j . The definition
does not prohibit self-loops s(e) = t(e) nor parallel edges e1, e2 : i → j . A repre-
sentation (U , α) of Q assigns a finite-dimensional vector space Ui to each i ∈ V and
a linear map αe : Ui → Uj to each e : i → j in E . Originally introduced by Gabriel
to study finite-dimensional algebras [29], quiver representations have since become
ubiquitous in mathematics. They appear prominently in disparate fields ranging from
representation theory and algebraic geometry [19] to topological data analysis [45].
In most of these appearances, the crucial task is to classify the representations of a
given quiver up to isomorphism. This amounts in practice to cataloguing the indecom-
posable representations; i.e., those that cannot be expressed as direct sums of smaller
nontrivial representations.

For all but a handful of quivers, the set of indecomposables (up to isomorphism) is
complicated, and such a classification is hopeless [29]. Nevertheless, one may follow
the spirit of [51] and use quivers to encode compatibility constraints with spectral
interpretations. We work with representations that assign vector spaces Ui = C

di

to each vertex and matrices Ae : C
di → C

d j to each edge. We denote the quiver
representation by (d, A), where d := (d1, . . . , dn) is the dimension vector. Let [x] ∈
P(Cd) denote the projectivisation of a non-zero x ∈ C

d .We define the singular vectors
of a quiver representation (d, A) to consist of tuples

([xi ] ∈ P(Cdi ) | i ∈ V
)
for which

there exist scalars (λe | e ∈ E) so that the compatibility constraint Aexi = λex j holds
across each edge e : i → j . Standard notions from linear algebra arise as special cases
of such singular vectors, see also Fig. 1:

(a) The eigenvectors of a matrix A : C
d → C

d are the singular vectors of the rep-
resentation of the Jordan quiver that assigns C

d to the unique node and A to the
unique edge.

(b) The singular vectors of a matrix A : C
d1 → C

d2 arise from the representation of
the directed cycle of length 2, with A assigned to one edge and A� assigned to the
other.

(c) The generalised eigenvectors of a pair of matrices A, B : C
d → C

d – i.e., non-
zero solutions x to Ax = λ · Bx for some λ ∈ C – are the singular vectors of the
representation of the Kronecker quiver with A on one edge and B on the other.

For d = d1 = d2, a generic instance of any of these three quiver representations
has d singular vectors.
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Fig. 1 Quiver representations corresponding to (a) the eigenvectors of a matrix, (b) the singular vectors of
a matrix, (c) the generalised eigenvectors of a pair of matrices

Hyperquiver Representations and Tensors. This century has witnessed progress
towards extending the spectral theory of matrices to the multilinear setting of tensors
[48].Given a tensorT ∈ C

d1⊗· · ·⊗C
dm ,wewriteT (x1, . . . , x j−1 , · , x j+1, . . . , xm) ∈

C
d j for the vector with i-th coordinate

d1∑

i1=1
. . .

d j−1∑

i j−1=1

d j+1∑

i j+1=1
. . .

dm∑

im=1
Ti1,...,i j−1,i,i j+1,...,im (x1)i1 · · · (x j−1)i j−1(x j+1)i j+1 · · · (xm)im .

Eigenvectors and singular vectors of tensors were introduced in [42, 47]. The eigen-
vectors of T ∈ (Cd)⊗m are all non-zero x ∈ C

d satisfying

T ( · , x, . . . , x) = λ · x,

for some scalar λ ∈ C. In the special case of matrices, this reduces to the familiar
formula Ax = λx. Similarly, the singular vectors of a tensor T ∈ C

d1 ⊗ · · · ⊗ C
dn are

the tuples of vectors (x1, . . . , xn) ∈ C
d1 × · · · × C

dn , with each xi �= 0, satisfying

T (x1, . . . , x j−1, · , x j+1, . . . , xn) = μ jx j

for all j . This specialises for matrices to the familiar pair of conditions Ax2 = μ1x1
and A�x1 = μ2x2.

Eigenvectors and singular vectors have been computed for special classes of tensors
in [49, 50]; they have been used to study hypergraphs [6, 48] and to learn parameters
in latent variable models [4, 5]. They have a variational interpretation as being the
critical points of certain optimisation problems [42]. It is well known that the singular
vectors of a tensor T ∈ R

d1 ⊗ · · · ⊗ R
dn are both the critical points [27] of the best

rank-1 approximation

min
xi∈R

di
min
a∈R

‖T − a · x1 ⊗ · · · ⊗ xn‖ s.t. ‖x1‖ = · · · ‖xn‖ = 1

and the spectral norm functional

max
xi∈R

di
T (x1, . . . , xn) s.t. ‖x1‖ = · · · ‖xn‖ = 1
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The eigenvectors of a symmetric tensor T ∈ (Rd)⊗m are likewise the critical points of
similar optimisation problems. For various definitions of the symmetric Laplacian ten-
sor and degree tensor A, B ∈ (Rd)⊗m of anm-regular hypergraph G, the eigenvalues
of G are the critical values of the optimisation problem

min
x∈Rd

A(x, . . . , x)
B(x, . . . , x)

s.t. ‖x‖ = 1 (1.1)

These eigenvalues and eigenvectors give bounds for Cheeger-like inequalities for G
and can be used to perform hypergraph clustering [14, 15, 37, 43].

In order to create the appropriate generalisation of quiver singular vectors to sub-
sume these notions from the spectral theory of tensors, we generalise from quivers
to hyperquivers. In general, hyperquivers are obtained from quivers by allowing the
source and target maps s, t : E → V to be multivalued. For our purposes, it suf-
fices to consider hyperquivers where each edge e ∈ E has a single target vertex. The
hyperedge e now has a tuple of sources (s1(e), s2(e), . . . , sμ(e)) ∈ Vμ for some e-
dependent integer μ. A representation R = (d, T ) of such a hyperquiver assigns to
each vertex i a vector space C

di and to each edge e a tensor

Te ∈ C
dt(e) ⊗ C

ds1(e) ⊗ · · · ⊗ C
dsμ(e) .

We identify a vector space C
d with its dual (Cd)∗, allowing us to view the tensor Te

as a multilinear map

Te :
μ∏

j=1

C
ds j (e) → C

dt(e)

(xs1(e), . . . , xsμ(e)) 	→ Te( · , xs1(e), . . . , xsμ(e)).

Our hyperquiver representations reduce to usual quiver representations when each
edge has μ = 1.

A singular vector of a representation R is a tuple
([xi ] ∈ P(Cdi ) | i ∈ V

)
that

satisfies

Te( · , xi1 , . . . , xiμ) = λe · x j , (1.2)

for some scalar λe, across every edge e ∈ E of the form (i1, . . . , iμ) → j . We work
with vectors in a product of projective spaces, since we require the vectors to be non-
zero (as for the singular vectors of a matrix) and moreover because the equation (1.2)
still holds after non-zero rescaling of each xi , albeit for different scalars λe.

Perhaps the simplest nontrivial family of examples is furnished by starting with
the quiver with a single vertex and a single hyperedge with m − 1 source vertices
— we call this the m-Jordan hyperquiver. Consider the representation that assigns, to
the vertex, the vector space C

d for some dimension d ≥ 0, and to the edge, a tensor
T ∈ (Cd)⊗m , seen as a multilinear map T : (Cd)(m−1) → C

d that contracts vectors
along the last μ = m − 1 modes of T ; see Fig. 2a for the case m = 3. The singular
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Fig. 2 Examples of hyperquiver representations corresponding to (a) the eigenvectors of a tensor, (b) the
singular vectors of a tensor, and (c) the generalised eigenvectors of a pair of tensors

vectors of this representation are all [x] ∈ P(Cd) satisfying T ( · , x, x, . . . , x) = λ · x
for some scalar λ ∈ C. The singular vectors of the representation are therefore the
eigenvectors of the tensor T .

The compatibility conditions that define singular vectors can be reframed in terms
of the vanishing of minors of suitable di × 2 matrices. For a sufficiently generic
hyperquiver representation R, we will see that its singular vectors form a smooth,
multiprojective variety in

∏
i∈V P(Cdi ) which we call the singular vector variety and

denote by S(R). This variety simultaneously forms a multilinear (and projective) gen-
eralisation of the linear space of sections of a quiver representation from [51], and a
multi-tensor generalisation of the set of singular vectors of a single tensor from [27].
The property that a point lies in S(R) is equivariant under an orthogonal change of
basis on each vector space, as is true for the singular vectors of amatrix, as follows. Let
([x1], . . . , [xn]) ∈ ∏i∈V P(Cdi ) be a singular vector tuple of a hyperquiver represen-
tation with tensors Te ∈ C

dt(e) ⊗ C
ds1(e) ⊗ · · · ⊗ C

dsμ(e) and let Q1, . . . , Qn be a tuple
of complex orthogonal matrices; i.e., Q�

i Qi = Idi . Then ([Q1x1], . . . , [Qnxn]) is a
singular vector tuple of the hyperquiver representation where each Te has its source
components multiplied by Q�

s j (e)
and target component multiplied by Qt(e).We expect

the topology of this variety, particularly its (co)homology groups, to provide rich and
interesting isomorphism invariants for hyperquiver representations.

Main Result. We derive exact and explicit formulas for the dimension and degree
of S(R) when R is a sufficiently generic representation of a given hyperquiver. Here
is a simplified version, in the special case when all vector spaces are of the same
dimension.

Theorem 1.1 Let R = (d, T ) be a generic representation of a hyperquiver H =
(V , E)withd = (d, d, . . . , d). Let N = (d−1)(|V |−|E |). If N < 0, thenS(R) = ∅.
If N ≥ 0, let D be the coefficient of

(∏
i∈V hi

)d−1
in the polynomial

(
∑

i∈V
hi

)N

·
∏

e∈E

(
d∑

k=1

hk−1
t(e) · hd−k

s(e)

)

, where hs(e) :=
μ(e)∑

j=1

hs j (e).

ThenS(R) = ∅ if and only if D = 0. Otherwise,S(R) has dimension N and degree D.
Moreover, if dim S(R) = 0, then each singular vector tuple occurs with multiplicity 1.
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Fig. 3 The light-green
hyperedge is the contraction
T ( · , x, y) and the dark-green
hyperedge is the contraction
T (x, · , y), where x, y ∈ C

3 are
on the left and right vertices
respectively

Example 1.2 LetR be the hyperquiver representation in Fig. 3, with T ∈ C
3⊗C

3⊗C
3

a generic tensor. We have N = (3 − 1)(2 − 2) = 0. We seek the coefficient D of the
monomial h21h

2
2 in the polynomial

(
(h1 + h2)

2 + h1(h1 + h2) + h21

)2 = 9h41 + 18h31h2 + 15h21h
2
2 + 6h1h

3
2 + h42.

We see that D = 15. Hence the singular vector variety S(R) has dimension N = 0
and consists of 15 singular vector tuples, each occurring with multiplicity 1.

Our argument follows the work of Friedland and Ottaviani from [27] — we first
construct a vector bundle whose generic global sections have the singular vectors ofR
as their zero set, and then apply a variant of Bertini’s theorem to count singular vectors
by computing the top Chern class of the bundle. The authors of [27] compute the
number of singular vectors of a single generic tensor — this corresponds to counting
the singular vectors of the hyperquiver representation depicted in Fig. 2b. Here we
derive general formulas to describe the algebraic variety of singular vectors for an
arbitrary network of (sufficiently generic) tensors.

Related Work. Special cases of our degree formula, all in the case dim S(R) = 0,
recover existing results from the literature — see [12] and [26, Corollary 3.2] for
eigenvector counts, [27] for singular vector counts, and [20, 27] for generalised eigen-
vector counts. In addition, [44, 46] study the asymptotic and stabilisation behaviour
of singular vector counts. Other recent work that builds upon the approach in [27]
includes [22, 52] which study the span of the singular vector tuples, [54] which stud-
ies tensors determined by their singular vectors, and the current work [2] which uses
a related setup to count totally mixed Nash equilibria. The eigenscheme of a matrix
[1] and ternary tensor [7] is a scheme-theoretic version of S(R) for the Jordan quiver
in Fig. 1a and the hyperquiver in Fig. 2a.

Outline. The rest of this paper is organised as follows. In Sect. 2 we introduce
hyperquiver representations and their singular vector varieties. We state our main
result, Theorem3.1, inSect. 3 anddescribe a fewof its applications. The construction of
the vector bundle corresponding to a hyperquiver representation is given in Sect. 4, and
our Bertini-type theorem –whichwe hopewill be of independent interest – is proved in
Sect. 5. We show that for genericR the hypotheses of the Bertini theorem are satisfied
by the associated vector bundle in Sect. 6, and compute its top Chern class in Sect. 7.
In Sect. 8, we consider an application of hyperquiver representations in multilinear
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algebra, where we address the inverse eigenvalue problem of finding representations
which admit a given collection of vectors as their singular vectors. For completeness,
we have collected relevant results from intersection theory in Appendix A.

2 The Singular Vector Variety

We establish notation for hyperquiver representations, define their singular vector
varieties, and highlight the genericity condition which plays a key role in the sequel.
Without loss of generality, we henceforth assume V = [n], where [n] := {1, . . . , n}
for n ∈ N.

Definition 2.1 A hyperquiver H = (V , E) consists of a finite set of vertices V of size
|V | = n and a finite set of hyperedges E . For each hyperedge e ∈ E we have

(i) a non-negative integer μ(e) called the index of e
(ii) a tuple of vertices v(e) ∈ Vμ(e)+1 called the vertices of e.

For brevity, we may refer to a hyperedge as an edge and write μ as a shorthand
for μ(e). The j-th entry of tuple v(e) is denoted s j (e) ∈ V . The tuple s(e) :=
(s0(e), s1(e), . . . , sμ(e)) are the sources of e, and the vertex t(e) := s0(e) is the target
of e.

Remark 2.2 Usual quivers are the special case withμ = 1 for all e ∈ E . Definition 2.1
does not exclude entries of s(e) being equal to t(e), nor does it exclude multiple
hyperedges with the same tuple v(e).

We now define representations of hyperquivers. The definition works for vector
spaces over any field, but we focus on C.

Definition 2.3 Fix a hyperquiver H = (V , E). Let d = (d1, . . . , dn) be a dimension
vector. A representation R = (d, T ) of H assigns

(i) A vector space C
di to each vertex i ∈ V .

(ii) A tensor Te ∈ C
e to each hyperedge e ∈ E , where C

e := C
dt(e) ⊗C

ds1(e) ⊗· · ·⊗
C
dsμ(e) , which is viewed as a multilinear map

∏μ
j=1 C

ds j (e) → C
dt(e) .

We define for brevity

Te(xs(e)) := Te( · , xs1(e), . . . , xsμ(e)). (2.1)

We say that two tensors Te and Te′ agree up to permutation if the tuples v(e) and v(e′)
agree up to a permutation σ and

(Te)i0,i1,...,iμ = (Te′)iσ(0),iσ(1),...,iσ(μ)
.

Remark 2.4 In standard quiver representation theory, abstract vector spaces and linear
maps are assigned to vertices and edges, respectively. Aligning with other works in the
tensor literature, in this paper we fix a choice of basis for each vector space to identify
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C
di with its dual (Cdi )∗, allowing us to assign transposes of matrices or permutations

of tensors along the edges. We do not equip the vector spaces with their standard
Hermitian inner product 〈u, v〉C = ∑d

i=1 uivi for u, v ∈ C
d . Instead, contraction

of tensors will be performed with the standard real inner product u�v = 〈u, v〉R =∑d
i=1 uivi for u, v ∈ C

d . We will choose bases over C to consist of real vectors that
are orthonormal with respect to 〈 · , · 〉R, see [7, Remark 1.1]. The fact that this pairing
is degenerate over C

d , i.e. there are non-zero u ∈ C
d with u�u = 0, will play a role

later in the paper.

Our main result finds the dimension and degree of the singular vector variety for
a hyperquiver representation with sufficiently general tensors on the hyperedges. We
say that a property P holds for a generic point of an irreducible affine variety V if
there exists a Zariski-open set U in V such that P holds for all points in U . We call
any point of such aU a generic point of V . One way that a hyperquiver representation
can be sufficiently generic is for the tuple of tensors (Te | e ∈ E) assigned to its edges
to be generic; that is, a generic point of

∏
e∈E ⊗μ(e)

i=0 C
dsi (e) . This holds, for example,

in Fig. 1a and c. But our notion of genericity allows tensors on different hyperedges
to coincide, as in Fig. 1b. Our genericity condition is encoded by a partition of the
hyperedges.

Definition 2.5 (Genericity of a hyperquiver representation)

(i) A partition of a hyperquiver H = (V , E) is a partition of its hyperedges E =∐M
r=1 Er such that for any hyperedges e, e′, e′′ ∈ Er ,

(a) the indices μ(e) and μ(e′) equal the same number μ

(b) the tuples v(e) and v(e′) coincide up to a permutation σ of the set
{0, 1, . . . , μ}, which must be the identity permutation if e = e′

(c) if σ and σ ′ are the permutations in (b) for v(e) → v(e′) and v(e′′) → v(e′)
respectively, and if e �= e′′, then σ(0) �= σ ′(0).

(ii) The partition of a representation R = (d, T ) is the unique partition of H such
that for any e, e′ ∈ Er , the tensors on e and e′ agree up to a permutation σ .

(iii) The representation R = (d, T ) is generic if given hyperedges er ∈ Er for
r ∈ [M], the tuple of tensors (Te1, Te2 , . . . , TeM

)
is a generic point in

∏M
r=1 C

er .

Definition 2.6 The set of singular vector tuples S(R) of a representation R consists
of tuples χ = ([x1], . . . , [xn]) ∈ ∏n

i=1 P(Cdi ) such that

Te(xs(e)) = λext(e), (2.2)

for some scalar λe ∈ C, for every edge e ∈ E .

Remark 2.7 The scalars λe in (2.2) can be thought of as the singular values of the
singular vector tuple (x1, . . . , xn). However, the non-homogeneity of (2.2) means that
rescaling vectors in the tuple can change the singular values. We say that a singular
vector tuple has a singular value zero if λe = 0 for some edge e ∈ E .
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The singular vector tuples χ = ([x1], . . . , [xn]) are the tuples whose dt(e) × 2
matrix

Me(x) :=
⎛

⎝
| |

Te(xs(e)) xt(e)
| |

⎞

⎠

has rank ≤ 1 for all e ∈ E . The rank of this matrix depends only on the points [xi ] ∈
P(Cdi ), and not on the vectors xi ∈ C

di . Therefore, the set of singular vector tuples
S(R) is a scheme in the multiprojective space X = ∏n

i=1 P(Cdi ), whose defining
equations are the 2 × 2 minors of all matrices Me(x) for e ∈ E . When R is a generic
representation, our main Theorem 3.1 in the next section shows that S(R) is in fact a
smooth variety. Thus, when R is a generic representation, we call S(R) the singular
vector variety of R. When we speak of the degree of the singular vector variety S(R),
we refer to the degree of its image under the Segre embedding s : X ↪−→ P

D , for
D = ∏n

i=1 di − 1.

Example 2.8 Being a singular vector tuple is not invariant under an arbitrary change of
basis. For example, the quiver in Fig. 1b with a generic square matrix A : C

d → C
d

has d singular vector pairs ([x], [y]). However, there exist change of basis matri-
ces M1, M2 ∈ GL(d, C) such that M2AM

−1
1 = Id , and the identity matrix Id has

infinitely many singular vector pairs: all pairs ([z], [z]). Therefore, the singular vec-
tor variety is not GL(di , C)-invariant. As discussed in the introduction and in [7,
Remark 1.1] and [48, Theorem 2.20], the property of being a singular vector tuple is
preserved by an complex orthogonal change of basis. Therefore, the singular vector
variety is O(di , C)-invariant, with respect to the standard real inner product between
two complex vectors, see Remark 2.4.

3 Main Theorem and its Consequences

In this section, we present ourmain result in full generality and study its consequences.
Recall that a vector u ∈ C

d is isotropic if u�u = 0, see Remark 2.4.

Theorem 3.1 LetR = (d, T ) be a generic hyperquiver representation andS(R) be the
set of singular vector tuples ofR. Let N = ∑

i∈V (di −1)−∑e∈E (dt(e)−1). If N < 0,

then S(R) = ∅. If N ≥ 0, let D be the coefficient of the monomial hd1−1
1 · · · hdn−1

n in
the polynomial

(
∑

i∈V
hi

)N

·
∏

e∈E

⎛

⎝
dt(e)∑

k=1

hk−1
t(e) h

dt(e)−k
s(e)

⎞

⎠ , where hs(e) :=
μ(e)∑

j=1

hs j (e). (3.1)

Then S(R) = ∅ if and only if D = 0. Otherwise, S(R) is a smooth variety of pure
dimension N and has degree D. If R has finitely many singular vector tuples, then
each singular vector tuple is of multiplicity 1, is not isotropic, and has no singular
value equal to 0.
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Note that the partition from Definition 2.5 does not appear in the statement of
Theorem 3.1: the partition provides a genericity condition for the result to hold, but
the dimension and degree of the singular vector variety do not depend on the partition.
Next we give a sufficient condition for a hyperquiver representation to consist of
finitely many points. This condition applies to Fig. 2a and b, but not to Fig. 2c.

Corollary 3.2 The hyperquivers that have finitely many singular vector tuples in a
generic representation, for any choice of dimension vector, are those whose vertices
each have exactly one incoming hyperedge.

Proof If dim S(R) = N = ∑
i∈V (di − 1) −∑

e∈E (dt(e) − 1) = 0 for all dimensions
di , then

∑
i∈V (di − 1) = ∑

e∈E (dt(e) − 1) as polynomials in the variables di . Each di
appears exactly once on the left hand side of the equation. Hence it must also appear
exactly once on the right hand side. Therefore |V | = |E | and every i ∈ V has exactly
one e ∈ E with i = t(e). ��

WeshowhowTheorem3.1 specialises to count the eigenvectors and singular vectors
of a generic tensor, as well as to count the solutions to the generalised eigenproblem
from [20].

Example 3.3 (Eigenvectors of a tensor) We continue our discussion from the intro-
duction. The representation of the m-Jordan hyperquiver with a generic tensor
T ∈ (Cd)⊗m on its hyperedge is generic in the sense of Definition 2.5, since we
have only one hyperedge. There are finitely many eigenvectors, by Corollary 3.2. The
polynomial (3.1) is

d∑

k=1

hk−1((m − 1)h)d−k =
(

d∑

k=1

(m − 1)d−k

)

hd−1 = (m − 1)d − 1

m − 2
hd−1.

The coefficient of hd−1 is (m−1)d−1
m−2 . This agrees with the count for the number of

eigenvectors of a generic tensor from [12, Theorem 1.2] and [26, Corollary 3.2].

Wenowconsider singular vectors ofpartially symmetric tensors. Letm = ω0+ω1+
· · ·+ωp be a partition where ω0 = 0 and each ω j is a positive integer for j ∈ [p]. Let
ω = (ω1, . . . , ωp) and let Sω(Cd) denote the subspace of

⊗p
i=1(C

di )⊗ωi consisting
of tensors T that are partially symmetric with respect to ω, i.e. Ti1,...,im is invariant
under any permutation of the indices in the k-th group of indices i jk , i jk+1, . . . , i jk+ωk

where jk = 1 + ∑k−1
j=0 ω j , for k ∈ [p]. Then when p = m and ω = (1, . . . , 1),

Sω(Cd) is the space of all tensors C
d1 ⊗ · · · ⊗ C

dm , and when p = 1 and ω = m, it is
the space of symmetric tensors in (Cd)⊗m .

A symmetric singular vector tuple of T ∈ Sω(Cd) is a singular vector tuple of
the form ([x1], . . . , [x1], . . . , [xp], . . . , [xp]) ∈ ∏p

i=1 P(Cdi )ωi . Thus when p = m, a
symmetric singular vector tuple is a singular vector tuple of a tensor, and when p = 1,
it is an eigenvector of a symmetric tensor. A result of Friedland and Ottaviani [27] is:

Theorem 3.4 (Friedland and Ottaviani [27, Theorem 12]) The number of symmetric
singular vectors of a generic partially symmetric tensor T ∈ Sω(Cd) is the coefficient
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of the monomial hd1−1
1 · · · hdn−1

n in the polynomial

∏

i∈[p]

ĥi
di − hdii
ĥi − hi

, where ĥi := (ωi − 1)hi −
∑

j∈[p]\{i}
ω j h j , i ∈ [p]. (3.2)

Each singular vector tuple is of multiplicity 1, is not isotropic, and does not have
singular value 0.

The count in the above result interpolates between the number of singular vectors
of a generic tensor when p = m, and the number of eigenvectors of a generic sym-
metric tensor when p = 1, which is the same count in Example 3.3 for a generic
non-symmetric tensor. We explain how Theorem 3.4 follows from Theorem 3.1. We
consider the p = m case and then partially symmetric tensors in general.

Example 3.5 (Singular vectors of a tensor) Consider the hyperquiver with n vertices
V = [n] and n hyperedges. For every vertex i ∈ V , there is a hyperedge ei with s(ei ) =
(1, . . . , i−1, i+1, . . . , n) and target t(e) = i . Consider the representation that assigns
the vector space C

di to each vertex and the same generic tensor T ∈ C
d1 ⊗ · · · ⊗ C

dn

to each hyperedge. On each edge ei , the tensor T is seen as a multilinear map

T : C
d1 × · · · × C

di−1 × C
di+1 × · · · × C

dn → C
di

(x1, . . . , xi−1, xi+1, . . . , xn) 	→ T (x1, . . . , xi−1, · , xi+1, . . . , xn).

This representation is generic in the sense of Definition 2.5, where the partition of the
edge set E has size M = 1 and the permutation σ sending v(ei ) to v(e j ) is the one that
swaps i and j and keeps all other entries fixed. Figure2b illustrates this representation
for n = 3. The singular vector variety consists of all non-zero vectors xi ∈ C

di such
that T (xs(e)) = λext(e) for some λe ∈ C and all e ∈ E , where T (xs(e)) is defined in
(2.1). That is, the singular vector variety consists of all singular vector tuples of T .
Corollary 3.2 shows that there are finitelymany singular vector tuples. The polynomial
(3.1) specialises to

∏

i∈[n]

⎛

⎝
di∑

k=1

hk−1
i ĥi

di−k

⎞

⎠ , where ĥi :=
∑

j∈[n]\{i}
h j , i ∈ [n].

This is equivalent to (3.2) and [27, Theorem 1], via the identity xn−yn

x−y =
∑n

k=1 x
k−1yn−k .

Example 3.6 (Symmetric singular vectors of a partially symmetric tensor) Suppose
T ∈ C

3 ⊗ C
3 ⊗ C

3 is a generic tensor that is partially symmetric in its first two
entries: Ti jk = Tjik . Then a symmetric singular vector tuple ([x], [x], [y]) ∈ P(C3)×
P(C3) × P(C3) is defined by the equations
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Fig. 4 A representation
corresponding to the symmetric
singular vector tuples of a
partially symmetric tensor
Ti jk = Tjik . The light-green
and dark-green edges are the
contractions T (x, · , y) and
T (x, x, · ) respectively

[T (x, x, · )] = [y],
[T (x, · , y)] = [x],
[T ( · , x, y)] = [x]

in P(C3). We notice that one of these equations is redundant since
T (x, · , y) = T ( · , x, y) by partial symmetry. Thus, we can take only the first two
equations and construct the corresponding hyperquiver representation as shown in
Fig. 4. The singular vector tuples of this representation are the same as the symmetric
singular vector tuples of T . The polynomial in (3.1) is

((h1 + h2)
2 + (h1h2)h1 + h21)((2h1)

2 + 2h1h2 + h22)

= 12h41 + 18h31h2 + 13h21h
2
2 + 5h1h

3
2 + h42

Thus, the number of symmetric singular vector tuples of T is 13, which is the same
answer given by Theorem 3.4, and this construction can be extended to any partially
symmetric tensor. In general, one can prove a version of Theorem 3.1 for a repre-
sentation assigning partially symmetric tensors on every hyperedge by appropriately
modifying the conditions in Definition 2.5 to define a generic partially symmetric rep-
resentation. This is needed to avoid duplicate defining equations for singular vector
tuples, as seen above. For example, the representation in Fig. 3 is not generic for the
tensor T .

Example 3.7 (The generalised tensor eigenvalue problem) Consider a generic rep-
resentation of the Kronecker hyperquiver with a generic pair of tensors A, B ∈
C
d2 ⊗ (Cd1)⊗(m−1), see Fig. 2c with m = 3 and d = d1 = d2. The edge set E

has a partition with M = 2. We remark that Corollary 3.2 implies that there will
not be finitely many singular vector tuples for all representations of this hyperquiver.
There will be a non-zero finite number of singular vectors if and only if d := d1 = d2
since this is when N = 0 in Theorem 3.1. The singular vector tuples are the non-zero
pairs x, y ∈ C

d such that A( · , x, . . . , x) = λ′y and B( · , x, . . . , x) = λ′′y, for some
λ′, λ′′ ∈ C. This reduces to the single equation

A( · , x, . . . , x) = λB( · , x, . . . , x) (3.3)
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Fig. 5 A hyperquiver with a
single hyperedge and a
representation

for some λ ∈ C. This is a tensor-analogue of the generalised eigenvalue problem for
two matrices. When A and B are real with A symmetric, B positive definite, and m
even, the generalised eigenvectors x are the critical points of the spherical optimisation
problem (1.1) [48, Thoerem4.58]. It was shown in [27, Corollary 16] and [20, Theorem
2.1] that there are d(m − 1)d−1 generalised tensor eigenvalue pairs x and y for the
tensors A and B. Our general formula in Theorem 3.1 also recovers this number, as
follows. The polynomial (3.1) is

(
d∑

k=1

hk−1
2 ((m − 1)h1)

d−k

)(
d∑

�=1

h�−1
2 ((m − 1)h1)

d−�

)

. (3.4)

A monomial hd−1
1 hd−1

2 is obtained from the product of a k-th summand and an �-
th summand such that k + � = d + 1. There are d such pairs of summands k, � ∈
{1, . . . , d}. Each such monomial will have a coefficient of (m − 1)d−1. Hence the
coefficient of hd−1

1 hd−1
2 in (3.4) is d(m − 1)d−1.

Now we find the dimension and degree of the singular vector variety S(R) for a
generic representationR of a hyperquiver with a single hyperedge, as shown in Fig. 5.

Corollary 3.8 Let H be a hyperquiver with one hyperedge with all entries of its tuple
of vertices distinct. Let R be the representation that assigns the vector space C

di to
each vertex i and a generic tensor to the hyperedge. Then:

(a) The dimension of S(R) is N = ∑n−1
i=1 di − n + 1

(b) The degree of S(R) is

dn∑

k=1

∑

k1+···+kn−1=dn−k

(
dn − k

k1, . . . , kn−1

)(
N

d1 − 1 − k1, . . . , dn−1 − 1 − kn−1, dn − k

)
.

(3.5)
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Table 1 The degree of the singular vector variety S(R) of the hyperquiver in Fig. 5 with d1 = ... = dn = d
and generic tensor T .

d n
2 3 4 5 6

1 1 1 1 1 1

2 2 6 24 120 720

3 4 66 1980 93240 6350400

4 8 840 218400 110510000 96864800000

5 16 11410 27512100 1.5873 × 1011 1.89313 × 1015

6 32 160776 3741400000 2.54601 × 1014 4.26416 × 1019

The dimension of S(R) is N = (d − 1)(n − 1). In particular, S(R) is positive-dimensional except in the
first row

Proof The dimension ofS(R) is N = (∑n
i=1 di − n

)−(dn−1) = ∑n−1
i=1 di−n+1, by

Theorem 3.1. The degree of S(R) is the coefficient of hd1−1
1 · · · hdn−1

n in the product

(
n∑

i=1

hi

)N

︸ ︷︷ ︸
(1)

⎛

⎝
dn∑

k=1

(
n−1∑

i=1

hi

)dn−k

hk−1
n

⎞

⎠

︸ ︷︷ ︸
(2)

.

For each k ∈ {1, . . . , dn}, the monomial hk11 · · · hkn−1
n−1 h

k−1
n in the expansion of (2)

for some k1, . . . , kn−1 such that
∑n−1

i=1 ki = dn − k has coefficient
( dn−k
k1,...,kn−1

)
. This

is combined with the monomial hd1−1−k1
1 · · · hdn−1−kn−1

n−1 hdn−k
n from the expansion of

(1), which has coefficient
( N
d1−1−k1,...,dn−1−1−kn−1,dn−k

)
. Multiplying these coefficients

and summing over those k1, . . . , kn−1 with
∑n−1

i=1 ki = dn − k, we obtain

∑

k1+···+kn−1=dn−k

(
dn − k

k1, . . . , kn−1

)(
N

d1 − 1 − k1, . . . , dn−1 − 1 − kn−1, dn − k

)
.

Summing over k = 1, . . . , dn gives the result. ��
When d := d1 = · · · = dn , we can use Corollary 3.8 to find the degree of S(R),

which is displayed in Table 1 for d = 1, . . . , 6 and n = 2, . . . , 6. Observe that: (i) the
degree row of d = 2 consist of the factorial numbers; and (ii) the degree column of
n = 2 consist of powers of 2. We explain these observations. To see (i), if d = 2, then
(3.5) becomes

2∑

k=1

∑

k1 + · · · + kn−1= 2 − k

(
2 − k

k1, . . . , kn−1

)(
n − 1

1 − k1, . . . , 1 − kn−1, 2 − k

)
. (3.6)
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Fig. 6 A quiver representation
with empty singular vector
variety

Fig. 7 Insufficiently generic
quiver representations

When k = 2, the only summands satisfying k1 + · · · + kn−1 = 2 − k is k1 = · · · =
kn−1 = 0, which is 1 for the first factor and (n − 1)! for the second factor in (3.6).
When k = 1, the only allowed indices are of the form ki = 1 and k j = 0 for all i �= j ,
fromwhich we get 1 for the first factor and (n−1)! for the second factor in (3.6). Since
there are n−1 such allowed indices, (3.6) evaluates to (n−1)!+ (n−1)(n−1)! = n!.
For (ii), when n = 2, we have

d∑

k=1

∑

k1=d−k

(
d − k

k1

)(
d − 1

d − 1 − k1, d − k

)
=

d∑

k=1

(
d − k

d − k

)(
d − 1

k − 1, d − k

)

=
d−1∑

k=0

(
d − 1

k, d − 1 − k

)
=

d−1∑

k=0

(
d − 1

k

)
= 2d−1.

Example 3.9 (Empty singular vector variety) Consider the quiver in Fig. 6, where the
vertices are assigned vector spaces of dimension d > 1, and the two edges are assigned
generic matrices A, B ∈ C

d×d . Any singular vector would need to be an eigenvector
of both matrices A and B, but a pair of generic matrices A and B do not share an
eigenvector. The emptiness of the singular vector variety is captured by Theorem 1.1,
as N < 0.

Example 3.10 (Insufficiently generic representations) The quiver representations in
Fig. 7with d > 1 and genericmatrix A ∈ C

d×d do not satisfy the genericity conditions
in Definition 2.5. In Fig. 7(a), the only permutations σ, σ ′ on {0, 1} sending the matrix
A on one edge to the matrix A on the other edge and vice versa are the identity
permutations, which fail to satisfy the condition σ(0) �= σ ′(0), causing one of the
edges to be redundant. The resulting singular vector variety has dimension d − 1 and
degree 2d−1 by Corollary 3.8, rather than the expected dimension 0 and degree d in
Example 3.7. In Fig. 7(b), the singular vectors are the non-zero points x ∈ C

d such that
A2x = λAx for some λ ∈ C, of which there are d solutions, rather than the expected
0 solutions in Theorem 3.1.
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Fig. 8 A hyperquiver
representing a period-n orbit

Example 3.11 (Periodic orbits of order n) Consider the hyperquiver representation in
Fig. 8 with a generic tensor T ∈ (Cd)⊗m . The singular vector tuples are the non-zero
vectors x1, . . . , xn ∈ C

d such that

T ( · , x1, . . . , x1) = λ1x2
T ( · , x2, . . . , x2) = λ2x3

...

T ( · , xn, . . . , xn) = λnx1

for some λi ∈ C. In other words, each xi is a periodic point of order n.
The hyperquiver representation is not generic in the sense of Definition 2.5 as edges

with different tuples v(e) up to permutation are assigned the same tensor T . Hence
Theorem 3.1 does not apply. Nonetheless, we predict the dimension and degree, using
Theorem 3.1. The result predicts finitely many n-periodic points, by Corollary 3.2.
Their count is predicted to be the coefficient of the monomial hd−1

1 · · · hd−1
n in the

polynomial

(hk−1
2 (μh1)

d−k)(hk−1
3 (μh2)

d−k) · · · (hk−1
1 (μhn)

d−k) (3.7)

by Theorem 3.1,where μ = m − 1. This monomial is obtained from the product of
terms

(hk−1
2 (μh1)

d−k)(hk−1
3 (μh2)

d−k) · · · (hk−1
1 (μhn)

d−k)

coming from each of the respective factors in (3.7), for each k ∈ [d]. The coefficient
of this product is μn(d−k). Thus, the coefficient of hd−1

1 · · · hd−1
n in (3.7) is

d∑

k=1

μn(d−k) = μnd − 1

μn − 1
= (m − 1)nd − 1

(m − 1)n − 1
.

This turns out to be the correct number of period-n fixed points, as proved in [25,
Corollary 3.2]. The number of eigenvectors of a generic tensor is the special case
n = 1 (Example 3.3).
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Example 3.11 seems to suggest that the conditions defining a generic representation
in Definition 2.5 can be weakened so that Theorem 3.1 holds for a larger class of
hyperquiver representations. In Example 3.10, which gives the wrong dimensions and
degrees, we notice that there are two edges assigned to the samematrix that point to the
same target vertex.We conjecture that the genericity conditions inDefinition 2.5 can be
modified in the following way so that Theorem 3.1 still holds: given any two distinct
edges e, e′ ∈ Er , in Definition 2.5(i.b), only require that the tuples of dimensions
(dt(e), ds1(e), . . . , dsμ(e)) and (dt(e′), ds1(e′), . . . , dsμ(e′)) agree up to permutation, and
in part (i.c) we only require that t(e) �= t(e′). These conditions cover Example 3.11,
while Example 3.10 is still excluded.

In the remainder of this section, we explore connections to dynamical systems and
message passing.

Example 3.12 A parameterised dynamical system is a continuous map f : X × P →
X , where X and P are compact triangulable topological spaces, respectively called
the state and parameter space of f . Taking homology with complex coefficients, we
obtain a C-linear map

Hk f : Hk(X × P) → Hk(X)

in each dimension k ≥ 0. We know from the Künneth formula [53, Section 5.3] that
the domain of Hk f is naturally isomorphic to the direct sum

⊕
i+ j=k Hi (X)⊗Hj (P).

Therefore, each Hk f admits a component of the form

Tk : Hk(X) ⊗ H0(P) → Hk(X),

Wesay that a non-zero homology class ξ ∈ Hk(X) isfixedby f at a non-zero homology
class η ∈ H0(P) whenever there exists a scalar λ ∈ C satisfying Tk(ξ ⊗ η) = λ · ξ .
The set of all such fixed homology classes (up to scaling) is the singular vector variety
of the hyperquiver representation in Fig. 9.

Let k := dim Hk(X) and suppose P has d connected components; i.e.,
dim H0(P) = d. Then the singular vector variety has dimension d − 1 and degree
equal to the coefficient of hk−1

1 hd−1
2 in the polynomial (h1 + h2)d−1∑k

j=1(h1 +
h2)k− j h j−1

2 , by Theorem 3.1. The monomial hk−1
1 hd−1

2 arises by pairing the

term
(k− j

i

)
hi1h

k− j−i
2 h j−1

2 = (k− j
i

)
hi1h

k−i−1
2 in the expanded sum with the term

( d−1
k−i−1

)
hk−i−1
1 h(d−1)−(k−i−1)

2 in the expanded parentheses, for all 0 ≤ i ≤ k − j
and 1 ≤ j ≤ k. Thus, its coefficient is

k∑

j=1

k− j∑

i=0

(
k − j

i

)(
d − 1

k − i − 1

)

In particular, if P is connected (i.e., d = 1), then there is exactly one non-zero
homology class in Hk(X) fixed by f .
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Fig. 9 Fixed points in homology

Example 3.13 Ourhyperquiver framework counts thefixedpoints of certainmultilinear
message passing operations, as we now describe. Assign vectors x(0)

i := xi ∈ C
di to

each i ∈ V . Apply the multilinear map Te to the vectors (x(k)
s1(e)

, . . . , x(k)
sμ(e)) at nodes

in s(e). Then, update the vector at the target vertex t(e) to

x(k+1)
t(e) := Te(x

(k)
s(e)) ∈ C

dt(e) . (3.8)

In the limit, one converges to a fixed point of the update steps. The singular vector
variety consists of tuples of directions in C

di that are fixed under these operations, for
any order of update steps.

We compare the update (3.8) to message passing graph neural networks, see e.g.
[31, 33]. The vector at each vertex is the features of the vertex. The vectors typically
lie in a vector space of the same dimension, as in Theorem 1.1. Message passing
operations take the form

x(k+1)
i = f ({x(k)

i } ∪ {x(k)
j : j ∈ N (i)}), (3.9)

where N (i) is the neighbourhood of vertex i . That is, the vector of features at node i
in the (k + 1)-th step depends on the features of node i and its neighbours at the k-th
step. Our update step in (3.8) is a special case of (3.9). We relate (3.8) to operations
in the literature.

The function f in (3.9) often involves a non-linearity, applied pointwise. In com-
parison, we focus on the (multi)linear setting, as discussed for example in [16]. There,
the authors study the optimisation landscapes of linear update steps, relating them
to power iteration algorithms. Our approach to count the locus of fixed points sheds
insight into the global structure of this optimisation landscape, in the spirit of [13,
21]. Studying such fixed point conditions directly is the starting point of implicit deep
learning [24, 32].

The neighbourhood N (i), for us, consists of nodes j that appear in a tuple s(e)
for some edge e with t(e) = i . Update steps are usually over a graph rather than a
hypergraph. The tensor multiplications from (3.8) incorporate higher-order interac-
tions. Such higher-order structure also appears in tensorised graph neural networks
[35] and message passing simplicial networks [9].
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4 The Singular Vector Bundle

In this section, we define the singular vector bundle. It is a vector bundle on X =∏n
i=1 P(Cdi ) whose global sections are associated to hyperquiver representations.

The zeros of a section are the singular vectors of the corresponding representation.
Following [27, Section 2], for each integer d > 0 we consider four vector bundles

over P(Cd): the free bundle F (d), the tautological bundle T (d), the quotient bun-
dle Q(d), and the hyperplane bundle H (d). Their fibres at each [x] ∈ P(Cd) are

F (d)[x] = C
d

T (d)[x] = span(x)

Q(d)[x] = C
d/ span(x)

H (d)[x] = span(x)∨.

Here if V is a vector space or vector bundle, then V∨ denotes its dual. Note that
the hyperplane bundle H (d + 1) is traditionally denoted in algebraic geometry by
OPd (1). We have a short exact sequence of vector bundles

0 → T (di ) → F (di ) → Q(di ) → 0. (4.1)

There are projection maps πi : X → P(Cdi ) with πi (χ) = [xi ], where χ =
([x1], . . . , [xn]). We pull back a vector bundle B over P(Cdi ) to a bundle π∗

i B over
X , whose fiber at χ ∈ X equals B[xi ]. There is an exact sequence 0 → T (di )[xi ] →
F (di )[xi ] → Q(di )[xi ] → 0 of vector spaces at every [xi ] ∈ P(Cdi ). Hence there is
an exact sequence of vector bundles

0 → π∗
i T (di ) → π∗

i F (di ) → π∗
i Q(di ) → 0. (4.2)

Definition 4.1 Let R = (d, T ) be a hyperquiver representation and let X =∏n
i=1 P(Cdi ). For each hyperedge e ∈ E , we consider the following vector bundles

over X .

T (e) :=
μ(e)⊗

j=1

π∗
s j (e)T (ds j (e)), B(e) := Hom

(
T (e), π∗

t(e)Q(dt(e))
)

.

We define the singular vector bundle of R over X to be B(R) := ⊕
e∈E B(e).

The vector bundle B(R) depends on the hypergraph H and the assigned vector
spaces U , but not on the multilinear maps T . It can be written in terms of a partition
of edges as B(R) = ⊕M

r=1
⊕

e∈Er
B(e). We will see that when R is a generic

hyperquiver representation, the zero locus of a generic section ofB(R) is the singular
vector variety S(R). We make the following observations about its summandsB(e).

Proposition 4.2 Let B(e) = Hom
(
T (e), π∗

t(e)Q(dt(e))
)
. Then the following hold.

(a) The fibre of B(e) at χ is Hom
(
span

(
⊗μ(e)

j=1xs j (e)
)

, C
dt(e)/ span(xt(e))

)
.

(b) The bundle B(e) has rank dt(e) − 1.

(c) We have the isomorphismB(e) =
(⊗μ(e)

j=1 π∗
s j (e)

H (ds j (e))
)

⊗ π∗
t(e)Q(dt(e)).
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Proof The bundle T (e) has fibres

T (e)χ =
μ(e)⊗

j=1

π∗
s j (e)T (ds j (e))χ =

μ(e)⊗

j=1

T (ds j (e))[xs j (e)]

=
μ(e)⊗

j=1

span(xs j (e)) = span
(
⊗μ(e)

j=1xs j (e)
)

.

The bundle π∗
t(e)Q(dt(e)) has fibre π∗

t(e)Q(dt(e))χ = C
dt(e)/ span(xt(e)). This proves

(a). Then (b) follows, since the dimension of the fibre is dt(e) −1. To prove (c), observe
that B(e) � T (e)∨ ⊗ π∗

t(e)Q(dt(e)) and that

T (e)∨ =
⎛

⎝
μ(e)⊗

j=1

π∗
s j (e)T (ds j (e))

⎞

⎠

∨
�

μ(e)⊗

j=1

(
π∗
s j (e)T (ds j (e))

)∨

�
μ(e)⊗

j=1

π∗
s j (e)T (ds j (e))

∨ =
μ(e)⊗

j=1

π∗
s j (e)H (ds j (e)).

��
We relate the singular vector variety to the singular vector bundle. The global

sections of a vector bundle B are denoted by �(B). They are the holomorphic maps
σ : X → B that send each χ ∈ X to a point in Bχ . A global section of B(e) is a
map sending each χ ∈ X to an element in

Hom
(
span

(
⊗μ(e)

j=1xs j (e)
)

, C
dt(e)/ span(xt(e))

)
, (4.3)

by Proposition 4.2(a). Definition 2.5(ii) of a partition gives an equivalence relation
between tensors assigned to Er via permutation of themodes. Following the notation of
Definition 2.5(iii), we denote by Tr ∈ C

er a representative for the class corresponding
to Er , for some er ∈ Er , and we define Tr (xs(e)) := Te(xs(e)) for all e ∈ Er , where
Te(xs(e)) is defined in (2.1). A tensor T ∈ C

er determines a global section ofB(e) for
every e ∈ Er , which we denote by Le(T ). The map Le(T ) sends χ to the map

⊗μ(e)
j=1xs j (e) 	→ T (xs(e)) ∈ C

dt(e)/ span(xt(e)).

where T (xs(e)) is the image of T (xs(e)) in the quotient vector spaceC
dt(e)/ span(xt(e)).

In other words, following [27, Lemma 9], we define the map

Le : C
er −→ �(B(e))

T 	−→ Le(T ).
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We form the composite map

L :
M⊕

r=1

C
er −→ �(B(R))

(T1, . . . , TM ) 	−→
M⊕

r=1

⊕

e∈Er

Le(Tr ).

(4.4)

We connect the global sections in the image of L to the singular vector tuples of a
hyperquiver representation, generalizing [27, Lemma 11].

Proposition 4.3 Let R = (d, T ) be a hyperquiver representation. Let X =∏n
i=1 P(Cdi ) and let B(R) be the singular vector bundle, with L : ⊕M

r=1 C
er →

�(B(R)) the map in (4.4). Then a point χ ∈ X lies in the zero locus of the section
σ = L((Tr )Mr=1) if and only if χ is a singular vector tuple of R.

Proof L((Tr )Mr=1)(χ) is the |E |-tuple of zero maps each inB(e)χ if and only if for all

e ∈ Er and r ∈ [M], Le(Tr )(χ)(⊗μ(e)
j=1xs j (e)) = 0, if and only if Tr (xs(e)) = λext(e)

for some λe ∈ C, if and only if χ is a singular vector tuple of the hyperquiver
representation R. ��

In light of the preceding result, it becomes necessary to determine the image of L
within �(B(R)). For this purpose, we make use of the following Künneth formula
for vector bundles. Note that H0(X ,B) := �(B).

Proposition 4.4 (Künneth Formula, [38, Proposition 9.2.4]) Let X and Y be complex
varieties and πX : X × Y → X and πY : X × Y → Y be the projection maps. If F
and G are vector bundles on X and Y respectively, then

Hn(X × Y , π∗
XF ⊗ π∗

YG ) ∼=
⊕

p+q=n

H p(X ,F ) ⊗ Hq(Y ,G ).

The following result, which generalises [27, Lemma 9 parts (1) and (2)], characterises
the image of L .

Proposition 4.5 The linear map L : ⊕M
r=1 C

er → �(B(R)) in (4.4) is bijective.

Proof By the definition of L , it suffices to show for each e ∈ E that Le is an injective
linear map between vector spaces of the same dimension. First we show that Le is
injective. Consider e ∈ Er and let T ∈ C

er . If T �= 0, then there exist xs j (e) ∈
C
ds j (e) for j ∈ [μ(e)] with v := T (xs(e)) �= 0. Let xt(e) ∈ C

dt(e)\ span(v). Then
Le(T )(χ)(⊗μ(e)

j=1xs j (e)) �= 0. Hence, the global section Le(T ) is not the zero section.
We recursively apply the Künneth formula in the case n = 0 to obtain

H0(X ,B(e)) =
μ(e)⊗

j=1

H0(X , π∗
s j (e)H (ds j (e))) ⊗ H0(X , π∗

t(e)Q(dt(e))).
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It remains to compute the dimensions of the factors.We have dim H0(X , π∗
i H (di )) =

di by results on the cohomology of line bundles over projective space [34, Theorem
5.1]. Finally, the short exact sequence (4.2) gives a long exact sequence in cohomology

0 → H0(X , π∗
i T (di )︸ ︷︷ ︸

=0

) → H0(X , π∗
i F (di )) → H0(X , π∗

i Q(di )) → H1(X , π∗
i T (di ))︸ ︷︷ ︸

=0

→ . . . .

The underlined terms are 0, again by [34, Theorem 5.1]. Thus dim H0(X , π∗
i Q(di )) =

di , since dim H0(X , π∗
i F (di )) = di . Hence dim H0(X ,B(e)) = ∏m

j=1 ds j (e). This
is the dimension of C

er , so Le is a bijection. ��

5 Bertini-Type Theorem

In this section, we relate the zeros of a generic section of a vector bundle to its
top Chern class, cf. [27, Section 2.5]. This relation holds when the vector bundle
is “almost generated”, see Definition 5.2. We refer the reader to Appendix A for
relevant background on Chern classes and Chow rings. In this section, X is any smooth
complex projective variety. Recall that the global sections of B, denoted �(B), are
the holomorphic maps σ : X → B that send each χ ∈ X to a point in the fibre Bχ .

Definition 5.1 Let X be a smooth projective variety and B a vector bundle over X .
The vector bundleB is globally generated if there exists a vector subspace� ⊆ �(B)

such that for all χ ∈ X , we have �(χ) = Bχ , where �(χ) := {σ(χ) | σ ∈ �}.
Definition 5.2 Let X be a smooth projective variety and B a vector bundle over X .
The vector bundleB is almost generated if there exists a vector subspace � ⊆ �(B)

such that eitherB is globally generated, or there are k ≥ 1 smooth irreducible proper
subvarieties Y1, . . . ,Yk of X , with Y0 = X , such that:

(i) For all i ≥ 0, there is a vector bundle Bi over Yi , and for any j ≥ 0, if Yi is a
subvariety of Y j , then Bi is a subbundle of B j

∣∣
Yi

(ii) �(χ) ⊆ (Bi )χ for all χ ∈ Yi and i ≥ 0
(iii) For all i ≥ 0, if αi ⊆ [k] is the set of all j ∈ [k] such that Y j is a proper

subvariety of Yi , then �(χ) = (Bi )χ for all χ ∈ Yi\
(∪ j∈αi Y j

)
.

Now we state our Bertini-type theorem; cf. [27, Theorem 6]. The zero locus of a
section σ ∈ �(B) is Z(σ ) := {χ ∈ X | σ(χ) = 0}. The top Chern class and top
Chern number of B, see Definition A.5, are denoted cr (B) ∈ A∗(X) and ν(B) ∈
Z, respectively. We assume X ⊆ P

D via some closed immersion s : X ↪−→ P
D ,

and identify the top Chern class of B with its pushforward under the embedding:
cr (B) = s∗(cr (B)) ∈ A∗(PD), see Remark A.3

Theorem 5.3 (Bertini-Type Theorem) Let X ⊆ P
D be a smooth irreducible complex

projective variety of dimension d, and B a vector bundle of rank r over X, almost
generated by a vector subspace � ⊆ �(B). Let σ ∈ � be a generic section with
Z(σ ) ⊆ X its zero locus.

(a) If r > d, then Z(σ ) is empty
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(b) If r = d, then Z(σ ) consists of ν(B) points. Furthermore, if rankBi > dim Yi
for all i ≥ 1, then each point has multiplicity 1 and does not lie on ∪k

i=1Yi .
(c) If r < d, then Z(σ ) is empty or smooth of pure dimension d − r . In the latter

case, the degree of Z(σ ) is ν
(
B
∣∣
L

)
, where L ⊆ P

D is the intersection of d − r
generic hyperplanes in P

D. If ν
(
B
∣∣
L

) �= 0, then Z(σ ) is non-empty.

Remark 5.4 The above theorem generalises [27, Theorem 6], where parts (a) and (b)
appear.We add part (c). Compared to [27, Theorem6], our extra assumption rankBi >

dim Yi for i > 0 in (b) appears because it is absent from Definition 5.2, whereas it
appears in its analogue [27, Definition 5].

The first Chern class of the hyperplane bundle c1(H (D+1)) = c1(OPD (1)) is the
same as the class of a generic hyperplane in P

D , by Definition A.5(v). Thus, there will
be a unique integer N such that cr (B)c1(OPD (1))N is equal to some integer multiple
of the class of a point [p] ∈ A∗(PD). Theorem 5.3(c) states that this integer is ν

(
B
∣∣
L

)

and that this is the degree of Z(σ ). This integer is also the degree of the class cr (B)

[23, Proposition 1.21].
To prove Theorem 5.3, we use the following results.

Theorem 5.5 (Fiber Dimension Theorem [36, Theorem 1.25]) Let f : X → Y be a
dominant morphism of irreducible varieties. Then there exists an open set U ⊆ Y such
that for all y ∈ U, dim X = dim Y + dim( f −1(y)).

Theorem 5.6 (Generic Smoothness Theorem [34, Corollary III.10.7]) Let f : X → Y
be a morphism of irreducible complex varieties. If X is smooth, then there exists an
open subset U ⊆ Y such that f | f −1(U ) is smooth. Furthermore, if f is not dominant,
then f −1(U ) = ∅.

Proof of Theorem 5.3 Consider I = {(χ , σ ) ∈ X × � | σ(χ) = 0} with projection
maps

I

X �

p q

Then I is a vector bundle over X . Since the base space X is irreducible, so is the
total space I . We show that dim I = dim� + d − r . The map p is surjective, and
hence dominant, since the zero section lies in �. There exists an open set U ⊆ X
such that dim I = d + dim(p−1(χ)) for all χ ∈ U , by Theorem 5.5. The fibre
p−1(χ) � {σ ∈ � : σ(χ) = 0} consists of sections in � that vanish at χ . Consider
the evaluation map {χ} × � → Bχ that sends (χ , σ ) to σ(χ). This is a linear map of
vector spaces and its kernel is isomorphic to p−1(χ). Let Y := ∪k

i=1Yi , where the Yi
are fromDefinition 5.2. The variety Y is a proper subvariety of X . For each χ ∈ X \Y ,
the evaluation map is surjective, by Definition 5.2(iii). Thus, the evaluation map has
rank r and nullity dim�−r . Hence dim(p−1(χ)) = dim�−r for allχ ∈ U∩(X \Y ).
Therefore dim I = dim� + d − r .

The fiber q−1(σ ) � {χ ∈ X : σ(χ) = 0} is the zero locus Z(σ ). We show that the
map q is dominant if and only if q−1(σ ) �= ∅ for generic σ ∈ �. If q is dominant,
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then there exists an open set W ⊆ � such that q−1(σ ) is smooth of codimension
dim I −dim� = d−r for all σ ∈ W , by Theorems 5.5 and 5.6. In particular, q−1(σ )

is non-empty. Conversely if q is not dominant, then there is an open set W ⊆ � such
that q−1(σ ) = ∅ for all σ ∈ W , by Theorem 5.6.

Now we show that Z(σ ) �= ∅ for generic σ ∈ � if and only if cr (B) �= 0.
If Z(σ ) = ∅, then the existence of a nowhere vanishing section of B implies that
cr (B) = 0 [28, Lemma 3.2]. Conversely, if Z(σ ) �= ∅, then the map q is dominant,
so Z(σ ) is smooth of codimension d − r . If cr (B) = 0, then 0 = cr (B) = [Z(σ )] by
Definition A.5(ii), which is a contradiction since the degree of a non-empty projective
variety is a positive integer [34, Proposition I.7.6.a]. In particular, if r = d and ν(B) =
0, then Z(σ ) = ∅.

The map q is not dominant if dim I < dim�; i.e., if r > d. This proves (a) and
the emptiness possibility in (c). It remains to consider the case r ≤ d with the map q
dominant and generic σ ∈ �.

Z(σ ) ⊆ P
D is smooth of dimension d − r . It is pure dimensional by [28, Example

3.2.16]. When r = d, we have [Z(σ )] = cr (B) = ν(B)[p] for some p ∈ X , by
Definition A.5(ii), so the zero locus consists of ν(B) points. It remains to relate the
degree to the top Chern class for r < d. The degree of Z(σ ) is the number of points in
the intersection of Z(σ )with d−r generic hyperplanes P

D . Denote the intersection of

d−r such hyperplanes by L . Let L
j

↪−→ P
D be its inclusion. We have [Z(σ )] = cr (B)

by Definition A.5(ii) and seek [L]cr (B). We compute in A∗(PD):

[L]cr (B) = j∗([L])cr (B) (definition of pushforward)

= j∗( j∗(cr (B))[L]) (projection formula)

= j∗(cr ( j∗B)[L]) = j∗(cr
(
B
∣∣
L

) [L]) (Definition A.5(iv))

= j∗(ν
(
B
∣∣
L

) [p][L]) (definition of top Chern number)

= ν
(
B
∣
∣
L

)
j∗([p][L]) (pushforward is a morphism)

= ν
(
B
∣∣
L

)
j∗([p]) = ν

(
B
∣∣
L

) [p] (intersection with a point)
(5.1)

for some point p ∈ L . Thus, the degree of Z(σ ) is ν
(
B
∣
∣
L

)
. As a corollary, we obtain

that if ν(B) �= 0 or ν
(
B
∣
∣
L

) �= 0, then Z(σ ) �= ∅. This proves the dimension and
degree statements in (b) and (c).

Lastly, we show that when r = d and the additional assumptions of (b) hold, the
points in Z(σ ) are generically of multiplicity 1 and do not lie on Y . Smoothness in
Theorem 5.6 shows that each of the finitely many points in q−1(σ ) are of multiplicity
1. We have rankBi > dim Yi for all i ≥ 1. Hence dim(p−1(Yi )) = dim Yi +
dim� − rankBi < dim�. Thus, dim(p−1(Y )) < dim�, and using the fact that the
projection P

n × A
m → A

m is a closed map, we deduce that q is a closed map. Hence
q(p−1(Y )) is a proper subvariety of �. For all points in the open set σ ∈ W ∩ W ′,
where W ′ = �\q(p−1(Y )), the fibre q−1(σ ) contains no points in Y . ��
Remark 5.7 Our proof of Theorem 5.3, is analogous to the proofs in [27] of their The-
orems 4 and 6. Their proof uses [28, Example 3.2.16], which is equivalent to axiom
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(ii) in Definition A.5. Our proof adds the Chern number computation for case (c).

6 Generating the Singular Vector Bundle

In this section we show that B(R) is almost generated, so that Theorem 5.3 may be
applied to it. We generalise the singular vector bundle to a bundle B(R, F), for a
subset of hyperedges F ⊆ E . The zeros of a global section of B(R, F) are singular
vectors with singular value zero along the edges in F .We show thatB(R, F) is almost
generated. Thiswill later yield not only the dimension and degree of the singular vector
variety S(R) in Theorem 3.1, but also the final statement about the non-existence of
a zero singular value.

Definition 6.1 Let R = (d, T ) be a hyperquiver representation and let X =∏n
i=1 P(Cdi ). Given F ⊆ E , we define

B(e, F) =
⎧
⎨

⎩

Hom
(
T (e), π∗

t(e)Q(dt(e))
)

if e /∈ F

Hom
(
T (e), π∗

t(e)F (dt(e))
)

if e ∈ F .

It has fibres

B(e, F)χ =
⎧
⎨

⎩

Hom
(
span

(
⊗μ(e)

j=1xs j (e)
)

, C
dt(e)/ span(xt(e))

)
if e /∈ F

Hom
(
span

(
⊗μ(e)

j=1xs j (e)
)

, C
dt(e)

)
if e ∈ F,

where χ = ([x1], . . . , [xn]). The singular vector bundle of R over X with respect to
F isB(R, F) = ⊕

e∈E B(e, F).

The singular vector bundle B(R) from Definition 4.1 isB(R, ∅).

Proposition 6.2 The bundle B(R, F) has rank
∑

e∈E (dt(e) − 1) + |F |.
Proof The rank of B(R, F) is

∑
e∈E rankB(e, F). For e /∈ F , rankB(e, F) =

dt(e) − 1, as in Proposition 4.2(b). For e ∈ F , rankB(e, F) = rank Hom(T (e), π∗
t(e)

F (dt(e))) = dt(e). ��
We construct global sections for B(R, F) whose zero loci correspond to singular

vectors with zero singular value along the edges in F . Define the map

Le,F : C
er −→ �(B(e, F))

Le,F (T )(χ)(⊗μ(e)
j=1xs j (e)) =

{
T (xs(e)) ∈ C

dt(e)/ span(xt(e)) e /∈ F

T (xs(e)) ∈ C
dt(e) e ∈ F .

(6.1)

We define the composite map

LF :
M⊕

r=1

C
er → �(B(R, F))

123



Foundations of Computational Mathematics

LF =
M⊕

r=1

⊕

e∈Er

Le,F . (6.2)

We connect the global sections in the image of LF to the singular vector tuples of
R, generalizing Proposition 4.3 and [27, Lemma 11].

Proposition 6.3 LetB(R, F) be the singular vector bundle with respect to F and LF :⊕M
r=1 C

er → �(B(R, F)) the linear map in (6.2). A point χ = ([x1], . . . , [xn]) ∈ X
lies in the zero locus of the section σ = LF ((Tr )Mr=1) if and only if χ is a singular
vector tuple of R with zero singular value along all edges in F.

Proof The image LF ((Tr )Mr=1)(χ) is the tuple of zero maps each in B(e, F)χ if and

only if for all e ∈ Er and r ∈ [M], Le,F (Tr )(χ)(⊗μ(e)
j=1xs j (e)) is the zero vector in

the appropriate case of (6.1), if and only if Tr (xs(e)) = λext(e) for some λe ∈ C

with λe = 0 if e ∈ F , if and only if χ is a singular vector tuple of the hyperquiver
representation R, with zero singular values along the edges of F . ��
Definition 6.4 The isotropic quadric Qn = {v ∈ C

n : v�v = 0} is the quadric
hypersurface in C

n of isotropic vectors. Here, the contraction v�v is with respect
to the standard real inner product, see Remark 2.4. The variety Qn is defined by a
homogeneous equation and hence has dimension n−1. We consider it as a subvariety
P(Qn) of P

n .

Definition 6.5 If T ∈ C
e is a tensor and xs j (e) ∈ C

ds j (e) are vectors for
j ∈ {0, 1, . . . , μ}, then we denote by T (xe) := Te(xs0(e), xs1(e), . . . , xsμ(e)) =
x�
t(e)T (xs(e)) ∈ C the contraction of the tensor T by the vectors xs j (e), where T (xs(e))
is the vector defined in (2.1).

We give a necessary and sufficient condition for when the maps in (6.1) generate
the vector space B(e)χ . This generalises [27, Lemma 8] from a single tensor to a
hyperquiver representation. Later, in our proof thatB(R, F) is almost generated, we
apply this condition to the vector subbundlesBi in Definition 5.2. This will allow us
to associate a single tensor to each piece of the partition.

Lemma 6.6 Let H = (V , E) be a hyperquiver, E = ∐M
r=1 Er be a partition, and

assign vector spacesC
di to each vertex i ∈ V . Fix a collection of vectors xi ∈ C

di \{0}
for i ∈ [n] and ye ∈ C

dt(e) for e ∈ E. Fix F ⊆ E a subset of hyperedges. Let Gr be the
hyperedges e ∈ Er\F such that xt(e) is isotropic. Then for all r ∈ [M], the following
are equivalent:

(a) There exist tensors Tr ∈ C
er for some er ∈ Er satisfying the equations

Tr (xs(e)) = ye ∈ C
dt(e)/ span(xt(e)) e ∈ Er \ F (6.3)

Tr (xs(e)) = ye ∈ C
dt(e) e ∈ Er ∩ F . (6.4)

(b) Given any pair of edges e, e′ ∈ (F ∩ Er ) ∪ Gr , we have

x�
t(e)ye = x�

t(e′)ye′ . (6.5)
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Proof (a ⇒ b) : There is a tensor Tr satisfying (6.3) if and only if there are scalars
λe ∈ C such that Tr (xs(e)) = ye + λext(e) for all e ∈ Er\F . Multiplying both sides
by xt(e) gives Tr (xe) = x�

t(e)ye + λex�
t(e)xt(e). Similarly, from (6.4) we obtain, for

e ∈ F ∩ Er , the condition Tr (xe) = x�
t(e)ye. The scalar Tr (xe) only depends on r via

the set Er . Thus for any pair of edges e, e′ ∈ Er , we have

x�
t(e)ye + λex�

t(e)xt(e) = x�
t(e′)ye′ + λe′x�

t(e′)xt(e′)

where λe = 0 for e ∈ F ∩ Er . For the hyperedges in Gr , the terms x�
t(e)xt(e) vanish.

Hence (6.5) holds for all e, e′ ∈ (F ∩ Er ) ∪ Gr .
(b ⇒ a) : Let μr ∈ C be the value of (6.5) if (F ∩ Er ) ∪ Gr �= ∅ and zero

otherwise. Define

λe =
{
0 e ∈ (F ∩ Er ) ∪ Gr

(x�
t(e)xt(e))

−1(μr − x�
t(e)ye) otherwise.

(6.6)

Choose some er ∈ Er . We show that, for such a choice of λe, there exists a tensor
Tr ∈ C

er that satisfies

Tr (xs(e)) = ye + λext(e) (6.7)

for all e ∈ Er , and hence there exists a tensor Tr that satisfies (6.3) and (6.4). A change
of basis in eachC

di does not affect the existence or non-existence of solutions to (6.7).
Consider the change of basis that sends each xi to the first standard basis vector inC

di ,
which we denote by ei,1 = (1, 0, . . . , 0)�. For each e ∈ Er , there is a permutation σ

of {0, 1, . . . , μ} sending v(e) to v(er ) by Definition 2.5(i.b). Then (6.7) becomes the
condition

(Tr )1,...,1,�,1,...,1 = (ye)� + λeδ1,� for all � ∈ [dt(e)],

where δi, j is the Kronecker delta and the � on the left hand side appears in position
σ(0). We define Tr to be the tensor whose non-zero entries are given by the above
equation. This is well-defined since by Definition 2.5(i.c) setting e′ = er , we have
σ(0) �= σ ′(0). It remains to show that we do not attempt to assign different values
to the same entry of Tr . When � = 1, we assign the value (ye)1 + λe. By (6.6), if
e ∈ (F ∩ Er ) ∪ Gr , then (ye)1 + λe = (ye)1 + 0 = (ye)1 = μr by (6.5) and the
definition of μr , and otherwise, (ye)1 + λe = (ye)1 + (μr − (ye)1) = μr . Thus, for
all edges e ∈ Er , (ye)1 + λe = μr . ��

To conclude this section, we show that B := B(R, F) satisfies the conditions of
Definition 5.2. This shows thatB is almost generated. First we define the subvarieties
Yi and the vector bundles Bi over Yi that appear in Definition 5.2.

We use the following notation. A linear functional ϕ : C
dt(e)/ span(xt(e)) → C can

beuniquely representedby avectoru ∈ C
dt(e) such thatu�xt(e) = 0 andϕ([y]) = u�y,

[27, Lemma 7]. In particular when xt(e) ∈ Qt(e), we abbreviate x�
t(e)[y] to x�

t(e)y.

123



Foundations of Computational Mathematics

For a subset α ⊆ [n], define the smooth proper irreducible subvariety

Yα = X1 × · · · × Xn, where Xi =
{

P(Qi ) i ∈ α

P(Cdi ) i /∈ α.

In particular, Y∅ = X . Fix F ⊆ E and define F ′ = {t(e)}e∈F . Fix α ⊆ [n]\F ′. Let
Gr ⊆ Er\F denote the edges whose target vertex lies in α. DefineBα to be the vector
bundle over Yα whose fiber at χ = ([x1], . . . , [xn]) ∈ Yα is the subspace U (α,χ) of
linear maps τ = (τe)e∈E ∈ (B)χ satisfying

x�
t(e)τe(⊗μ(e)

j=1xs j (e)) = x�
t(e′)τe′(⊗μ(e′)

j=1 xs j (e′)), (6.8)

for any edges e, e′ ∈ (F ∩ Er ) ∪ Gr , for every r ∈ [M].
Proposition 6.7 Let the map LF be as in (6.2). For any subset of hyperedges F ⊆ E,

the vector subspace � = LF

(⊕M
r=1 C

er
)
almost generates B(R, F).

Proof We first show that the vector bundles Bα satisfy Definition 5.2(i). If α, β ⊆
[n]\F ′, then α � β if and only if Yβ is a proper subvariety of Yα . Furthermore,Bβ is
a subbundle of Bα

∣
∣
Yα
, since U (β,χ) is a vector subspace of U (α,χ).

Next we prove that Definition 5.2(ii) holds. Recall that �(χ) := {σ(χ) | σ ∈ �}.
We show that �(χ) ⊆ (Bα)χ . If χ ∈ Yα , then an element of �(χ) is an |E |-tuple
of linear maps Le,F (Tr )(χ) for some tensors Tr ∈ C

er , r ∈ [M]. By the proof of
(a ⇒ b) in Lemma 6.6, τe := Le,F (Tr )(χ) satisfy (6.8), so �(χ) ⊆ (Bα)χ .

Finally we show that Definition 5.2(iii) holds. If χ lies on Yα but not on any
proper subvariety Yβ , then every (τe)e∈E ∈ (Bα)χ satisfies (6.8) and no additional
equations. Thus there exist tensors Tr with Le,F (Tr ) = τe for e ∈ Er and τ ∈ �(χ),
by Lemma 6.6. Hence, �(χ) = (Bα)χ . ��

7 The Top Chern Class of the Singular Vector Bundle

In this section we compute the top Chern class of the singular vector bundle B(R),
generalizing [27, Lemma 3]. Combining this computation with Theorem 5.3 and
Proposition 6.7 finds the degree of the singular vector variety, completing the proof
of Theorem 3.1.

Proposition 7.1 Let R = (d, T ) be a hyperquiver representation and B(R) be the
singular vector bundle over X = ∏n

i=1 P(Cdi ). Then the top Chern class ofB(R) is

∏

e∈E

dt(e)∑

k=1

hk−1
t(e) h

dt(e)−k
s(e) , where hs(e) =

μ(e)∑

j=1

hs j (e),

in the Chow ring A∗(X) ∼= Z[h1, . . . , hn]/(hd11 , . . . , hdnn ).
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Proof We seek the Chern polynomialC(t,B(R)). The coefficient of its highest power
of t is the top Chern class. The Chern polynomial is multiplicative over short exact
sequences, see Definition A.5(iii). Hence

C(t,F (d)) = C(t,T (d))C(t,Q(d)), (7.1)

by (4.1). We compute C(t,T (d)). Let h ∈ A∗(P(Cd)) ∼= Z[h]/(hd) be the class of
a hyperplane in P(Cd). By Definition A.5(i)-(iii), h is the first Chern class c1(H (d))

and the Chern polynomial of H (d) is C(t,H (d)) = 1 + ht . Thus C(t,T (d)) =
C(−t,H (d)∨) = 1 − ht , by Proposition A.8(b).

Next we compute C(t,Q(d)). We have C(t,F (d)) = 1, by Proposition A.8(a).
The Chern polynomial of Q(d) is the inverse of (1 − ht), by (7.1). Using the formal
factorisation 1 − xn = ∏n

k=0(1 − ζ k
n x) over A

∗(X) ⊗ C, we therefore have

C(t,Q(d)) =
d−1∑

j=0

(ht) j = 1 − (ht)d−1

1 − ht
=
∏d−1

k=0(1 − ζ k
d ht)

1 − ht
=

d−1∏

k=1

(1 − ζ k
d ht)

where ζd ∈ C is a d-th root of unity.
We have c1(π∗

i H (di )) = π∗
i c1(H (di )) = π∗

i hi = hi ∈ A∗(X), by Definition
A.5(iv) and Definition A.2(ii). Thus the Chern polynomials of π∗

i H (di ), π∗
i T (di ),

and π∗
i Q(di ) equal those ofH (d),T (d), andQ(d) respectively but with h replaced

by hi ∈ A∗(X), by (4.2).
We have found the Chern roots of π∗

i H (di ) and π∗
i Q(di ), so we obtain Chern

characters ch(π∗
i H (di )) = exp(hi ) and ch(π∗

i Q(di )) = ∑di−1
k=1 exp(−ζ k

di
hi ). By

Propositions 4.2(c) and A.8(c), the Chern character ch(B(e)) equals

ch

⎛

⎝
μ(e)⊗

j=1

π∗
s j (e)H (ds j (e)) ⊗ π∗

t(e)Q(dt(e))

⎞

⎠

= ch

⎛

⎝
μ(e)⊗

j=1

π∗
s j (e)H (ds j (e))

⎞

⎠ ch(π∗
t(e)Q(dt(e)))

=
⎛

⎝
μ(e)∏

j=1

exp(hs j (e))

⎞

⎠

⎛

⎝
dt(e)−1∑

k=1

exp(−ζdt(e)ht(e))

⎞

⎠

=
dt(e)−1∑

k=1

exp

⎛

⎝
μ(e)∑

j=1

hs j (e) − ζ k
dt(e)

ht(e)

⎞

⎠ .

Switching to Chern polynomial form, we obtain

C(t,B(e)) =
dt(e)−1∏

k=1

⎛

⎝1 +
⎛

⎝
μ(e)∑

j=1

hs j (e) − ζ k
dt(e)

ht(e)

⎞

⎠ t

⎞

⎠ .
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This product has degree (dt(e) − 1) in t , with top coefficient

dt(e)−1∏

k=1

⎛

⎝
μ(e)∑

j=1

hs j (e) − ζ k
t(e)ht(e)

⎞

⎠ .

It follows from Definition A.5(iii) that C(t,B(R)) = ∏
e∈E C(t,B(e)). The product

has degree (
∑

e∈E dt(e) −|E |) in t , with top coefficient (i.e., top Chern class ofB(R))
equal to

∏

e∈E

dt(e)−1∏

k=1

⎛

⎝
μ(e)∑

j=1

hs j (e) − ζ k
t(e)ht(e)

⎞

⎠ .

Finally, the formal identity xn − yn = ∏n
k=0(x − ζ k

n y) gives

∏

e∈E

dt(e)−1∏

k=1

⎛

⎝
μ(e)∑

j=1

hs j (e) − ζ k
t(e)ht(e)

⎞

⎠ =
∏

e∈E

(∑μ(e)
j=1 hs j (e)

)dt(e)−1 − h
dt(e)−1
t(e)

∑μ(e)
j=1 hs j (e) − ht(e)

=
∏

e∈E

dt(e)−1∑

k=0

⎛

⎝
μ(e)∑

j=1

hs j (e)

⎞

⎠

dt(e)−1−k

hkt(e) ∈ A∗(M).

��
To conclude, we now prove our main theorem.

Proof of Theorem 3.1 The zero locus of a generic global section of B := B(R, F) is
the singular vector variety S(R), with zero singular values along the edges in F , by
Propositions 4.3 and 6.3. The singular vector bundleB from Definition 6.1 is almost
generated, by Proposition 6.7. Hence our Bertini-type theorem Theorem 5.3 applies
to it, to characterise the zeros of a generic section. It remains to derive the polynomial
(3.1), prove the emptiness statement for S(R) as well as its dimension and degree,
and prove the statement regarding finitely many singular vector tuples.

We first consider the case F = ∅. The top Chern class cr (B) is given by Propo-
sition 7.1. If N = d − r = 0, then S(R) has the claimed number of points by
Theorem 5.3(b). Suppose r < d. Let s : X ↪−→ P

D be the Segre embedding and let
[l] ∈ A∗(PD) be the class of a hyperplane. Continuing (5.1), we have

ν
(
B
∣
∣
L

) [p] = [L]cr (B) = [L]s∗(cr (B)) = [l]N s∗(cr (B)) (definition of pushforward)

= s∗(s∗([l]N )cr (B)) = s∗([l]N )cr (B) (projection formula)

= s∗([l])N cr (B) = (
∑n

i=1 hi )
N cr (B) ([28, Example 8.4.3])

(7.2)

where A∗(X) ∼= Z[h1, . . . , hn]/(hd11 , . . . , hdnn ), giving us the polynomial (3.1).
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We prove the emptiness statement by showing that ν
(
B
∣∣
L

) = 0 if and only if
cr (B) = 0. By the proof of Theorem 5.3, cr (B) = 0 if and only if S(R) = ∅.
If cr (B) = 0, then ν

(
B
∣∣
L

) = 0 by (7.2). Conversely, if cr (B) �= 0, then there
exists a monomial ha11 . . . hann in cr (B) such that ai < di and

∑n
i=1 ai = r . There

exists a monomial h
d1−1−a′

1
1 · · · hdn−1−a′

n
n in

(∑n
i=1 hi

)d−r such that
∑n

i=1 a
′
i = r .

Thus, these monomials pair in the product [L]cr (B) to form the monomial [p] =
hd1−1
1 · · · hdn−1

n . The coefficient of this monomial is ν
(
B
∣
∣
L

)
, which is non-zero.

Therefore if ν
(
B
∣
∣
L

) �= 0, S(R) has the claimed dimension and degree by Theo-
rem 5.3.

It remains to prove the last sentence of the theorem, which pertains to the case
N = 0. Fix ∅ �= α ⊆ [n] and define Bα as in the proof of Proposition 6.7. Then
rankBα = rankB − (|α| − 1) > rankB − |α| = dim(X) − |α| = dim(Yα) as the
fibers of Bα are vector subspaces of the fibers of B cut down by |α| − 1 linearly
independent equations (6.8). Thus, every singular vector has multiplicity 1 and is non-
isotropic by Theorem 5.3(b). Finally, if F �= ∅ then rankB > dim(X) by (6.2), so
R has no singular values equal to 0, by Theorem 5.3(a). ��

As a final note, one may be interested in different homogenisations of singular
vectors, such as H-eigenvectors, as opposed to our non-homogeneous definition (1.2)
of singular vectors which are often called Z-eigenvectors [47]. For a positive integer
�, we define an �-homogeneous singular vector tuple of a hyperquiver representation
R = (d, T ) to be a singular vector tuple ([x1], . . . , [xn]) ∈ P(Cdn ) × · · · × P(Cd1)

satisfying

[T (xs(e))] = [x��
t(e)]

in P
(
C
dt(e)

)
for all edges e ∈ E , where � is the entry-wise Hadamard product of a

vector. A singular vector tuple corresponds to � = 1. Then in fact, all of Theorem 3.1
is still true when S(R) is replaced with the set of all �-homogeneous singular vector
tuples S�(R), and when the polynomial (3.1) is replaced with the polynomial

(
∑

i∈V
hi

)N

·
∏

e∈E

⎛

⎝
dt(e)∑

k=1

(�ht(e))
k−1h

dt(e)−k
s(e)

⎞

⎠ , where hs(e) :=
μ(e)∑

j=1

hs j (e). (7.3)

Let us consider, for example, counting the number of �-eigenvectors of a generic
tensor, as in Example 3.3. The polynomial (7.3) in this case gives us

d∑

k=1

(�h)k−1((m − 1)h)d−k =
(

d∑

k=1

�k−1(m − 1)d−k

)

hd−1 = (m − 1)d − �d

(m − 1) − �
hd−1

so it is d(m − 1)d−1 if � = m − 1 and (m−1)d−�d

(m−1)−�
otherwise, thus generalising [3,

Theorem 2.2].
We briefly outline themodifications needed to prove this more general result. Look-

ing to the beginning of Sect. 4, we seek to replace the tautological line bundle T (d),
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whose fiber at [x] ∈ P(Cd) is span(x), with the line bundle S (d), whose fiber at [x]
is span(x��). We also want to consider the vector bundle P(di ) fitting into the short
exact sequence

0 → S (di ) → F (di ) → P(di ) → 0.

The line bundle S (d) is isomorphic to the line bundle T (d)⊗�, hence they have the
same Chern polynomial. One computes the Chern polynomial to be C(T (d)⊗�, t) =
1 − �ht and deduces from there the top Chern class intersected with the necessary
number of hyperplanes to be the polynomial (7.3) by following the computation anal-
ogously to earlier in this section.

8 Inverse Tensor Eigenvalue Problems

The problem we have considered up until now in this paper is the following: Given a
hyperquiver H = (V , E) and a representation R = (d, T ) assigning tensors Te ∈ C

e

to each edge e ∈ E , what is the space of singular vector tuples ([x1], . . . , [xn]) ∈∏n
i=1 P(Cdi )? In this section, we consider the converse problem: Given a hyperquiver

H = (V , E) and an assignment of vectors [xi ] ∈ P(Cdi ) to each vertex i ∈ [n], what
is the space of tensors (Te)e∈E ∈ ∏

e∈E C
e realising ([x1], . . . , [xn]) as a singular

vector tuple?
We make this problem more precise and more general. Let H = (V , E) be a

hyperquiver, d = (d1, . . . , dn) be a dimension vector, λe ∈ C be scalars for e ∈
E , and xi ∈ C

di be vectors for i ∈ [n]. Let E = ∐M
r=1 Er be a partition of the

hyperedges such that for all r ∈ [M] and for any two edges e, e′ ∈ Er , the tuple
of dimensions (dt(e), ds1(e), . . . , dsμ(e)) and (dt(e′), ds1(e′), . . . , dsμ(e′)) have the same
number of entries and agree up to permutation. Following the notation outlined below
equation (4.3), fix an edge er ∈ Er for each r ∈ [M], and fix the permutation σe,er of
the set {0, 1, . . . , μ} for each e ∈ Er , e �= e′ for which the tuples of dimensions for
er and e agree. Then the problem is to find tensors Te ∈ C

e such that

Te(xs(e)) = λe · xt(e) (8.1)

for all e ∈ E , where any tensor Te assigned to an edge e ∈ Er , e �= er agrees with
the tensor Tr := Ter assigned to the edge er ∈ Er up to the chosen permutation σe,er .
Note that the conditions this partition of E has to satisfy are weaker than property
(i) of a partition of a hyperquiver in Definition 2.5 of a generic representation, since
the latter requires that the tuples of vertices v(e) and v(e′) for e, e′ ∈ Er agree up to
permutation.We call this problem the inverse singular value problem for hyperquivers.

This problem is a significant generalisation of the inverse matrix and tensor
eigenvalue problems, which are concerned with finding a matrix or tensor having
a prescribed set of eigenvalues or eigenvectors. The matrix problem, and its many
variations that involve imposing structural constraints on the matrix, have a range of
applications including principal component analysis, control theory, numerical analy-
sis, and inverse problems, see [17, 18] for a review of the topic. In the tensor problem,
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essentially the only case that has been studied is where no structural constraints are
imposed, and even then the problem is much more difficult and less well-understood.
The solvability of the inverse tensor eigenvalue problem [55] and some geometric
properties of the space of characteristic polynomials of tensors [30] are known, how-
ever even basic quantities such as the dimension of this space are not known, which
is crucial for numerical methods in algebraic geometry [10, 11]. The inverse ten-
sor eigenvalue problem has seen applications in inverse problems for PDEs [56] and
higher-order Markov chains [39].

In this section, we solve the inverse singular value problem for hyperquivers by
providing an algorithm that finds tensors Te to place on all the edges e ∈ E of the
hyperquiver satisfying (8.1) and the partition conditions. We generalize the approach
from [40, 41] solving the inverse tensor eigenvalue problem in a number of different
directions. One is that the eigenvectors are not required to be homogeneous, i.e. H-
eigenvectors [47], and any homogenisation, e.g. Z-eigenvectors, can be used. Another
is that the vectors do not have to be eigenvectors, but more generally singular vectors
arranged in any hyperquiver structure. Our algorithm works for both real and complex
singular vector tuples.

We define the inner product on two tensors A, B ∈ C
d1×···×dm to be

〈A, B〉 =
∑

i1=1,...,d1
...

im=1,...,dm

Ai1,...,im Bi1,...,im

where the bar denotes the conjugate of a complex number. We use the same bar to
denote the conjugate of a complex vector. This gives rise to the Frobenius norm of a
tensor

‖A‖ = √〈A, A〉
We also use this notation for complex vectors, i.e. form = 1. Note that when contract-
ing tensors with vectors, however, we are still using the standard real inner product
with complex vectors as before, and not this standard Hermitian inner product, see
Remark 2.4.

The algorithm is presented in Algorithm 1. For each r ∈ [M], we enumerate the
edges Er = {e1, . . . , em} and assume without loss of generality that e1 = er . Since
every tensor Te assigned to e ∈ Er , e �= er agrees with the tensor Tr up to permutation,
it suffices to find the tensors Tr for r ∈ [M]. We write Tr (xs(e)) := Te(xs(e)) for all
e ∈ Er , and we use the same notation for any other tensor P ∈ C

er of the same
dimensions as Tr . For brevity, we write σ�,1 := σe�,e1 and σ1,� := σ−1

�,1 for � ∈ [m],
where σ1,1 denotes the identity permutation, and we write s1, j (e�) := sσ1,�( j)(e�). For
an edge e� ∈ Er , � �= 1, recall that σ�,1(0) denotes the position of the vertex t(e�) in
the tuple of vertices v(e1) = (t(e1), s1(e1), . . . , sμ(e1)).

Let us illustrate the algorithm with the inverse tensor eigenvalue problem: given
x ∈ C

d and λ ∈ C, find T ∈ (Cd)⊗m such that T ( · , x, . . . , x) = λx. If T (1) is an
initialisation, then line 14 of Algorithm 1 gives us

T (2) = T (1) + ‖λx − T (1)( · , x, . . . , x)‖2
‖(λx − T (1)( · , x, . . . , x)) ⊗ x ⊗ · · · ⊗ x‖2
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Algorithm 1 Inverse singular value problem for H = (V , E), E = ∐M
r=1 Er , λe ∈ C,

xi ∈ C
di

Input: T (1)
r ∈ C

er for r ∈ [M] initialisations
Output: Tr ∈ C

er for r ∈ [M] solving the inverse singular value problem, or no solution

1: for r = 1, . . . , M do
2: e1 ← er
3: Er ← {e1, . . . , em }
4: for � = 1, . . . ,m do
5: r(1)

�
← λe�xt(e�) − T (1)

r (xs(e�)) ∈ C
dt(e�)

6: end for

7: r(1) ←
(
r(1)1

� | · · · | r(1)m
�)� ∈ C

Dr , Dr := ∑m
�=1 dt(e�)

8: P(1) ←
m∑

�=1

⎛

⎝
σ�,1(0)−1⊗

j=0

xs1, j (e�)

⎞

⎠⊗ r(1)
�

⊗
⎛

⎝
μ⊗

j=σ�,1(0)+1

xs1, j (e�)

⎞

⎠ ∈ C
er

9: k ← 1
10: while r(k) �= 0 do
11: if P(k) = 0 then
12: halt � No solution exists
13: else

14: T (k+1)
r = T (k)

r + ‖r(k)‖2
‖P(k)‖2 P

(k)

15: for � = 1, . . . ,m do
16: r(k+1)

�
← λe�xt(e�) − T (k+1)

r (xs(e�))
17: end for

18: r(k+1) ←
(
r(k+1)
1

� | · · · | r(k+1)
m

�)�

19: P(k+1) ←
m∑

�=1

⎛

⎝
σ�,1(0)−1⊗

j=0

xs1, j (e�)

⎞

⎠⊗r(k+1)
�

⊗
⎛

⎝
μ⊗

j=σ�,1(0)+1

xs1, j (e�)

⎞

⎠+ ‖r(k+1)‖2
‖r(k)‖2 P(k)

20: k ← k + 1
21: end if
22: end while
23: end for

(
λx − T (1)( · , x, . . . , x)

)
⊗ x ⊗ · · · ⊗ x

= T (1) + ‖λx − T (1)( · , x, . . . , x)‖2
‖λx − T (1)( · , x, . . . , x)‖2‖x‖2(m−1)

(
λx − T (1)( · , x, . . . , x)

)
⊗ x ⊗ · · · ⊗ x

= T (1) + 1

‖x‖2(m−1)

(
λx − T (1)( · , x, . . . , x)

)
⊗ x ⊗ · · · ⊗ x

In fact, the algorithm gives all solutions to the problem.

Theorem 8.1 All solutions to the inverse tensor eigenvalue problem are of the form

T0 + 1

‖x‖2(m−1)
(λx − T0( · , x, . . . , x)) ⊗ x ⊗ · · · ⊗ x, (8.2)
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where T0 ∈ (Cd)⊗m is arbitrary.

Proof Contracting (8.2) with x along all components except the first, we have

T0( · , x, . . . , x) + 1

‖x‖2(m−1)
(λx − T0( · , x, . . . , x)) · 〈x, x〉 · · · 〈x, x〉

= T0( · , x, . . . , x) + 1

‖x‖2(m−1)
(λx − T0( · , x, . . . , x)) · ‖x‖2(m−1) = λx

thus (8.2) is a solution. Conversely, if T is a solution, then λx − T ( · , x, . . . , x) = 0
so (8.2) reduces to T0 = T . ��

We now provide a convergence analysis showing that this algorithm finds tensors
Tr ∈ C

er solving the singular value problem for hyperquivers within a finite number
of iterations, and a proof showing that it detects if no solution to the problem exists.
The algorithm and its analysis still all hold if a different homogenisation is used, e.g.
replacing every instance ofλe�xt(e�) withλe�x

��
t(e�)

where� is the entry-wiseHadamard
product. For k ≥ 1, define

α(k) := ‖r(k)‖2
‖P(k)‖2 , β(k + 1) := ‖r(k+1)‖2

‖r(k)‖2 , β(1) := 0

Lemma 8.2 For a fixed r ∈ [M], let {r(k)}k≥1 and {P(k)}k≥1 be the sequences gener-
ated by Algorithm 1. Then for all i, j ≥ 1 with i �= j ,

〈
r(i), r( j)

〉
= 0 and

〈
P(i), P( j)

〉
= 0.

Proof Let E = {e1, . . . , em}. We first see that for k ≥ 1 and all � ∈ [m],

r(k+1)
� = λe�xt(e�) − T (k+1)

r (xs(e�)) (line 16)

= λe�xt(e�) − T (k)
r (xs(e�)) − α(k) · P(k)(xs(e�)) (line 14)

= r(k)
� − α(k) · P(k)(xs(e�)) (8.3)

and thus

r(k+1)

=
(
r(k+1)
1

�| · · · |r(k+1)
m

�)�
(line 18)

=
(
r(k)
1

� | · · · | r(k)
m

�)�−α(k) ·
(
P(k)(xs(e1))

� | · · · | P(k)(xs(em ))
�)�

(eq. 8.3)

= r(k) − α(k) ·
(
P(k)(xs(e1))

� | · · · | P(k)(xs(em ))
�)�

(8.4)

Additionally, for any i, j ≥ 1, we see that
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〈
r(i+1), r( j)

〉

=
〈
r(i), r( j)

〉
− α(i) ·

m∑

�=1

〈
P(i)(xs(e�)), r

( j)
�

〉
(eq. 8.4)

=
〈
r(i), r( j)

〉

− α(i) ·
m∑

�=1

〈

P(i),

⎛

⎝
σ�,1(0)−1⊗

k=0

xs1,k (e�)

⎞

⎠⊗ r( j)
� ⊗

⎛

⎝
μ⊗

k=σ�,1(0)+1

xs1,k (e�)

⎞

⎠

〉

=
〈
r(i), r( j)

〉

− α(i) ·
〈

P(i),

m∑

�=1

⎛

⎝
σ�,1(0)−1⊗

k=0

xs1,k (e�)

⎞

⎠⊗ r( j)
� ⊗

⎛

⎝
μ⊗

k=σ�,1(0)+1

xs1,k (e�)

⎞

⎠

〉

=
〈
r(i), r( j)

〉
− α(i) ·

〈
P(i), P( j) − β( j) · P( j−1)

〉
(line 19)

=
〈
r(i), r( j)

〉
− α(i) ·

〈
P(i), P( j)

〉
+ α(i) · β( j) ·

〈
P(i), P( j−1)

〉
(8.5)

where P(0) := 0, and

〈
P(i+1), P( j)

〉

=
m∑

�=1

〈⎛

⎝
σ�,1(0)−1⊗

k=0

xs1,k (e�)

⎞

⎠⊗ r(i+1)
� ⊗

⎛

⎝
μ⊗

k=σ�,1(0)+1

xs1,k (e�)

⎞

⎠ , P( j)

〉

+ β(i + 1) ·
〈
P(i), P( j)

〉
(line 19)

=
m∑

�=1

〈
r(i+1)
� , P( j)(xs(e�))

〉
+ β(i + 1) ·

〈
P(i), P( j)

〉

=
m∑

�=1

〈
r(i+1)
� ,

1

α( j)
(r( j)

� − r( j+1)
� )

〉
+ β(i + 1) ·

〈
P(i), P( j)

〉
(eq. 8.3)

= 1

α( j)

m∑

�=1

(〈
r(i+1)
� , r( j)

�

〉
−
〈
r(i+1)
� , r( j+1)

�

〉)
+ β(i + 1) ·

〈
P(i), P( j)

〉
(8.6)

Since
〈
r(i), r( j)

〉 = 〈
r( j), r(i)

〉
and likewise for P(i) and P( j), and since the statement

of the lemma is symmetric in i and j , it suffices to prove the lemma for i ≥ j . We
proceed by induction, proving it for all i = k and all j = 1, . . . , k − 1. The base case
j = 1 and i = 2 is similar to the inductive step, so we only show the latter. Assuming
the inductive hypothesis, then for i = k + 1 and any j = 1, . . . , k, we have

〈
r(k+1), r( j)

〉
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=
〈
r(k), r( j)

〉
− α(k) ·

〈
P(k), P( j)

〉
+ α(k) · β( j) ·

〈
P(k), P( j−1)

〉
(eq. 8.5)

= δ j,k · ‖r(k)‖2 − δ j,k · ‖r(k)‖2
‖P(k)‖2 · ‖P(k)‖2 + 0 = 0 (8.7)

and

〈
P(k+1), P( j)

〉

= 1

α(k)

m∑

�=1

(〈
r(k+1)
� , r( j)

�

〉
−
〈
r(k+1)
� , r( j+1)

�

〉)
+ β(k + 1) ·

〈
P(k), P( j)

〉
(eq. 8.6)

= 1

α(k)

m∑

�=1

(
0 − δ j,k · ‖r(k+1)

� ‖2
)

+ δ j,k · β(k + 1) · ‖P(k)‖2 (eq. 8.7)

= −δ j,k · 1

α(k)

m∑

�=1

‖r(k+1)
� ‖2 + δ j,k · β(k + 1) · ‖P(k)‖2

= −δ j,k · ‖P(k)‖2
‖r(k)‖2 ‖r(k+1)‖2 + δ j,k · ‖r(k+1)‖2

‖r(k)‖2 · ‖P(k)‖2 = 0

where δ j,k = 1 if j = k and 0 otherwise. ��

Lemma 8.3 For a fixed r ∈ [M], let {r(k)}k≥1, {P(k)}k≥1, and {T (k)
r }k≥1 be the

sequences generated by Algorithm 1, for any initialisation T (1)
r . Suppose that T̂r is a

tensor solving the inverse singular value problem (8.1) for all e ∈ Er . Then for all
k ≥ 1,

〈
T̂r − T (k)

r , P(k)
〉
= ‖r(k)‖2 (8.8)

Proof Let E = {e1, . . . , em}. We proceed by induction. The base case k = 1 is similar
to the inductive step, so we only show the latter. Assuming the inductive hypothesis,
then for step k + 1, first we see that

〈
T̂r − T (k+1)

r , P(k)
〉
=
〈
T̂r − T (k)

r , P(k)
〉
− α(k) ·

〈
P(k), P(k)

〉
(line 14)

= ‖r(k)‖2 − ‖r(k)‖2
‖P(k)‖2 · ‖P(k)‖2 = 0 (8.9)

Thus,

〈
T̂r − T (k+1)

r , P(k+1)
〉

=
〈

T̂r − T (k+1)
r ,

m∑

�=1

⎛

⎝
σ�,1(0)−1⊗

j=0

xs1, j (e�)

⎞

⎠⊗ r(k+1)
�
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⊗
⎛

⎝
μ⊗

j=σ�,1(0)+1

xs1, j (e�)

⎞

⎠

〉

+ β(k + 1) ·
〈
T̂r − T (k+1)

r , P(k)
〉

(line 19)

=
m∑

�=1

〈

T̂r − T (k+1)
r ,

⎛

⎝
σ�,1(0)−1⊗

j=0

xs1, j (e�)

⎞

⎠⊗ r(k+1)
�

⊗
⎛

⎝
μ⊗

j=σ�,1(0)+1

xs1, j (e�)

⎞

⎠
〉

+ 0 (eq. 8.9)

=
m∑

�=1

〈
T̂r (xs(e�)) − T (k+1)

r (xs(e�)), r
(k+1)
�

〉

=
m∑

�=1

〈
λe� · xt(e�) − T (k+1)

r (xs(e�)), r
(k+1)
�

〉
(T̂r is a solution)

=
m∑

�=1

〈
r(k+1)
� , r(k+1)

�

〉
=

m∑

�=1

‖r(k+1)
� ‖2 = ‖r(k+1)‖2

��
Theorem 8.4 If the inverse singular value problem (8.1) is solvable, then Algorithm 1
will find a solution {T̂r }Mr=1 in a finite number of iterations for any initialisation

{T (1)
r }Mr=1. Otherwise, the problem has no solution if and only if there exists a K ≥ 1

such that r(K ) �= 0 and P(K ) = 0 in some iteration r ∈ [M] for Tr .
Proof Let r ∈ [M]. If r(k) = 0 for any k ≥ 1, then the inverse singular value problem
has a solution T̂r = T (k)

r by definition (line 16). Additionally, if P(k) �= 0 for all k ≥ 1,
then the iterations of Algorithm 1 (in particular, lines 14 and 19) are well-defined for
all k ≥ 1. By Lemma 8.2, {r(k)}k≥1 forms an orthogonal sequence in C

Dr , and hence
there must exist a finite iteration number K ≥ 1 such that r(K ) = 0, which means
that T (K )

r is a solution. This proves the first part of the theorem and one direction of
the second part. Finally, if there exists a K ≥ 1 such that r(K ) �= 0 and P(K ) = 0,
then this would contradict (8.8) of Lemma 8.3, unless there was no solution T̂r . This
proves the second part of the theorem. ��

Appendix A. The Chow Ring and Chern Classes

We recall the definitions of the Chow groups and Chow ring of a projective variety,
following [23, 28].

Definition A.1 Let X be a smooth projective variety of dimension n.

(i) [23, Section 1.2.1] The groupof i -cycles of X is the free abelian group Zi (X)gen-
erated by the irreducible i-dimensional subvarieties of X . An element of Zi (X),
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called an i -cycle, is a finite, formal sum
∑

i ni Vi of i-dimensional subvarieties
Vi of X , where ni ∈ Z.

(ii) [28, Proposition 1.6] An i-cycle Z ∈ Zi (X) is rationally equivalent to zero
if there exist irreducible subvarieties Vi ⊆ P

1 × X of dimension i + 1 with
dominant projection maps Vi → P

1 such that Z = ∑
i Vi (0) − Vi (∞), where

Vi (t) = Vi∩({t}×X). The i-cycles rationally equivalent to zero form a subgroup
Rati (X) of Zi (X).

(iii) [28, Section 1.2.2−1.2.3] The i -th Chow group of X is the quotient group
Ai (X) = Zi (X)/Rati (X). The class of an i-cycle C ∈ Zi (X) in Ai (X) is
denoted by [C]. The Chow group of X is the direct sum A∗(X) = ⊕n

i=0Ai (X).
The Chow ring of X is the direct sum A∗(X) = ⊕n

i=0A
i (X), where Ai (X) =

An−i (X).

The Chow ring A∗(X) has the structure of a commutative ring, with a product
Ai (X) × A j (X) → Ai+ j (X) called the intersection product. We say that C and D
intersect transversely if on each component of C ∩ D at a generic point p, the sum of
the tangent spaces of C and D is the tangent space of X : TpC + TpD = TpX .
The intersection product takes any codimension-i and codimension- j irreducible
subvarieties C, D ⊆ X , replaces C and D by rationally equivalent subvarieties
C ′, D′ ⊆ X (if necessary) in order for C ′ and D′ to intersect transversely, and defines
[C][D] = [C ′ ∩ D′] ∈ Ai+ j (X). The existence of a well-defined intersection product
is due to Fulton [28]; see [23, Appendix A].

Definition A.2 ([23, Section 1.3.6]) Let X and Y be smooth projective varieties of
dimensions m and n, and f : X → Y a morphism.

(i) Let V ⊆ X be an irreducible subvariety of dimension i . Define a group homo-
morphism f∗ : Ai (X) → Ai (Y ) by

[V ] 	→
{
d · [ f (V )] dim f (V ) = i

0 dim f (V ) < i,

where d := [R(V ) : R( f (V ))] is the degree of the field extension between the
function fields R(V ) of V and R( f (V )) of f (V ). The map f∗ extends to a group
homomorphism f∗ : A∗(X) → A∗(Y ), called the pushforward of f .

(ii) There is a unique group homomorphism f ∗ : Ai (Y ) → Ai (X) such that for all
W ⊆ Y a smooth subvariety with i = codimY W = codimX ( f −1(W )), we have
f ∗([W ]) = [ f −1(W )]. This extends to a ring homomorphism f ∗ : A∗(Y ) →
A∗(X) called the pullback of f .

Remark A.3 The degree of the field extension in the definition of f∗ is the degree of
the covering of f (V ) by V . In particular, if i : X → Y is a closed immersion, then
i∗([X ]) = [X ].
Proposition A.4 (Projection Formula, [23, Theorem 1.23(b)]) If X and Y are smooth
projective varieties, f : X → Y is a morphism, and [C] ∈ Ai (X) and [D] ∈ A j (Y )

are cycle classes, then

[D] f∗([C]) = f∗( f ∗([D])[C]) ∈ Ai− j (Y ).
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Definition A.5 ([23, Theorem 5.3]) Let X be a smooth projective variety of dimension
n and letB be a vector bundle over X . There exist unique classes ci (B) ∈ Ai (X) for
i ∈ [n] called the Chern classes of B, depending only on the isomorphism class of
B, satisfying the following axioms:

(i) If r is the rank of B, then ci (B) = 0 for all i > r .
(ii) If σ0, . . . , σr−i ∈ �(B) are global sections and their degeneracy locus

Z(σ0, . . . , σr−i ) ⊆ X has codimension i in X , then ci (B) = [Z(σ0, . . . , σr−i )].
(iii) The Chern polynomial of B is C(t,B) = 1 + ∑r

i=1 ci (B)t i . If 0 → B →
B′ → B′′ → 0 is an exact sequence of vector bundles over X , then

C(t,B′) = C(t,B)C(t,B′′).

(iv) If Y is a smooth projective variety and f : Y → X a morphism,
ci ( f ∗B) = f ∗(ci (B)).

(v) IfL is a line bundle on X , thenC(t,L ) = 1+c1(L )t , where c1(L ) ∈ A1(X)

is the class of the divisor of zeros minus the divisor of poles of any section ofL
defined on a Zariski-open set of X

If r = n, then cn(B) ∈ An(X) so cn(B) = ν(B)[p] for some integer ν(B) called
the top Chern number of B, where [p] ∈ An(X) is the class of a point p ∈ X .

Remark A.6 Compared with [23, Theorem 5.3], we have added the redundant axiom
(i) to our Definition A.5(a) in order to help clarify the properties of Chern classes. The
result [23, Theorem 5.3] is fully proven in [28, Chapter 3].

Definition A.7 ([28, Remark 3.2.3, Example 3.2.3]) The Chern roots of B are the
formal variables ξi (B) in the formal factorization of the Chern polynomial:

C(t,B) =
r∏

i=1

(1 + ξi (B)t).

The Chern character of B is ch(B) = ∑r
i=1 exp(ξ j (B)), where exp(α) =∑∞

k=0
1
k!α

k is a formal sum in the formal variable α.

From Definitions A.5 and A.7, one can obtain the following properties.

Proposition A.8 ([28, Remark 3.2.3, Example 3.2.3]) Let X be a smooth projective
variety and B and B′ be vector bundles over X.

(a) IfB is the trivial bundle, then C(t,B) = 1.
(b) The Chern polynomial ofB and its dual are related by C(t,B∨) = C(−t,B).
(c) The Chern character satisfies ch(B ⊗ B′) = ch(B) ch(B′).
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