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1. Introduction

A trisecant is a line that meets a variety in three points. The classical trisecant lemma 
says that if X is a non-degenerate irreducible curve in P 3

C, then the variety of trisecants 
has dimension one in the Grassmannian of lines in P 3

C, which we denote by Gr(1, 3). 
Hence a general chord of X is not a trisecant, since the variety of chords has dimension 
two in Gr(1, 3). The trisecant lemma has been generalized in various ways. We consider 
a generalization to higher-dimensional varieties. Recall that a variety is non-degenerate 
if not contained in a hyperplane.

Theorem 1.1 (A Generalized Trisecant Lemma, see [9, Proposition 2.6]). Let X ⊆ PN−1
C

be an irreducible, reduced, non-degenerate projective variety of dimension d and let n
be a positive integer with n + d < N . Let P1, . . . , Pn be general points on X. Then the 
intersection of X with the subspace spanned by P1, . . . , Pn consists only of the points 
P1, . . . , Pn.

The generalized trisecant lemma can be restated as the following trichotomy.

Theorem 1.2 (Reformulation of Theorem   1.1). Let X ⊆ PN−1
C be an irreducible, reduced, 

non-degenerate projective variety of dimension d. Let P1, . . . , Pn be general points on X
and let W be the projective linear space they span. Then

(a) If n + d < N , then X ∩W = {P1, . . . , Pn}.
(b) If n + d = N , then degX ≥ n. When degX > n, X ∩ W ⫌ {P1, . . . , Pn}. When 

degX = n, X ∩W = {P1, . . . , Pn} and X is called a variety with minimal degree; 
it is either a quadric hypersurface, a cone over the Veronese surface, or a rational 
normal scroll.

(c) If n + d > N , then X ∩W ⫌ {P1, . . . , Pn}.

Proof. The case n + d < N is the generalized trisecant lemma. When n + d = N , the 
degree of X is at least N − d = n, since degX is the number of intersection points 
between X and a generic linear space of dimension n − 1 and X is non-degenerate so 
the intersection points span the linear space. When degX > n, the intersection X ∩W

contains points other than P1, . . . , Pn. When degX = n, the variety X has minimal 
degree and the intersection of X with W is precisely P1, . . . , Pn. For the classification of 
irreducible non-degenerate projective varieties with minimal degree, see e.g. [14, Theorem 
19.9]. When n + d > N , the intersection between X and W has dimension at least 
n − 1 + d − N > 0 so it contains infinitely many points. In particular, the intersection 
contains a point other than P1, . . . , Pn. □

A tensor is a multidimensional array and a tensor decomposition writes a tensor as 
a sum of rank one tensors. Suppose we have a tensor T =

∑︁r
i=1 xi where x1, . . . , xr are 
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rank one tensors and that we can recover V := Span{x1, . . . , xr}. The tensor decom
position is unique when the linear space V intersects the variety of rank one tensors X
in precisely these r points x1, . . . , xr and this is the content of the generalized trisecant 
trichotomy [20, Proposition 3.2]. For many applications in statistics [2,25,29,7] and data 
analysis [8,17,36], we are often only interested in real tensor decompositions. So, a natu
ral question is to find a real analog of the generalized trisecant trichotomy by restricting 
the points we use to span the linear space to be real and asking if there is an extra real 
point in the intersection of the linear space and the variety.

We call a variety X ⊆ PN−1
C a real projective variety if it is irreducible, reduced, 

non-degenerate, and can be written as the vanishing locus of some real homogeneous 
polynomials. We use XR to denote the collection of real points in X with induced 
Euclidean topology. More precisely, we take the topology to be the quotient topology 
induced from the Euclidean topology on RN by making the quotient map RN ↦→ PN−1

R

continuous. Similarly, we say a linear space is real if it is defined by real linear forms. 
When we talk about the dimension of a linear space, we always mean its projective 
dimension.

It turns out that the real analog of Theorem 1.2 depends on the set of possible numbers 
of real intersection points between X and a complementary dimension real linear space. 
Bounds on such numbers are studied in e.g. [33,26,32,16].

Definition 1.3. Let X ⊆ PN−1
C be a real projective variety with dimX = d. We define 

the set of integers 𝒩 (X) to be the possible numbers of real points that can be obtained 
after intersecting X with a sufficiently general complementary dimension linear space. 
That is,

𝒩 (X) :=
{︃

#(X ∩W )R : W real linear space with dimW = N − 1 − d
that intersects X transversely

}︃
.

We call 𝒩 (X) the set of possible numbers of real solutions for X.

Our first contribution is to characterize 𝒩 (X). We denote the minimum and maximum 
elements of the set 𝒩 (X) by 𝒩 (X)min and 𝒩 (X)max. We assume that the variety has a 
smooth real point, to ensure its real locus is Zariski dense.

Proposition 1.4. Let X ⊆ PN−1
C be a smooth real projective variety of dimension d with 

a smooth real point. Then the set of possible numbers of real solutions 𝒩 (X) satisfies

(i) for p ∈ 𝒩 (X), we have p ≡ degX mod 2;
(ii) N − d ≤ 𝒩 (X)max ≤ degX;
(iii) 𝒩 (X) = {k : 𝒩 (X)min ≤ k ≤ 𝒩 (X)max, k ≡ degX mod 2}.

Proposition 1.4 may be known or intuitive to experts in real algebraic geometry, but 
to the best of our knowledge, a statement and proof is missing from the literature. 
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Our proof studies how real solutions change across the branch locus, which occurs in 
computing real homotopies between polynomial systems [24]. Here is an example to 
illustrate Proposition 1.4.

Example 1.5. Consider the Edge quartic C defined by

25(x4 + y4 + z4) − 34(x2y2 + x2z2 + y2z2) = 0, (1)

taken from [27]. It is one of the curves studied by William L. Edge in [12], which admits a 
matrix representation over Q. Hyperplanes in P 2

C can be viewed as points in (P 2
C)∗ with 

coordinates [u, v, w]. Generic hyperplanes intersect C transversely. Those who intersect 
C singularly form the dual curve C∨ defined by

10000u12 − 98600u10v2 − 98600u10w2 + 326225u8v4 + 85646u8v2w2 + 326225u8w4

−442850u6v6 − 120462u6v4w2 − 120462u6v2w4 − 442850u6w6 + 326225u4v8

−120462u4v6w2 + 398634u4v4w4 − 120462u4v2w6 + 326225u4w8 − 98600u2v10

+85646u2v8w2 − 120462u2v6w4 − 120462u2v4w6 + 85646u2v2w8 − 98600u2w10

+10000v12 − 98600v10w2 + 326225v8w4 − 442850v6w6 + 326225v4w8

−98600v2w10 + 10000w12 = 0,

see [18, Example 5.2], where the authors study real lines that avoid C. For any hyperplane 
in a fixed region of (P 2

R)∗−C∨
R, the number of real intersection points with C is constant. 

We plot C∨
R and label each region of (P 2

R)∗−C∨
R by the number of real intersection points 

with C in Fig. 1. If two regions are adjacent (that is, connected via smooth points in 
C∨
R) we see that their numbers of real intersection points differ by two.

We use Proposition 1.4 to prove the following result. Let (XR)n denote the set of 
n-tuples of points on XR with the product topology. We say a probability measure on 
(XR)n is strictly positive if any non-empty open subset of (XR)n has positive measure.

Theorem 1.6 (A Real Generalized Trisecant Trichotomy). Let X ⊆ PN−1
C be a smooth 

real projective variety of dimension d with a smooth real point. Let P1, . . . , Pn be points 
on XR, sampled randomly from a strictly positive probability measure on (XR)n. Let W
be the projective linear space they span. Then

(a) When n + d < N , (X ∩W )R = {P1, . . . , Pn} with probability 1.
(b) When n + d = N and degX ≡ n mod 2,

(i) (X ∩W )R = {P1, . . . , Pn} with probability 0 if 𝒩 (X)min > n;
(ii) (X ∩ W )R = {P1, . . . , Pn} with probability 0 < p < 1 if 𝒩 (X)min ≤ n <

𝒩 (X)max;
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Fig. 1. Dual curve of the Edge quartic (1) with regions labeled by the number of real intersection points. 

(iii) (X ∩W )R = {P1, . . . , Pn} with probability 1 if 𝒩 (X)max = n.

(c) When n + d > N or n + d = N and degX ̸≡ n mod 2, (X ∩W )R = {P1, . . . , Pn}
with probability 0. Moreover, when n+ d > N , (X ∩W )R has positive dimension, so 
it contains infinitely many real points.

The real trisecant trichotomy is studied for second Veronese embeddings in [37]; this 
will be discussed more in Section 5. We now give examples to illustrate Theorem 1.6(b).

Example 1.7 (p = 0). Let X be the curve in P 3
C of degree k + 2e + 1 defined as in 

Construction 1 of [19], where k, e ∈ N>0. It has 𝒩 (X) = {k − 1, k + 1}. For an even 
integer k > 4, 𝒩 (X)min > codimX + 1 = 3. Hence, #(X ∩W )R = 3 has probability 0.

Another example follows from [21, Theorem 4.6, Corollary 4.15]. Let X ⊆ P 2k+1
C be 

the projection of the rational normal curve in Pn
C from the (n−2k−2) dimensional linear 

space defined in [21, Corollary 4.15], where k can be any integer such that 2k + 2 ≤ n. 
The degree of X is n by definition. By [21, Theorem 4.6], a generic real hyperplane in 
P 2k+1
C intersects X in at most 2k complex points. Hence, 𝒩 (X)min ≥ n− 2k. Note that 

codimX + 1 = 2k + 1 < 𝒩 (X)min whenever n > 4k + 1.

Example 1.8 (0 < p < 1). Let X be the second Veronese embedding of P I−1
C in PN−1

C

where N =
(︁
I+1
2 
)︁

and suppose I ≡ 2, 3 mod 4. Then the probability that #(X ∩W )R =
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N − I + 1 is in (0, 1) since 𝒩 (X) = {0, 2, . . . , 2I−1}, by the proof of [37, Proposition 
5.10].

Example 1.9 (p = 1). Consider the plane curve X defined by x4
0 + x4

1 = x4
2 in P 2

C. 
Its real part does not intersect the line at infinity x2 = 0 and is convex and simply 
closed. A generic real line in the plane either intersects X in two points or avoids X. 
So, 𝒩 (X) = {0, 2} and the probability that #(X ∩W )R = 2 is 1, since 𝒩 (X)max is the 
codimension of X plus one.

So far we have characterized the set 𝒩 (X) in relation to its minimum and maximum 
elements, but we have not said what these minimum and maximum are. We now find 
the minimum and maximum elements of 𝒩 (X) for special varieties of tensors.

Here we focus on the Segre-Veronese varieties. They are varieties of rank one par
tially symmetric tensors, see e.g. [1,28]. We denote the Segre-Veronese variety of 
Pm1
C × · · · × Pmn

C with degrees d1, . . . , dn by SV(m1,...,mn)(d1, . . . , dn). The varieties 
SV(m1,...,mn)(1, . . . , 1) are the usual Segre varieties. Let xi = [xi,0, . . . , xi,mi

] be the 
projective coordinates of Pmi

C . The Segre-Veronese variety SV(m1,...,mn)(d1, . . . , dn) is the 
image of the monomial map that sends (x1, . . . ,xn) to (

∏︁n
i=1(xi,0)di , . . . ,

∏︁n
i=1(xi,mi

)di), 
the vector of all monomials with multidegree (d1, . . . , dn). We denote the point on 
SV(m1,...,mn)(d1, . . . , dn) corresponding to (x1, . . . ,xn) by x⊗d1

1 ⊗· · ·⊗x⊗dn
n . Considered 

in the a�ine cone over the projective space, it lies in the space of partially symmetric 
tensors Symd1

Rm1+1 ⊗ · · · ⊗ Symdn
Rmn+1. We prove the following.

Theorem 1.10. Let X be the Segre-Veronese variety SV(m1,...,mn)(d1, . . . , dn). Then the 
set of possible numbers of real solutions 𝒩 (X) satisfies

(i) 𝒩 (X)max = degX = (m1+...+mn)!
m1!···mn! 

∏︁n
i=1 d

mi
i ;

(ii) When at least two of m1, . . . ,mn are odd, then 𝒩 (X)min = 0;
(iii) When at least one of d1, . . . , dn is even, then 𝒩 (X)min = 0;
(iv) When all di are odd, 𝒩 (X) ⊇ 𝒩 (SV(m1,...,mn)(1, . . . , 1)).

We leave the remaining case as an open problem.

Question 1.11. What is 𝒩 (SV(m1,...,mn)(d1, . . . , dn))min when d1, . . . , dn are all odd and 
there is at most one odd integer among m1, . . . ,mn?

We investigate the set 𝒩 (X) for small Segre varieties that fall under the setting of 
Question 1.11. For each Segre variety considered, we sample random polynomial systems. 
We use numerical homotopy computation methods from [6] to compute the number 
of real solutions for each system, see Table 1. Theorem 1.10(i) says that deg(X) real 
solutions occur with positive probability. However, in all but the first row, degree many 
real solutions did not occur in our finite samples, suggesting that its probability is small. 
For results on real root counts of random polynomials, see [11,31].
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Table 1
The number of real solutions obtained for different Segre varieties. We gener
ate coefficients in two ways: random integer values in the range [−20, 20] and 
sampling from a standard Gaussian. We record the possible numbers of real 
solutions we obtain over 10000 sampled systems. We use [m,n]2 to denote all 
integers with the same parity as m,n in the interval [m,n]. In all cases, the 
possible number of real solutions obtained is of this form and the frequencies 
(not displayed) are unimodal (e.g. for P2 ×P2, the frequencies for 0, 2, 4, 6 are 
469, 5219, 3603, 709 respectively).

Segre of degree integer Gaussian 
P2 × P2 6 [0, 6]2 [0, 6]2
P2 × P4 15 [1, 13]2 [1, 13]2
P2 × P2 × P2 90 [2, 32]2 [4, 30]2
P2 × P6 28 [0, 18]2 [0, 18]2
P4 × P4 70 [2, 28]2 [2, 26]2
P2 × P2 × P4 420 [12, 60]2 [14, 62]2
P2 × P2 × P2 × P2 2520 [70, 146]2 [68, 146]2

In special cases, we can say more about the set 𝒩 (X).

Theorem 1.12. 

(i) 𝒩 (SV(1,n)(1, 1)) = { k : 0 ≤ k ≤ n + 1, k ≡ n + 1 mod 2 };
(ii) 𝒩 (SV(2,n)(1, 1)) ⊇ { k : ⌊n−2

2 ⌋ ≤ k ≤ deg SV(2,n)(1, 1), k ≡ deg SV(2,n)(1, 1) 
mod 2 }, for n ≥ 2.

Another interesting family of varieties are those with 𝒩 (X)max = n for a d
dimensional variety X ⊆ PN−1

C with n = N − d. We say these varieties have 𝒩 (X)max
minimal. These varieties have probability 1 of (X ∩ W )R = {P1, . . . , Pn} in The
orem 1.6(b). We characterize the plane curves X with 𝒩 (X)max minimal. We also 
construct hypersurfaces X with 𝒩 (X)max minimal for any dimension and even degree.

The rest of the paper is organized as follows. We prove Proposition 1.4 in Section 2. We 
prove Theorem 1.6 in Section 3. We prove Theorem 1.10 and Theorem 1.12 in Section 4.1. 
We construct varieties with 𝒩 (X)max minimal in Section 4.2. We explore the applications 
of the real generalized trisecant trichotomy to independent component analysis, tensor 
decompositions, and the study of typical tensor ranks in Section 5.

2. The possible numbers of real solutions

In this section, we prove Proposition 1.4, which studies the possible numbers of real 
points that can be obtained after intersecting a variety with a sufficiently general com
plementary dimension linear space. Throughout this section, X ⊆ PN−1

C is a smooth real 
projective variety of dimension d with a smooth real point.

Proof of Proposition 1.4(i,ii) and the ⊆ part of (iii). Let W be a real linear space of di
mension N−1−d that intersects X transversely. The intersection X∩W is the vanishing 
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locus of real polynomials so complex points appear in pairs. It contains degX many 
points so #(X ∩W )R ≡ degX mod 2. This proves (i). We also obtain, for (iii), that

𝒩 (X) ⊆ { k : 𝒩 (X)min ≤ k ≤ 𝒩 (X)max, k ≡ degX mod 2 }.

For (ii), the inequality 𝒩 (X)max ≤ degX holds, since this is the number of complex 
intersection points. For the inequality 𝒩 (X)max ≥ N − d, we construct a sufficiently 
general linear space W of complementary dimension to X that intersects X in at least 
N − d points. Let p be a real smooth point of X. Then the local dimension of XR

at p is dimX = d by [3, Proposition 7.6.2], in other words, there is a semi-algebraic 
neighborhood U of p in XR of dimension equal to dimX = d. The variety X is non
degenerate, so N − d generic points in U are linearly independent. We denote the linear 
space they span by W . It has complementary dimension to X in PN−1

C and (X ∩W )R
contains at least N − d points, since W is generated by N − d points in XR. □

To prove Proposition 1.4, it remains to show that

𝒩 (X) ⊇ { k : 𝒩 (X)min ≤ k ≤ 𝒩 (X)max, k ≡ degX mod 2 }.

Our proof uses the following definition.

Definition 2.1. We define 𝒰k ⊆ Gr(N − d − 1, N − 1)R to be the set of (N − d − 1)
dimensional linear spaces in PN−1

R that intersect X transversely in exactly k real 
intersection points.

We prove that the union of disjoint open chambers 
⋃︁

k∈𝒩 (X) 𝒰k is a dense open set 
in the Grassmannian Gr(N − d − 1, N − 1)R. Note that a set 𝒰k can be disconnected. 
For two points, one generic in 𝒰𝒩 (X)min and the other generic in 𝒰𝒩 (X)max , we show that 
we can travel from one to the other via a continuous path such that each time we travel 
from one chamber to another, we go from some 𝒰k to 𝒰k+2 or to 𝒰k−2. As we start in 
𝒰𝒩 (X)min and end in 𝒰𝒩 (X)max , every set 𝒰k for k an integer with the same parity as 
degX in the interval [𝒩 (X)min,𝒩 (X)max] will be visited. See Fig. 1 for an example and 
also for the disconnectedness of the 𝒰k. We start by studying the topology of the sets 
𝒰k in Gr(N − d− 1, N − 1)R.

Lemma 2.2. 

(a) For k ∈ 𝒩 (X), the set 𝒰k is non-empty and open in Gr(N − d− 1, N − 1)R with the 
Euclidean topology.

(b) The set B := Gr(N−d−1, N−1)R−
⋃︁

k∈𝒩 (X) 𝒰k is a hypersurface. It is the boundary 

of 
⋃︁

k∈𝒩 (X) 𝒰k and contains linear spaces in PN−1
R that intersect X at some point 

with multiplicity at least two or in some positive dimension variety.
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Proof. Let V be a codimension d linear space in PN−1
C that intersects X transversely 

in exactly k real solutions. Roots of a polynomial system change continuously as its 
coefficients change. So if we perturb V in a small open neighborhood around it, all 
solutions to V ∩X are distinct and the complex points in V ∩X move to complex points. 
By considering the Grobner bases of the ideal generated by polynomials defining X and 
the linear relations defining V , the i-th coordinate of the solutions to V ∩X are roots 
of some univariate polynomial with coefficients that change continuously as we move V . 
So, the real points in V ∩X remain real. Hence, there is an open neighborhood of V in 
𝒰k, thus 𝒰k is open.

When we leave 𝒰k and enter 𝒰k′ along some path in Gr(N − d− 1, N − 1)R, we must 
have at least two solutions coming together on the boundary of 𝒰k and 𝒰k′ . So, the set

B := Gr(N − d− 1, N − 1)R −
⋃︂

k∈𝒩 (X)

𝒰k

is the collection of linear spaces in PN−1
R of codimension d that intersect X singularly. 

The set B is the vanishing locus of the Hurwitz form for X and it is an irreducible 
hypersurface since X is irreducible, see [34, Theorem 1.1]. □

We will travel from 𝒰𝒩 (X)min to 𝒰𝒩 (X)max via a connected sequence of lines in Gr(N−
d− 1, N − 1)R. Lines in Gr(N − d− 1, N − 1) are pencils of linear spaces in PN−1

C . We 
use lines to form our path and will make the lines sufficiently generic to reduce to the 
case where X is an algebraic curve. We can then use the notion of dual varieties to 
understand hyperplanes that intersect an algebraic curve non-transversely.

Lemma 2.3. A line in Gr(N − d − 1, N − 1) is a pencil of linear spaces of dimension 
N − d − 1 that contain a fixed (N − d − 2)-space and are contained in a fixed (N − d)
space in PN−1

C .

Proof. This is the description of a line in the Grassmannian as a Schubert cycle, which is 
well-known. We include a proof for convenience. Let L be a line in Gr(N −d− 1, N − 1). 
Let VL =

⋃︁
[V ]∈L V ⊆ PN−1

C . Since a line in Gr(N − d − 1, N − d) is the pencil of 
(N − d − 1)-spaces that contain a (N − d − 2)-space, it is enough to show that VL is a 
(N −d)-space, i.e. a projective variety of dimension N −d and degree one in the Plücker 
embedding of Gr(N − d− 1, N − 1). Let

Φ = { (V, p) ∈ Gr(N − d− 1, N − 1) × PN−1
C : [V ] ∈ Gr(N − d− 1, N − 1), p ∈ V }

and let p1 and p2 be the projection of Φ onto its first and second factor, respectively. 
Then VL = p2(p−1

1 (L)) is a projective algebraic variety with dimension N − d and it is 
irreducible since p−1

1 (L) is irreducible. Let W be a generic dimension d linear space in 
PN−1
C , then
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deg(VL) = #(VL ∩W ) = #{V ∈ L : V ∩W ̸= ∅}.

Let Σ be the set of points in Gr(N − d − 1, N − 1) whose corresponding linear spaces 
intersect W . It is a hyperplane section of Gr(N−d−1, N−1) in the Plücker embedding. 
Hence

#{V ∈ L : V ∩W ̸= ∅} = #(L ∩ Σ) = 1

and VL has degree one. □
We recall the definition of a dual variety and some of its key properties.

Definition 2.4. Let X ⊆ PN−1
C be an irreducible smooth algebraic variety. The dual 

variety X∨ ⊆ (PN−1
C )∗ is the collection of hyperplanes that intersect X singularly. In 

general, X∨ is a hypersurface, otherwise X is ruled by projective spaces of dimension 
codimX∨ − 1.

Proposition 2.5. Let Y ⊆ PN−1
C be a non-degenerate smooth algebraic curve with Y ∨ a 

hypersurface in (PN−1
C )∗. If H is a hyperplane that intersects X in at least two points with 

multiplicity two or at least one point with multiplicity at least three (including positive 
dimensional intersection), then [H] ∈ Sing(Y ∨).

Proof. By a result of [10] (for a proof see [35, Theorem 10.8]), the multiplicity of Y ∨ at 
[H] is equal to Σp∈Sing(Y ∩H) μ(Y ∩H, p) where μ(Y ∩H, p) is the Milnor number. If p is an 
intersection point with multiplicity m, then μ(Y ∩H, p) = m−1. So, if H intersects Y in at 
least two points with multiplicity two or at least one point with multiplicity at least three 
(including positive dimensional intersection), we obtain Σp∈Sing(Y ∩H) μ(Y ∩ H, p) ≥ 2, 
so [H] is a singular point in Y ∨. □
Lemma 2.6. Let Y ⊆ PN−1

C be a non-degenerate smooth algebraic curve defined by real 
polynomials with a smooth real point. A generic real line L in (PN−1

C )∗ will intersect Y ∨

transversely. Moreover, each time the line crosses Y ∨, it travels from 𝒰k to 𝒰k+2 or to 
𝒰k−2 for some k ∈ 𝒩 (Y ).

Proof. If Y ∨ is a hypersurface in (PN−1
C )∗, Sing(Y ∨) has codimension at least two in 

(PN−1
C )∗. If Y ∨ is not a hypersurface in (PN−1

C )∗, then Sing(Y ∨) has codimension at 
least three. A generic real line will intersect Y ∨ transversely in both cases.

Any hyperplane corresponding to a point in L intersects Y in at most one point with 
multiplicity two, by Proposition 2.5. So, each time L crosses Y ∨, two distinct points 
become one double point and then become two distinct points. Since L is real, the 
double point must be real otherwise there would be a pair of complex conjugate double 
points and we would have a bitangent.
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Suppose L crosses Y ∨ at some hyperplane H0 where Y ∩ H0 has a double point p
and consider Ht in L for t close to 0. First notice that the tangent line to Y at p lies in 
H0. Since Y is smooth at p, Ht intersects Y at some point pt close to p. There are two 
possibilities:

(i) if pt is not real, its conjugate is also close to p. The secant line from pt to its 
conjugate is a real line in Ht. This secant line moves to the tangent line at p as t
moves to 0;

(ii) if pt is real there is a real secant to Y through pt that is contained in Ht and moves 
to the tangent line at p as t moves to 0.

Consider possibilities (i) and (ii) as t changes sign at 0. If (i) occurs on both sides, p is 
an acnode on Y , an isolated real singularity, against the smoothness assumption. If (ii) 
occurs on both sides, Y has a real node at p, again a singularity against the assumption. 
So (i) and (ii) occur each on one side. Since all other real intersections of H0 with Y are 
transversal, i.e. at smooth points, these real intersections will remain real and distinct 
for t close to 0. So the number of real intersection points of Ht with Y changes by two 
as t passes by 0. □

We use Bertini’s Theorem, [14, Theorem 17.16], to reduce our problem to the smooth 
curve case in order to apply Lemma 2.6. It states that for a smooth variety, a generic 
member of a linear system of divisors on X is smooth away from the base locus of the 
system. It extends to the following.

Corollary 2.7 (of Bertini’s Theorem). Let X be a smooth variety. If the base locus of a 
linear system of divisors on X is empty or a finite reduced set of points, then the general 
member of the linear system is smooth.

Proof. It suffices to check for singularities at the basepoints. If every divisor is singular 
at a base point p ∈ X, i.e. has multiplicity at least two at p, then the base locus contains 
the first order neighborhood of p. This is against the hypothesis that the base locus is a 
reduced set of points, so the theorem holds. □

When we refer to Bertini’s theorem, we include this corollary. By a real line in Gr(N−
d − 1, N − 1)R, we mean a line corresponding to a pencil of real (N − d − 1)-spaces 
containing a real (N−d−2)-space in a real (N−d) space. We show that we can construct 
a sequence of real lines in Gr(N − d − 1, N − 1)R connecting a point in 𝒰𝒩 (X)min to a 
point in 𝒰𝒩 (X)max , where the (N − d) space corresponding to each line intersects X in a 
smooth curve.

For two general codimension d linear spaces W1,W2 in PN−1
C , the intersection is empty 

if 2d > N − 1 and has codimension 2d if 2d ≤ N − 1. We define ℓ to be −1 if 2d > N − 1
and N−1−2d if 2d ≤ N−1. It is the dimension of W1∩W2 (−1 when the intersection is 
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empty). Let k = N − d− ℓ− 1. The span, Span(W1,W2), has dimension 2N − 2− 2d− ℓ, 
so each Wi has codimension k in this span. This is also the codimension of W1 ∩W2 in 
Wi for i = 1, 2.

Lemma 2.8. Fix X ⊆ PN−1
C of dimension d. Suppose V0, Vk are two generic codimension 

d real linear spaces in PN−1
C . Then (V0 ∩ Vk) ∩X = ∅, Span(V0, Vk) ∩X is smooth with 

dimension k, and there are real linear spaces V1, . . . , Vk−1 of codimension d and real 
linear spaces U0, . . . , Uk−1 in Span(V0, Vk) of codimension d− 1 satisfying the following 
properties:

(i) Ui = Span(Vi, Vi+1) and codimVi
(Vi ∩ Vi+1) = 1 for i = 0, . . . , k − 1;

(ii) Vi+1∩Vk ⊇ Vi∩Vk with dim(Vi+1 ∩ Vk) = dim(Vi ∩ Vk)+1 and Vi+1∩V0 ⊆ Vi∩V0
with dim(Vi+1 ∩ V0) = dim(Vi ∩ V0) − 1 for i = 0, . . . , k − 1;

(iii) (Vi ∩ Vk) ∩ X = ∅ and Span(Vi, Vk) ∩ X is smooth with dimension k − i for i =
0, . . . , k;

(iv) Vi intersects X transversely for i = 1, . . . , k − 1 and Ui ∩X is a smooth curve for 
i = 0, . . . , k − 1.

Proof. For generic linear spaces V0 and Vk, the linear space V0 ∩ Vk is generic with 
dimension ℓ or is empty and Span(V0, Vk) is generic with dimension N − d− 1 + k. So, 
(V0 ∩ Vk)∩X = ∅ and Span(V0, Vk)∩X is smooth with dimension k by the smoothness 
of X. When k = 1, there is nothing to prove.

When k = 2, we choose U0 to be a generic linear space of dimension N − d in 
Span(V0, V2) containing V0. By Bertini’s Theorem, U0 ∩ X is a smooth curve since 
Span(V0, V2) ∩ X is smooth and the base locus V0 ∩ X has dimension 0. We choose 
U1 to be a linear space of dimension N − d in Span(V0, V2) containing V2 such that, 
again by Bertini’s Theorem, the intersections U1 ∩X and U0 ∩U1 ∩X are both smooth. 
We define V1 = U0∩U1. Then U1∩X is a smooth curve and V1∩X is smooth and finite.

Now suppose k > 2. We construct V1, . . . , Vk−1 and U0, . . . , Uk−1 inductively. Suppose 
we have already constructed V1, . . . , Vi and U0, . . . , Ui−1. Suppose first that k − i > 2. 
Note that Span(Vi, Vk)∩X smooth and (Vi ∩Vk)∩X = ∅. We choose Ui to be a generic 
linear space of dimension N − d in Span(Vi, Vk) containing Vi such that by Bertini’s 
Theorem, Ui ∩X is smooth and (Ui ∩ Vk) ∩X is empty. We define Vi+1 to be a generic 
N − d − 1 dimensional linear space in Ui containing Ui ∩ Vk such that by Bertini’s 
Theorem, Vi+1 ∩X is transverse and Span(Vi+1, Vk) ∩X is smooth. Note that we have 
Ui ∩ Vk = Vi+1 ∩ Vk because codimVi+1(Vi ∩ Vi+1) = 1, Ui ∩ Vk contains Vi ∩ Vk and 
dim(Ui ∩ Vk) = dim(Vi ∩ Vk) + 1. So, in particular (Vi+1 ∩ Vk) ∩X = ∅. If k − i = 2, we 
use the same argument as k = 2 above. □

Now, we prove the ⊇ half of Proposition 1.4(iii); i.e., we show that

𝒩 (X) ⊇ { k : 𝒩 (X)min ≤ k ≤ 𝒩 (X)max, k ≡ degX mod 2 }.



K. Ranestad et al. / Journal of Algebra 694 (2026) 703--729 715

Proof of the ⊇ half of Proposition 1.4(iii). By Lemma 2.2(a), there are nonempty open 
sets 𝒰j ⊆ Gr(N − d − 1, N − 1)R for all j ∈ 𝒩 (X) such that any element in 𝒰j in
tersects X in precisely j real distinct points. We take V0, Vk to be generic points in 
𝒰𝒩 (X)min ,𝒰𝒩 (X)max respectively. By Lemma 2.8, there are N − d− 1 dimensional linear 
spaces V1, . . . , Vk−1 that intersect X transversely and N − d dimensional linear spaces 
U0, . . . , Uk−1 that intersect X in a smooth curve with Vi, Vi+1 ⊆ Ui for i = 0, . . . , k−1. It 
is enough to show that inside each Ui, we can travel from Vi to Vi+1 via a continuous path 
in Gr(N−d−1, N−1)R and each time we leave an open chamber 𝒰k, we enter either 𝒰k−2
or 𝒰k+2. We denote Xi = X ∩ Ui and we treat Ui

∼ = PN−d
C as our ambient space. Now, 

Vi, Vi+1 are real points in (PN−d
C )∗. Since Vi, Vi+1 intersect X transversely, there are open 

neighborhoods Di, Di+1 ⊂ (PN−d
R )∗ around [Vi] and [Vi+1] respectively, such that Dj is 

contained in the connected component of [Vj] in (PN−d
R )∗ − (Xi)∨ for j = {i, i+ 1}. We 

pick generic points Wi ∈ Di,Wi+1 ∈ Di+1, then the line segments (Vi,Wi), (Vi+1,Wi+1)
don’t cross (Xi)∨. The line (Wi,Wi+1) is a general line in (PN−d)∗, i.e. has transverse 
intersection with Y ∨. If Xi has a real smooth point, by Lemma 2.6, each time the line 
crosses Y ∨, it travels from some 𝒰k to 𝒰k+2 or 𝒰k−2 for some k ∈ 𝒩 (Y ). If Xi does not 
have a real smooth point, then (Xi)R consists of a finite number of singular points and 
a generic line does not intersect it. So, the lines connecting Wi to Wi+1 stay in 𝒰0. □

We obtain the following corollary from the proof of Proposition 1.4(iii).

Definition 2.9. Let 𝒵X ⊆ Gr(N − d − 1, N − 1)R be the set of (N − d − 1)-spaces in 
PN−1
R that intersect X in at least two points with multiplicity two or one point with 

multiplicity at least three (including positive dimensional intersection).

Corollary 2.10. The set Gr(N − d − 1, N − 1)R − 𝒵X is path-connected. If 𝒰i,𝒰j are 
smoothly adjacent, meaning that 𝒰i ∩ 𝒰j contains some smooth point of the boundary 
B := Gr(N − d− 1, N − 1)R −

⋃︁
k∈𝒩 (X) 𝒰k, then i = j + 2 or i = j − 2.

3. Real trisecant trichotomy

In this section, we prove Theorem 1.6. Throughout the section, we suppose X ⊆ PN−1
C

is a smooth real projective variety of dimension d with a smooth real point and that 
P1, . . . , Pn are points on XR, sampled randomly from a strictly positive probability 
measure on (XR)n.

Proposition 3.1. Let P1, . . . , Pn be points on XR sampled randomly from a strictly pos
itive probability measure on (XR)n. When n + d < N , (X ∩ W )R = {P1, . . . , Pn} with 
probability 1.

Proof. It suffices to show that for general points P1, . . . , Pn ∈ XR, we have (X ∩W )R =
{P1, . . . , Pn}. General real points are also general complex points since X has a smooth 
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real point and XR is Zariski-dense in X. By the generalized trisecant lemma (see Theo
rem 1.1) we have X ∩W = {P1, . . . , Pn} and hence (X ∩W )R = {P1, . . . , Pn}. □
Lemma 3.2. Let W be a generic linear space with complementary dimension to X in 
PN−1
C . Then any subset of dimW + 1 intersection points is linearly independent.

Proof. Denote dimW = n−1. The intersection X∩W is non-degenerate, by [14, Proposi
tion 18.10], so W is spanned by a subset of n intersection points. Assume for contradiction 
that, for a generic linear space W of dimension n−1, there is a linearly dependent subset 
of n intersection points. This linearly dependent set of intersection points spans a linear 
space VW of dimension at most k ≤ n − 2. Let Yk be the collection of k dimensional 
linear spaces in PN−1 spanned by k + 1 points in X such that its intersection with 
X contains more than these k + 1 points. By the generalized trisecant lemma, Yk has 
positive codimension in the image of the map ϕ : Xk+1 --￫ Gr(k,N − 1) which sends 
k + 1 points on X to the linear space they span. So, dimYk < (k + 1) dimX. By the 
hypothesis, a generic linear space in Gr(n− 1, N − 1) is spanned by a linear space in Yk

for some k ≤ n− 2 and n− 1 − k other points in X, so

dim Gr(n− 1, N − 1) ≤ max 
k≤n−2

{dimYk + (n− 1 − k) dimX}.

But we have dimYk+(n−1−k) dimX < (k+1) dimX+(n−1−k) dimX = (N−n)n =
Gr(n− 1, N − 1), a contradiction. □
Proposition 3.3. Let P1, . . . , Pn be points on XR, sampled randomly from a strictly pos
itive probability measure on (XR)n. Define W = Span{P1, . . . , Pn}. Let n = N − d and 
we assume that degX ≡ n mod 2. Then,

(i) (X ∩W )R = {P1, . . . , Pn} with probability 0 if 𝒩 (X)min > n;
(ii) (X ∩W )R = {P1, . . . , Pn} with probability 0 < p < 1 if 𝒩 (X)min ≤ n < 𝒩 (X)max;
(iii) (X ∩W )R = {P1, . . . , Pn} with probability 1 if 𝒩 (X)max = n.

Proof. Consider the map ϕ : (XR)n --￫ Gr(n − 1, N − 1)R that sends n points on 
XR to the n − 1 dimensional linear space they span whenever the n points are linearly 
independent. The map ϕ is continuous.

Recall from Definition 2.1 and Lemma 2.2 that for each k ∈ 𝒩 (X), there is a nonempty 
open set 𝒰k ⊆ Gr(n − 1, N − 1)R parameterizing real (n − 1)-spaces that intersect X
transversely in exactly k real points. We will show that for k ∈ 𝒩 (X) and k ≥ n (if 
such a k exists), the set ϕ−1(𝒰k) is nonempty and it is open since ϕ is continuous. For a 
generic linear space W ∈ 𝒰k, any subset of dimV +1 = n intersection points of W ∩X is 
linearly independent. The intersection W ∩X has k real intersection points with k ≥ n, 
so we can choose n real intersection points to span W . In particular, W is in the image 
of ϕ and ϕ−1(𝒰k) is non-empty and open. Moreover, the closure of 

⋃︁
k∈𝒩 (X),k≥n ϕ−1(𝒰k)

is the domain of ϕ.
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Note that (X ∩ W )R = {P1, . . . , Pn} if and only if {P1, . . . , Pn} ∈ ϕ−1(𝒰n). So, the 
probability is 1 when ϕ−1(𝒰n) is dense. In this case, if k ∈ 𝒩 (X) and k ≥ n, we must 
have k = n, so 𝒩 (X)max = n. The probability is in the interval (0, 1) when ϕ−1(𝒰n)
is non-empty and open but not dense. This happens when 𝒩 (X)min ≤ n < 𝒩 (X)max. 
Finally, the probability is 0 when ϕ−1(𝒰n) is empty; i.e., when 𝒩min > n. □
Proposition 3.4. Let P1, . . . , Pn be random points on X that follow a strictly positive 
probability measure on (XR)n. Let W = Span{P1, . . . , Pn}. Assume n + d = N and 
degX ̸≡ n mod 2 or n + d > N . Then

(X ∩W )R ⫌ {P1, . . . , Pn}.

Moreover, when n + d > N , (X ∩W )R contains infinitely many real points.

Proof. It suffices to show the result for general P1, . . . , Pn ∈ XR for which W intersects X
smoothly at the points P1, . . . , Pn, since such (P1, . . . , Pn) occurs almost surely. Suppose 
first n + d = N and degX ̸≡ n mod 2. The intersection X ∩ W is transverse. Since 
complex points come in pairs in X∩W , #(X∩W )R ≡ degX mod 2. So, if (X∩W )R =
{P1, . . . , Pn}, we must have n ≡ degX mod 2, a contradiction.

Now suppose n+d > N . The intersection X∩W contains real smooth points P1, . . . , Pn

and it has complex dimension n+d−N > 0. By [3, Proposition 7.6.2], the set (X ∩W )R
has a semialgebraic neighborhood of dimension n+d−N around each Pi for i = 1, . . . , n. 
Hence (X ∩W )R contains infinitely many points. □
4. Examples

4.1. Segre-Veronese varieties

The integers 𝒩 (X)min and 𝒩 (X)max characterize 𝒩 (X) and the cases in the real 
generalized trisecant trichotomy, see Proposition 1.4 and Theorem 1.6. In this section, 
we study 𝒩 (X)min and 𝒩 (X)max for Segre-Veronese varieties. We prove Theorems 1.10
and 1.12.

Lemma 4.1. The dimension of SV(m1,...,mn)(d1, . . . , dn) is m1 + . . .+ mn and the degree 
is

(m1 + . . . + mn)!
m1! · · ·mn! 

n ∏︂
i=1

dmi
i .

Proof. This is an exercise about Hilbert polynomials; we include a proof for convenience. 
The variety SV(m1,...,mn)(d1, . . . , dn) has dimension m1 + . . . + mn since it is the image 
of an embedding of Pm1

C × · · · × Pmn

C . Segre-Veronese varieties are toric varieties. The 
corresponding polytope for SV(m1,...,mn)(d1, . . . , dn) is d1△m1×· · ·×dn△mn

where di△mi
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means the simplex of dimension mi dilated di times. By Kushnirenko’s Theorem [22], 
its degree is (m1+...+mn)!

m1!···mn! Vol(d1△m1 × · · · × dn△mn
) = (m1+...+mn)!

m1!···mn! 
∏︁n

i=1 d
mi
i . □

Let xi = [xi,0, . . . , xi,mi
] be the projective coordinates of Pmi

C . The Segre-Veronese 
variety X = SV(m1,...,mn)(d1, . . . , dn) is the image of the monomial map that sends 
(x1, . . . ,xn) to the vector of monomials with multidegree (d1, . . . , dn). Hence the inter
section points of X and a complementary dimension real linear space can be expressed 
as dimX = m1 + . . . + mn polynomials in (x0, . . . ,xn) with monomials of multidegree 
(d1, . . . , dn).

We consider polynomial systems of the product form

f
(1)
1 (x1) · . . . · f (1)

n (xn) = 0
...

f
(M)
1 (x1) · . . . · f (M)

n (xn) = 0,

(2)

where M = m1 + · · · + mn. Each polynomial consists of monomials of multidegree 
(d1, . . . , dn). Therefore, the solutions to the polynomial system are the intersection points 
of X with some complementary dimension real linear space. The xi part of each solution 
is a solution to mi equations f (j1)

i (xi) = 0, . . . , f (jmi
)

i (xi) = 0 for some 1 ≤ j1 < . . . <

jmi
≤ M .

For Segre-Veronese varieties, the maximum number of real solutions is the degree.

Lemma 4.2. For any Segre-Veronese variety X = SV(m1,...,mn)(d1, . . . , dn), we have

𝒩 (X)max = degX = (m1 + . . . + mn)!
m1! · · ·mn! 

n ∏︂
i=1

dmi
i .

Proof. We build a system of equations of the form in (2). Let M = m1 + . . . + mn. 
Then dimX = M . We pick diM generic vectors in Rmi+1 and denote them by 
ℓ
(1)
1 , . . . , ℓ

(di)
1 , . . . , ℓ

(1)
M , . . . , ℓ(di)

M . Let f (j)
i (xi) =

∏︁di

k=1(ℓ
(k)
j · xi) for i = 1, . . . , n, j =

1, . . . ,M . The polynomial f (j)
i (xi) is homogeneous of degree di in xi.

There are M ! 
m1!···mn! many ways to partition M polynomials into subsets of size 

(m1, . . . ,mn). For the subset of mi polynomials, we set their fi part equal to 0 for 
i = 1, . . . , n. This has dmi

i solutions, since the system f (j1)
i (xi) = 0, . . . , f (jmi

)
i (xi) = 0

where 1 ≤ j1 < . . . < jmi
≤ M has dmi

i real distinct solutions, each one corre
sponding to the solution of mi linear equations. Hence, the polynomial system (2)
has (M)! 

m1!···mn!
∏︁n

i=1 d
mi
i solutions. The solutions are distinct since the linear forms are 

generic. □
When X is a toric variety, triangulations of its associated polytope give information 

about 𝒩 (X)max. The following result also covers the previous Theorem.
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Theorem 4.3 ([33, Corollary 2.4]). Suppose X is a toric variety with associated poly
tope P . If P admits a unimodular regular triangulation with each simplex having unit 
volume 1, then 𝒩 (X)max = degX.

For a large class of Segre-Veronese varieties, the minimum number of real solutions 
is 0.

Lemma 4.4. Let X = SV(m1,...,mn)(d1, . . . , dn). If at least one of d1, . . . , dn is even, then 
𝒩 (X)min = 0.

Proof. We build a polynomial system as in (2). Let M = m1+. . .+mn. Then dimX = M . 
Without loss of generality, assume d1 is even. Pick 2M generic vectors in Rm1+1 and 
denote them by v(1)

1 , v
(2)
1 , . . . , v

(1)
M , v

(2)
M . Let f (j)

1 (x1) = (v(1)
j · x1)d1 + (v(2)

j · x1)d1 for j =
1, . . . ,M . For a system f (j1)

1 (x1) = 0, . . . , f (jm1 )
1 (x1) = 0 where 1 ≤ j1 < . . . < jm1 ≤ M , 

if it has a real solution, then the solution should satisfy 2m1 generic linear relations 
which is impossible. However, the system has dm1

1 distinct complex solutions since each 
f

(j)
1 (x1) is a product of d1 linear relations with complex coefficients.

Let f (j)
i (xi) be a generic homogeneous degree di polynomial, for i = 2, . . . , n and 

j = 1, . . . ,M . It has (m1+...+mn)!
m1!···mn! 

∏︁n
i=1 d

mi
i solutions. All the solutions are complex since 

their x1 parts are complex and are distinct by genericity. □
Lemma 4.5. Let X = SV(m1,...,mn)(d1, . . . , dn) with all di odd. Then

𝒩 (X) ⊇ 𝒩 (SV(m1,...,mn)(1, . . . , 1)).

Proof. Let M = m1+. . .+mn. Then dimX = M . Suppose k ∈ 𝒩 (SV(m1,...,mn)(1, . . . , 1))
is achieved by a polynomial system g1 = 0, . . . , gM = 0 where each gi is a real coefficients 
polynomial with multidegree (1, . . . , 1). Let f (j)

i (xi) = (v(1)
i,j · xi)di−1 + (v(2)

i,j · xi)di−1 for 
i = 1, . . . , n, j = 1, . . . ,M . We consider the polynomial system

g1 · f (1)
1 (x1) · . . . · f (1)

n (xn) = 0
...

gM · f (M)
1 (x1) · . . . · f (M)

n (xn) = 0.

(3)

Each polynomial consists of multidegree (d1, . . . , dn) monomials. Therefore, the solutions 
to the polynomial system are the intersection points of X with some complementary 
dimension real linear space. All the solutions to (3) are distinct by genericity of v(1)

i,j , v
(2)
i,j . 

If there is a real solution satisfying f (j)
i (xi) = 0, it must satisfy v(1)

i,j · xi = 0 and 

v
(2)
i,j · xi = 0. So, it is a solution to a polynomial system with at least M + 1 equations. 

But this contradicts dimX = M and the genericity of v(1)
i,j , v

(2)
i,j . This implies all real 

solutions of (3) come from g1 = 0, . . . , gM = 0. Hence, k ∈ 𝒩 (X). □
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Remark 4.6. Note that for fixed m1, . . . ,mn, the codimension of SV(m1,...,mn)(d1, . . . , dn)
increases as we increase d1, . . . , dn. For large enough d1 + . . . + dn, we must have

𝒩 (SV(m1,...,mn)(d1, . . . , dn))min < codim(SV(m1,...,mn)(d1, . . . , dn)) + 1.

Hence, if deg(SV(m1,...,mn)(d1, . . . , dn)) ≡ codim(SV(m1,...,mn)(d1, . . . , dn)) + 1 mod 2, 
we are in the middle case of Theorem 1.6(b).

Lemma 4.7. Let X = SV(m1,...,mn)(d1, . . . , dn). If at least two of m1, . . . ,mn are odd, 
then 𝒩 (X)min = 0.

Proof. Without loss of generality, we assume that m1 and m2 are odd. We first suppose 
that M = m1 + . . . + mn is even. Consider the polynomial system as in (2) where 
each f (j)

i is a product of di generic linear forms with coefficients in Cmi+1 and where 
f

(2j−1)
i is conjugate to f (2j)

i for 1 ≤ j ≤ M
2 . This system can be rewritten as a system 

of real polynomials by taking the real and imaginary parts of the conjugate pairs. All 
the solutions to this system are distinct since the linear relations are generic. The x1
part of each solution is the solution to m1 linear relations, each a factor of f (j1)

1 (x1) =
0, . . . , f (jm1 )

1 (x1) = 0 for some 1 ≤ j1 < . . . < jm1 ≤ M . If it is real, then the linear 
relations should be a collection of conjugate pairs, but this is impossible because m1 is 
odd. Hence, the system (2) has no real solutions.

It remains to consider the case when M is odd. Consider a system of equations as 
in (2), where each f (k)

i is a product of di generic linear forms with coefficients in Cmi+1

for k ≤ M − 1, where f (2j−1)
i is conjugate to f (2j)

i for i = 1, 2 and 1 ≤ j ≤ ⌊M
2 ⌋, 

and where each f (M)
i is a product of di generic linear relations with real coefficients for 

i = 1, . . . , n. The xi part of each solution is the solution to mi linear relations that are 
factors of f (j1)

i (xi), . . . , f
(jm1 )
i (xi) for some 1 ≤ j1 < . . . < jm1 ≤ M and i = 1, . . . , n. 

If it is real, then the linear relations should be a collection of real solutions and pairs 
of conjugate solutions. Hence f (M)

1 (x1) = 0. Similarly, we must have f (M)
2 (x2) = 0. But 

a solution cannot make two factors of the same polynomial in our system vanish, by 
genericity. Hence this system has no real solutions. □
Proof of Theorem 1.10. Part (i) is shown in Lemma 4.2. Part (iii) is shown in Lemma 4.4. 
Part (iv) is shown in Lemma 4.5. Part (ii) follows from Lemma 4.7. □

The variety SV1,n(1, 1) has degree n + 1. Hence it is a variety with minimal degree. 
The above results do not cover the case of 𝒩 (SV1,n(1, 1))min when n is even. However, 
we can use induction to show the following.

Lemma 4.8. The Segre variety X = SV1,n(1, 1) has degree n + 1 and

𝒩 (X) = {k : 0 ≤ k ≤ n + 1, k ≡ n + 1 mod 2}.
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Proof. Suppose first that n is odd. By Lemma 4.2, 𝒩 (X)max = n + 1. By Lemma 4.7, 
𝒩 (X)min = 0. So, 𝒩 (X) = { k : 0 ≤ k ≤ n + 1, k ≡ n + 1 mod 2 }.

Now, suppose that n is even. It suffices to show that 𝒩 (X)min = 1. Let the coordinates 
for P 1

C and Pn
C be [x0, x1] and [y0, . . . , yn]. Consider a generic system of real polynomials:

f1(x0, x1, y0, . . . , yn−1) + yn(λ1x1 + μ1x0) = 0
...

fn(x0, x1, y0, . . . , yn−1) + yn(λnx1 + μnx0) = 0

ynx1 = 0, (4)

where each fi is bihomogeneous with multidegree (1, 1) in [x0, x1] and [y0, . . . , yn−1], 
and the system f1(x0, x1, y0, . . . , yn−1) = 0, . . . , fn(x0, x1, y1, . . . , yn−1) = 0 has no real 
solutions (which is possible by the result when n is odd). We may further assume the 
system has no solution with x1 = 0, by genericity. Substituting x1 = 0 in the first n
polynomials of (4) gives back n linear equations with one real solution; we assume the 
solution has yn ̸= 0, by genericity. Thus (4) has

deg SV1,n−1(1, 1) + 1 = deg SV1,n(1, 1)

distinct solutions, of which exactly one is real. Hence, 𝒩 (X)min = 1. □
We can use the result about 𝒩 (SV1,n(1, 1)) to inductively construct polynomial sys

tems and gain information about 𝒩 (SV2,n(1, 1)). The result of 𝒩 (SV2,2)(1, 1) is obtained 
using numerical algebraic geometry software [6] and certified via [5]. The remaining cases 
use a result about orbits of tensors under the action of general linear groups.

Lemma 4.9. For Segre varieties X = SV2,n(1, 1) with n ≥ 2, we have

𝒩 (X) ⊇ { k : ⌊n− 2
2 

⌋ ≤ k ≤ degX, k ≡ degX mod 2 }.

Proof. We prove the result by induction on n. When n = 2, it can be checked using [6,5] 
that the polynomial system

2x0y2 + x1y2 + 2x2y0 + x2y1 + x2y2 = 0

x0y0 + 2x0y1 + 2x0y2 + x1y0 − x1y2 + 2x2y1 = 0

x0y0 + 2x0y1 + 2x1y0 − x2y0 − x2y1 = 0

x0y1 + 2x0y2 + 2x1y1 − x1y2 − x2y0 + 2x2y2 = 0

has 0 real solutions. Therefore, 𝒩 (SV2,2(1, 1))min = 0. By Lemma 4.2 and Theorem 1.6, 
𝒩 (SV2,2(1, 1)) = {0, 2, 4, 6}.
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Now, we assume the result for n− 1. Suppose that the coordinates for P 2
C and Pn

C are 
[x0, x1, x2] and [y0, . . . , yn]. We have 

(︁
n+2

1 
)︁

=
(︁
n+1

2 
)︁

+
(︁
n+1

1 
)︁
, i.e.

deg SV2,n(1, 1) = deg SV2,n−1(1, 1) + deg SV1,n(1, 1).

We construct a system with real coefficients of the following structure
∑︂

i≤1,j≤n−1
λ

(1)
i,j xiyj + x2(

∑︂
j≤n−1

μ
(1)
j yj) + yn(

∑︂
i≤1 

ν
(1)
i xi) = 0

...∑︂
i≤1,j≤n−1

λ
(n+1)
i,j xiyj + x2(

∑︂
j≤n−1

μ
(n+1)
j yj) + yn(

∑︂
i≤1 

ν
(n+1)
i xi) = 0

x2yn = 0 (5)

For generic choices of coefficients, there is no solution with x2 = yn = 0. So, all solutions 
are distinct for (5). And the number of real solutions is the sum of the number of real 
solutions for a system in SV1,n(1, 1) (by setting x2 = 0) and a system in SV2,n−1(1, 1)
(by setting yn = 0).

We pick a generic system with real coefficients in SV1,n(1, 1) with all solutions distinct 
and k of them real. We store the coefficients of x0y0, . . . , x1yn−1 of each polynomial in 
n+1 matrices A1, . . . , An+1 of size 2×n. We pick a generic system with real coefficients 
in SV2,n−1(1, 1) with all solutions distinct and l of them real and we store the coefficients 
of x0y0, . . . , x1yn−1 in n+1 matrices B1, . . . , Bn+1 of size 2×n. If we can find invertible 
matrices P ∈ GL(2), Q ∈ GL(n) and M ∈ GL(n + 1) such that

P (
n+1∑︂
j=1 

Mi,jAj)Q = Bi

for i = 1, . . . , n + 1, then by a change of basis on {x0, x1} and {y0, . . . , yn−1} and some 
linear transformations of the polynomial equations, we can combine the two systems in 
SV1,n(1, 1) and SV2,n−1(1, 1) to generate a system in X of the form (5). The obtained 
system will have all complex solutions distinct and k + l solutions real. By inductive 
hypothesis and Lemma 4.8, we can choose k to cover all positive integers in [0, n + 1]
with k ≡ n−3 mod 2 and ℓ to cover all positive integers in [⌊n−3

2 ⌋,
(︁
n+1

2 
)︁
] with ℓ ≡

(︁
n+1

2 
)︁

mod 2. Hence k + ℓ covers all positive integers between ⌊n−3
2 ⌋ + 1+(−1)n

2 = ⌊n−2
2 ⌋ and (︁

n+2
2 
)︁

with the same parity as 
(︁
n+2

2 
)︁
.

We show the existence of P ∈ GL(2), Q ∈ GL(n) and M ∈ GL(n + 1) such that 
P (

∑︁n+1
j=1 Mi,jAj)Q = Bi for i = 1, . . . , n + 1. We stack the n + 1 matrices Ai to form a 

2 × n × (n + 1) tensor A and similarly we stack Bi to form a tensor B. The existence 
of (P,Q,M) is equivalent to that A and B are in the same orbit under the group action 
G = GL(2)×GL(n)×GL(n+1). Note that the numbers of real solutions for the selected 
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polynomial systems in SV1,n(1, 1) and SV2,n−1(1, 1) do not change if we slightly perturb 
the entries of the matrices {Ai}n+1

i=1 , {Bi}n+1
i=1 . So, the collection of matrices {Ai}n+1

i=1
and {Bi}n+1

i=1 can be replaced by {A′
i}n+1

i=1 ∈ 𝒱A, {B′
i}n+1

i=1 ∈ 𝒱B in some nonempty open 
sets 𝒱A, 𝒱B around {Ai}n+1

i=1 and {Bi}n+1
i=1 respectively. We also let 𝒱A,𝒱B denote the 

corresponding open sets around the tensors A,B. So, it suffices to show that there are 
some tensors in 𝒱A and 𝒱B that share the same orbit under the action of G. By counting 
parameters 22 +n2 +(n+1)2 −2 > 2n(n+1), so by [30] (alternatively, see [23, Theorem 
10.2.2.1]), G has a Zariski-dense orbit 𝒱 on C2⊗Cn⊗Cn+1. So, 𝒱∩(𝒱A)R and 𝒱∩(𝒱B)R
are nonempty. The result follows by picking A ∈ 𝒱 ∩ (𝒱A)R, B ∈ 𝒱 ∩ (𝒱B)R. □
Remark 4.10. The above induction does not apply to SVm,n(1, 1) with m,n ≥ 3 since 
there is no longer a dense orbit of GL(m)×GL(n)×GL(m+n−1) in Cm⊗Cn⊗Cm+n−1.

Proof of Theorem 1.12. Part (i) is proved in Lemma 4.8 and part (ii) in Lemma 4.9 □
4.2. Varieties with 𝒩 (X)max minimal

We say that a d dimensional variety X ⊆ PN−1
C has 𝒩 (X)max minimal if 𝒩 (X)max =

N −d. This implies that in Theorem 1.6(b), the probability of (X ∩W )R = {P1, . . . , Pn}
is 1 where n = N −d and W = Span{P1, . . . , Pn} for n generic points P1, . . . , Pn on XR.

A real variety of minimal degree with a smooth point has 𝒩 (X)max minimal, e.g. 
the Segre Veronese varieties SV1,n(1, 1), see Lemma 4.8. It is a natural question whether 
there are real varieties of non-minimal degrees and 𝒩 (X)max minimal. We give examples 
of plane curves and hypersurfaces.

Lemma 4.11. Suppose X is a smooth real plane curve with a smooth real point. Then 
𝒩 (X)max is minimal if and only if XR is a convex oval.

Proof. When X is a real plane curve with a smooth real point, 𝒩 (X)max is minimal 
when a line in P 2

R intersects X in at most two real points.
Assuming that XR is a convex oval, it immediately follows that 𝒩 (X)max is minimal. 

Now, we suppose 𝒩 (X)max is minimal. If degX is even, XR consists of ovals and if degX
is odd, XR consists of ovals and one pseudoline. In the first case, if we have at least two 
ovals, we can choose a line passing through two interior points of the two ovals, resulting 
in at least four intersection points with XR. In the second case, we can choose a line 
passing through an interior point of one oval. The line will also intersect the pseudoline, 
resulting in at least three intersection points with XR. So, XR consists of one oval. The 
oval must be convex otherwise there would be a line intersecting X in more than two 
real points. □

There exists a plane curve X with 𝒩 (X)max minimal for every even degree.
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Example 4.12. For d ∈ N+, the real part of the curve Xd : x2d+y2d = z2d has 𝒩 (Xd)max
minimal. Since the curve Xd does not intersect z = 0, we will also denote the plane curve 
x2d + y2d = 1 by Xd. The curve Xd has one oval contained in the unit square [0, 1]2. 
Define F (x, y) = x2d + y2d − 1. The curvature of Xd at a point (x, y) is

κ =
F 2
yFxx − 2FxFyFxy + F 2

xFyy

(F 2
x + F 2

y ) 3
2

= (2d− 1)y
4d−2x2d−2 + x4d−2y2d−2

(x4d−2 + y4d−2) 3
2

> 0.

The curvature is always positive, so Xd has a convex oval, and 𝒩 (Xd)max is minimal.

With similar ideas, we can construct hypersurfaces X with 𝒩 (X)max minimal for 
every even degree.

Example 4.13. For d ∈ N+, the hypersurface Xd : x2d
1 + . . . + x2d

n = x2d
0 has 𝒩 (Xd)max

minimal. Since Xd does not intersect x0 = 0, by an abuse of notation, we will also denote 
the a�ine hypersurface x2d

1 + . . .+x2d
n = 1 by Xd. The real part of Xd has one connected 

component, so it is enough to show that it is convex. Suppose that a = (a1, . . . , an) and 
b = (b1, . . . , bn) are two distinct points on Xd, then we need to show that

(λa1 + (1 − λ)b1)2d + . . . + (λan + (1 − λ)bn)2d < 1,

for λ ∈ (0, 1). By Hölder’s inequality (see [15, Equation 2.7.2]),

(λa2d
i + (1 − λ)bi2d)

1 
2d (λ + 1 − λ)

2d−1
2d ≥ λ

1 
2d |ai|λ

2d−1
2d + (1 − λ) 1 

2d |bi|(1 − λ)
2d−1
2d 

≥ |λai + (1 − λ)bi|

and the equality holds if and only if ai = bi. Hence,

(λa1 + (1 − λ)b1)2d + . . . + (λan + (1 − λ)bn)2d <

n ∑︂
i=1 

(︁
λa2d

i + (1 − λ)b2di
)︁

= 1.

There are curves X ⊆ P 3
C of infinitely many possible degrees with 𝒩 (X)max minimal.

Example 4.14 (Kummer, Manevich [19]). Let X be the curve in P 3
C of degree k + 2e+ 1

defined in [19, Construction 1]. It has 𝒩 (X) = {k − 1, k + 1}. Take k = 2. Then X has 
𝒩 (X)max = 3 = codimX +1 minimal. Since e can take any positive integer value, there 
is a curve X in P 3

C with degX ≥ 3 odd and 𝒩 (X)max minimal.

We pose the following open problem.

Question 4.15. Does there exist, for every triple of positive integers d, n,m, with d >

n + 1 > 2, d ≡ n + 1 mod 2, and m > 1, an irreducible, smooth, non-degenerate m
dimensional real projective variety X of degree d with codimX = n > 1 and 𝒩 (X)max =
codimX + 1 = n + 1 minimal?
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5. Applications

In this section, we discuss applications of the real generalized trisecant trichotomy 
Theorem 1.6 and our characterization of the set of possible real intersection points Propo
sition 1.4 to independent component analysis, tensor decompositions and the study of 
typical tensor ranks.

5.1. Independent component analysis (ICA)

ICA writes observed variables as linear mixtures of independent sources. That is,

x = As,

where s = (s1, . . . , sJ )T is a vector of independent sources, x = (x1, . . . , xI)T collects the 
observed variables, and A ∈ RI×J is an unknown mixing matrix. The ICA model is said 
to be identifiable if the mixing matrix A can be uniquely recovered, up to scaling and 
permutation of its columns.

In [37], a matrix A ∈ RI×J is called identifiable if for any vector of source variables 
s = (s1, . . . , sJ ) with at most one Gaussian source, one can recover A uniquely up to 
column scaling and permutation from observation As. This translates to the following 
algebraic geometric criterion.

Theorem 5.1 ([37, Theorem 1.5]). Fix A ∈ RI×J with columns a1, . . . ,aJ and no pair of 
columns collinear. Then A is identifiable if and only if the linear span of a⊗2

1 , . . . ,a⊗2
J

does not contain any real matrix b⊗2 unless b is collinear to aj for some j ∈ {1, . . . , J}.

This result poses the question: when does a linear space spanned by J points in 
SVI−1(2), the second Veronese embedding of P I−1

C , intersect the linear space in exactly 
these J points. Hence, one obtains a complete classification of generic identifiability via 
the real generalized trisecant trichotomy on second Veronese varieties.

Theorem 5.2 ([37, Theorem 1.9]). Let A ∈ RI×J be generic. Then

(i) If J ≤
(︁
I
2 
)︁

or if (I, J) = (2, 2) or (3, 4), then A is identifiable;
(ii) If J =

(︁
I
2 
)︁
+1, where I ≥ 4 and I ≡ 2, 3 mod 4, then there is a positive probability 

that A is identifiable and a positive probability that A is non-identifiable;
(iii) If J >

(︁
I
2 
)︁

+ 1 or if J =
(︁
I
2 
)︁

+ 1 and I ≡ 0, 1 mod 4, then A is non-identifiable.
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5.2. Uniqueness of tensor decompositions

Consider a generic partially symmetric tensor

T =
J∑︂

j=1 
λj(v(j)

1 )⊗2d1 ⊗ · · · ⊗ (v(j)
n )⊗2dn

of rank J in Sym2d1
Rm1+1 ⊗ · · ·⊗Sym2dn

Rmn+1. We flatten T into a square matrix M

by grouping its indices into two blocks of equal size. Each rank one term (v(j)
1 )⊗2d1 ⊗

· · · ⊗ (v(j)
n )⊗2dn is flattened into the rank one matrix Vect(Tj) Vect(Tj)T, where Tj =

(v(j)
1 )⊗d1 ⊗ · · · ⊗ (v(j)

n )⊗dn for j = 1, . . . , J , (·)T denotes the transpose and Vect(·) is the 
vectorization operator that maps a tensor to a column vector by stacking its entries in 
lexicographic order. Thus,

M =
J∑︂

j=1 
λj Vect(Tj) Vect(Tj)T.

If J ≤ dim Symd1
Rm1+1 ⊗ · · · ⊗ Symdn

Rmn+1, the linear space

W := Span{Vect(T1), . . . ,Vect(TJ)}

is the column span of M . We also use W to denote Span{T1, . . . , TJ}.
The real part of the Segre-Veronese embedding SVm1,...,mn

(d1, . . . , dn) is the projec
tivization of the space of partially symmetric tensors Symd1

Rm1+1⊗· · ·⊗Symdn
Rmn+1. 

The tensor T has a unique real tensor decomposition if

(W ∩ SVm1,...,mn
(d1, . . . , dn))R = {T1, . . . , TJ}. (6)

The tensor T has a unique tensor decomposition when J <
(︁
m1+d1

d1

)︁
· · ·

(︁
mn+dn

dn

)︁
− (m1 +

. . . + mn), by Theorem 1.6. When J =
(︁
m1+d1

d1

)︁
· · ·

(︁
mn+dn

dn

)︁
− (m1 + . . . + mn), the 

equality (6) occurs with positive probability if J ≡ (m1+...+mn)!
m1!···mn! 

∏︁n
i=1 d

mi
i mod 2 and 

SVm1,...,mn
(d1, . . . , dn) is one of the cases in Theorem 1.10. This generalizes [20, Propo

sition 3.2] from symmetric tensors to partially symmetric tensors.

5.3. Typical tensor ranks

In a space of tensors with certain size and order, an integer r is called a typical rank 
if for a tensor T with Gaussian entries, we have P{rank(T ) = r} > 0. In [4], the authors 
relate the typical ranks of a tensor in Rm ⊗Rn ⊗Rℓ to the intersection of a dimension 
ℓ− 1 linear space with the Segre variety SV(m−1,n−1)(1, 1).
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Theorem 5.3 ([4, Theorems 1.2 and 1.3]). 

(i) Suppose that (m − 1)(n − 1) + 1 ≤ ℓ ≤ mn. The typical ranks of a tensor in 
Rm ⊗Rn ⊗Rℓ are contained in {ℓ, ℓ + 1} and ℓ is always a typical rank.

(ii) For ℓ = (m−1)(n−1)+1, ℓ+1 is a typical rank if there is a ℓ−1 dimensional real 
projective linear space that intersects the Segre variety SVm−1,n−1(1, 1) transversely 
in less than ℓ real points.

(iii) For ℓ > (m − 1)(n − 1) + 1, ℓ + 1 is a typical rank if the intersection of some 
ℓ−1 dimensional real projective linear space and the Segre variety SVm−1,n−1(1, 1)
contains only complex points.

We can generalize the result to partially symmetric tensors with multidegree 
(d1, . . . , dn, 1), by Theorem 1.10.

Theorem 5.4. Suppose 
(︁
m1+d1

d1

)︁
· · ·

(︁
mn+dn

dn

)︁
−(m1+. . .+mn)+1 ≤ ℓ ≤

(︁
m1+d1

d1

)︁
· · ·

(︁
mn+dn

dn

)︁
.

(i) The typical ranks of the tensors Symd1
Rm1+1 × · · · × Symdn

Rmn+1 ×Rℓ are con
tained in {ℓ, ℓ + 1} and ℓ is always a typical rank.

(ii) When ℓ =
(︁
m1+d1

d1

)︁
· · ·

(︁
mn+dn

dn

)︁
−(m1+. . .+mn)+1 and 𝒩 (SV(m1,...,mn)(1, . . . , 1))min

< ℓ, then ℓ + 1 is a typical rank. In particular, this happens in the following sce
narios:

(a) one of di is even;
(b) all di are odd, at least one of m1, . . . ,mn is odd when m1 + . . . + mn is even 

or at least two of m1 . . . ,mn are odd when m1 + . . . + mn is odd;
(c) n = 2, d1 = d2 = 1 and min{m1,m2} ∈ {1, 2}.

Proof. Let X = SV(m1,...,mn)(d1, . . . , dn). The number 
(︁
m1+d1

d1

)︁
· · ·

(︁
mn+dn

dn

)︁
− (m1 +

. . . + mn) is the codimension of X in its ambient space. Let T be a generic tensor 
in Symd1

Rm1+1×· · ·×Symdn
Rmn+1×Rℓ with slices T1, . . . , Tℓ in Symd1

Rm1+1×· · ·×
Symdn

Rmn+1. Let W = ⟨T1, . . . , Tℓ⟩ be the linear span of the slices. With probability 
one, dimW = ℓ − 1 and so the rank of T is at least ℓ by [13, Theorem 2.4] (see also 
[4, Theorem 2.1]). So, typical ranks are bounded below by ℓ. If W ∩X contains at least 
ℓ real points, the rank of T is ℓ. Otherwise, ℓ is not the rank of T but W ′ = W ⊕ ⟨p⟩
intersects X in infinitely many real points by Theorem 1.6(c) for some generic p ∈ X

and W ′ is spanned by real points in X. Hence, rankT ≤ ℓ + 1
Now suppose ℓ =

(︁
m1+d1

d1

)︁
· · ·

(︁
mn+dn

dn

)︁
− (m1 + . . . + mn) + 1. The number ℓ + 1 is a 

typical rank when there is a positive probability for a dimension ℓ− 1 real linear space 
to intersect SV(m1,...,mn)(d1, . . . , dn) in less than ℓ real points. This happens precisely 
when 𝒩 (X)min < ℓ. By Theorem 1.10, we have 𝒩 (X)min = 0 for the first two cases listed 
above. For the third case, if min{m1,m2} = 1 then 𝒩 (X)min = 0 or 1. If min{m1,m2} =
2 and without loss of generality m1 = 2, then 𝒩 (X)min ≤ ⌊m2+2

2 ⌋ < ℓ = 2m2 + 1. □
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