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1. Introduction

A trisecant is a line that meets a variety in three points. The classical trisecant lemma
says that if X is a non-degenerate irreducible curve in Pé, then the variety of trisecants
has dimension one in the Grassmannian of lines in Pg, which we denote by Gr(1,3).
Hence a general chord of X is not a trisecant, since the variety of chords has dimension
two in Gr(1,3). The trisecant lemma has been generalized in various ways. We consider
a generalization to higher-dimensional varieties. Recall that a variety is non-degenerate
if not contained in a hyperplane.

Theorem 1.1 (A Generalized Trisecant Lemma, see [9, Proposition 2.6]). Let X C P&~
be an irreducible, reduced, non-degenerate projective variety of dimension d and let n
be a positive integer with n +d < N. Let Py,..., P, be general points on X. Then the
intersection of X with the subspace spanned by Pi,..., P, consists only of the points
Py,....P,.

The generalized trisecant lemma can be restated as the following trichotomy.

Theorem 1.2 (Reformulation of Theorem 1.1). Let X C Pévfl be an irreducible, reduced,
non-degenerate projective variety of dimension d. Let Py, ..., P, be general points on X
and let W be the projective linear space they span. Then

(a) Ifn+d < N, then XNW ={P1,...,P,}.

(b) If n+d = N, then degX > n. When degX > n, X NW 2 {Py,...,P,}. When
degX =n, XNW = {P1,...,P,} and X is called a variety with minimal degree;
it is either a quadric hypersurface, a cone over the Veronese surface, or a rational
normal scroll.

(c) Ifn+d>N, then XOW 2 {Py,...,P,}.

Proof. The case n 4+ d < N is the generalized trisecant lemma. When n +d = N, the
degree of X is at least N — d = n, since deg X is the number of intersection points
between X and a generic linear space of dimension n — 1 and X is non-degenerate so
the intersection points span the linear space. When deg X > n, the intersection X N W
contains points other than P;,..., P,. When deg X = n, the variety X has minimal
degree and the intersection of X with W is precisely P, ..., P,. For the classification of
irreducible non-degenerate projective varieties with minimal degree, see e.g. [14, Theorem
19.9]. When n + d > N, the intersection between X and W has dimension at least
n—1+d— N > 0 so it contains infinitely many points. In particular, the intersection
contains a point other than Py,..., P,. O

A tensor is a multidimensional array and a tensor decomposition writes a tensor as
a sum of rank one tensors. Suppose we have a tensor T = 22:1 r; where z1,...,x, are
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rank one tensors and that we can recover V := Span{zi,...,z,}. The tensor decom-
position is unique when the linear space V intersects the variety of rank one tensors X
in precisely these r points x1,...,z, and this is the content of the generalized trisecant
trichotomy [20, Proposition 3.2]. For many applications in statistics [2,25,29,7] and data
analysis [8,17,36], we are often only interested in real tensor decompositions. So, a natu-
ral question is to find a real analog of the generalized trisecant trichotomy by restricting
the points we use to span the linear space to be real and asking if there is an extra real
point in the intersection of the linear space and the variety.

We call a variety X C Pg ~1 a real projective variety if it is irreducible, reduced,
non-degenerate, and can be written as the vanishing locus of some real homogeneous
polynomials. We use Xg to denote the collection of real points in X with induced
Fuclidean topology. More precisely, we take the topology to be the quotient topology
induced from the Euclidean topology on RY by making the quotient map RY ]P’]g -1
continuous. Similarly, we say a linear space is real if it is defined by real linear forms.
When we talk about the dimension of a linear space, we always mean its projective
dimension.

It turns out that the real analog of Theorem 1.2 depends on the set of possible numbers
of real intersection points between X and a complementary dimension real linear space.
Bounds on such numbers are studied in e.g. [33,26,32,16].

Definition 1.3. Let X C ]P’(é\f*1 be a real projective variety with dim X = d. We define
the set of integers A/(X) to be the possible numbers of real points that can be obtained

after intersecting X with a sufficiently general complementary dimension linear space.
That is,

L ~ W real linear space with dimW =N —1—d
N(X) = { #HXNW)r : that intersects X transversely } ’

We call N(X) the set of possible numbers of real solutions for X.

Our first contribution is to characterize N'(X'). We denote the minimum and maximum
elements of the set N (X) by N (X)min and N (X)max. We assume that the variety has a
smooth real point, to ensure its real locus is Zariski dense.

Proposition 1.4. Let X C ]P’(évf1 be a smooth real projective variety of dimension d with
a smooth real point. Then the set of possible numbers of real solutions N'(X) satisfies

(i) for p € N(X), we have p = deg X mod 2;
(i) N —d < N(X)max < deg X;
(iii) N(X) = {k : N(X)min <k < N(X)max, k =deg X mod 2}.

Proposition 1.4 may be known or intuitive to experts in real algebraic geometry, but
to the best of our knowledge, a statement and proof is missing from the literature.
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Our proof studies how real solutions change across the branch locus, which occurs in
computing real homotopies between polynomial systems [24]. Here is an example to
illustrate Proposition 1.4.

Example 1.5. Consider the Edge quartic C defined by
25(xt +y* + 21) — 34(2?y? + 2227 +y22%) =0, (1)

taken from [27]. It is one of the curves studied by William L. Edge in [12], which admits a
matrix representation over Q. Hyperplanes in PZ can be viewed as points in (PZ)* with
coordinates [u, v, w]. Generic hyperplanes intersect C' transversely. Those who intersect
C singularly form the dual curve CV defined by

10000u'? — 98600u'%v? — 98600u'"w? 4 326225uv* + 85646uviw? 4 326225uSw?!
—442850u505 — 120462u’v*w? — 120462u5v*w* — 442850uSwS + 326225u*v®
—120462uv%w? + 398634utviw? — 120462utv?w’ + 326225uw® — 98600u>v'°
+85646u%v3w? — 120462uvw? — 120462uv W + 85646uv2w® — 98600uw'?
+100000'% — 986000 %w? + 326225v5w* — 44285005 + 3262250 w®
—98600v%w!' 4 10000w'? = 0,

see [18, Example 5.2], where the authors study real lines that avoid C'. For any hyperplane
in a fixed region of (Pg)* — C, the number of real intersection points with C'is constant.
We plot Cg and label each region of (Pﬁ)* —Cg by the number of real intersection points
with C in Fig. 1. If two regions are adjacent (that is, connected via smooth points in
Cg) we see that their numbers of real intersection points differ by two.

We use Proposition 1.4 to prove the following result. Let (Xg)™ denote the set of
n-tuples of points on Xg with the product topology. We say a probability measure on
(Xgr)™ is strictly positive if any non-empty open subset of (Xg)™ has positive measure.

Theorem 1.6 (A Real Generalized Trisecant Trichotomy). Let X C ngl be a smooth
real projective variety of dimension d with a smooth real point. Let Py, ..., P, be points
on X, sampled randomly from a strictly positive probability measure on (Xg)™. Let W
be the projective linear space they span. Then

(a) Whenn+d< N, (XNW)gr ={P,...,P,} with probability 1.
(b) Whenn+d= N and degX =n mod 2,

(i) (XNW)gr ={P1,...,P,} with probability 0 if N'(X)min > n;
(i) (X NW)r = {Py1,..., Py} with probability 0 < p < 1 if N(X)min < n <
N(X ) max;
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Fig. 1. Dual curve of the Edge quartic (1) with regions labeled by the number of real intersection points.

(iii) (X "NW)r ={P1,..., P} with probability 1 if N'(X)max = n.

(c) Whenn+d>N orn+d=N anddegX #Zn mod 2, (X NW)g ={P1,..., P}
with probability 0. Moreover, when n+d > N, (X NW)Rr has positive dimension, so
it contains infinitely many real points.

The real trisecant trichotomy is studied for second Veronese embeddings in [37]; this
will be discussed more in Section 5. We now give examples to illustrate Theorem 1.6(b).

Example 1.7 (p = 0). Let X be the curve in P& of degree k + 2e + 1 defined as in
Construction 1 of [19], where k,e € Nsg. It has N(X) = {k — 1,k + 1}. For an even
integer k > 4, N'(X)min > codim X + 1 = 3. Hence, #(X N W)gr = 3 has probability 0.

Another example follows from [21, Theorem 4.6, Corollary 4.15]. Let X C ]P’ékH be
the projection of the rational normal curve in P¢t from the (n—2k —2) dimensional linear
space defined in [21, Corollary 4.15], where k can be any integer such that 2k + 2 < n.
The degree of X is n by definition. By [21, Theorem 4.6], a generic real hyperplane in
PékH intersects X in at most 2k complex points. Hence, N (X )min > n — 2k. Note that
codim X + 1 =2k + 1 < N(X)min whenever n > 4k + 1.

Example 1.8 (0 < p < 1). Let X be the second Veronese embedding of ]P’(é*1 in Pgil
where N = (I;rl) and suppose I = 2,3 mod 4. Then the probability that #(X NW)g =
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N — I+ 1isin (0,1) since N(X) = {0,2,...,2771} by the proof of [37, Proposition
5.10).

Example 1.9 (p = 1). Consider the plane curve X defined by z3 + 21 = z3 in P&.
Its real part does not intersect the line at infinity x5 = 0 and is convex and simply
closed. A generic real line in the plane either intersects X in two points or avoids X.
So, N(X) = {0, 2} and the probability that #(X N W)gr = 2 is 1, since N (X )max is the
codimension of X plus one.

So far we have characterized the set A/(X) in relation to its minimum and maximum
elements, but we have not said what these minimum and maximum are. We now find
the minimum and maximum elements of A'(X) for special varieties of tensors.

Here we focus on the Segre-Veronese varieties. They are varieties of rank one par-
tially symmetric tensors, see e.g. [1,28]. We denote the Segre-Veronese variety of
P& x -+ x P with degrees di,...,dn by SV, ..m,)(d1,...,dy,). The varieties
SVimy,...omn)(1,...,1) are the usual Segre varieties. Let x; = [%;0,...,%im,] be the
projective coordinates of Pr**. The Segre-Veronese variety SV, . m,.)(d1,...,dy,) is the
image of the monomial map that sends (x1, . ..,%,) to ([Tj—; (zi0)%, ..., [Tie) (Tim,)%),
the vector of all monomials with multidegree (dy,...,d,). We denote the point on
SVimy,..omn)(d1, ..., dy) corresponding to (xi,...,Xy) by x?dl ®- - @x%4n . Considered
in the affine cone over the projective space, it lies in the space of partially symmetric
tensors Symy; R™ ' ® ... ® Sym, R™»*1. We prove the following.

Theorem 1.10. Let X be the Segre-Veronese variety SV(mh_”)mn)(dl, ...ydy). Then the
set of possible numbers of real solutions N'(X) satisfies
('L) N(X)max =deg X = %?—W H?:l d;m;
(i) When at least two of my,...,my are odd, then N (X)min = 0;
(iii) When at least one of dy,...,dy, is even, then N (X)min = 0;
(iv) When all d; are odd, N(X) 2 N(SVm,,...m(1,...,1)).

We leave the remaining case as an open problem.

Question 1.11. What is N'(SV (i, ,....m,)(d1, ..., dp))min when dy, ..., dy, are all odd and
there is at most one odd integer among my, ..., my?

We investigate the set A/(X) for small Segre varieties that fall under the setting of
Question 1.11. For each Segre variety considered, we sample random polynomial systems.
We use numerical homotopy computation methods from [6] to compute the number
of real solutions for each system, see Table 1. Theorem 1.10(i) says that deg(X) real
solutions occur with positive probability. However, in all but the first row, degree many
real solutions did not occur in our finite samples, suggesting that its probability is small.
For results on real root counts of random polynomials, see [11,31].
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Table 1

The number of real solutions obtained for different Segre varieties. We gener-
ate coefficients in two ways: random integer values in the range [—20, 20] and
sampling from a standard Gaussian. We record the possible numbers of real
solutions we obtain over 10000 sampled systems. We use [m,n]2 to denote all
integers with the same parity as m,n in the interval [m,n]. In all cases, the
possible number of real solutions obtained is of this form and the frequencies
(not displayed) are unimodal (e.g. for P2 x P2, the frequencies for 0, 2, 4, 6 are
469, 5219, 3603, 709 respectively).

Segre of degree integer Gaussian
P2 x P? 6 [0, 6]2 [0, 6]2
P2 x P* 15 [1,13]2 [1,13]2
P? x P? x P? 90 12, 32]2 [4, 30]2
P2 x P° 28 [0,18], [0,18],
P* x P* 70 (2, 28], (2, 26],
P2 x P2 x P* 420 [12,60]2 (14, 62]>
P2 x P? x P2 x P? 2520 (70, 146]2 (68, 146]2

In special cases, we can say more about the set N (X).

Theorem 1.12.

(i) N(SVi,n(1,1)) ={k :0<k<n+1, k=n+1 mod2};
mod 2}, forn > 2.

Another interesting family of varieties are those with N(X)max = n for a d-
dimensional variety X C IP’éV ! with n = N — d. We say these varieties have N (X)max
minimal. These varieties have probability 1 of (X N W)r = {P1,...,P,} in The-
orem 1.6(b). We characterize the plane curves X with A (X)pax minimal. We also
construct hypersurfaces X with N (X )yax minimal for any dimension and even degree.

The rest of the paper is organized as follows. We prove Proposition 1.4 in Section 2. We
prove Theorem 1.6 in Section 3. We prove Theorem 1.10 and Theorem 1.12 in Section 4.1.
We construct varieties with /(X )pmax minimal in Section 4.2. We explore the applications
of the real generalized trisecant trichotomy to independent component analysis, tensor
decompositions, and the study of typical tensor ranks in Section 5

2. The possible numbers of real solutions

In this section, we prove Proposition 1.4, which studies the possible numbers of real
points that can be obtained after intersecting a variety with a sufficiently general com-
plementary dimension linear space. Throughout this section, X C }P’g ~!is a smooth real
projective variety of dimension d with a smooth real point.

Proof of Proposition 1.4(i,ii) and the C part of (iii). Let W be a real linear space of di-
mension N —1—d that intersects X transversely. The intersection X "W is the vanishing
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locus of real polynomials so complex points appear in pairs. It contains deg X many
points so #(X NW)r = deg X mod 2. This proves (i). We also obtain, for (iii), that

N(X) C{k : N(X)min <k < N(X)max, & =degX mod 2}.

For (ii), the inequality N (X)max < deg X holds, since this is the number of complex
intersection points. For the inequality N (X)max > N — d, we construct a sufficiently
general linear space W of complementary dimension to X that intersects X in at least
N — d points. Let p be a real smooth point of X. Then the local dimension of Xg
at p is dim X = d by [3, Proposition 7.6.2], in other words, there is a semi-algebraic
neighborhood U of p in Xk of dimension equal to dim X = d. The variety X is non-
degenerate, so N — d generic points in U are linearly independent. We denote the linear
space they span by W. It has complementary dimension to X in Pév 1 and (X NW)r
contains at least N — d points, since W is generated by N — d points in Xg. O

To prove Proposition 1.4, it remains to show that
NX)2{k : N(X)min <k <N (X)max, k=degX mod 2}.
Our proof uses the following definition.

Definition 2.1. We define U, € Gr(N —d — 1, N — 1)r to be the set of (N —d — 1)-
dimensional linear spaces in IP’]IJQI ~! that intersect X transversely in exactly k real
intersection points.

We prove that the union of disjoint open chambers UkeN(X) Uy, is a dense open set
in the Grassmannian Gr(N — d — 1, N — 1)r. Note that a set Uy, can be disconnected.

For two points, one generic in Up/(x),,,, and the other generic in Upr(x) we show that

we can travel from one to the other via a continuous path such that each time we travel
from one chamber to another, we go from some Uy, to Ux o or to Uy_s. As we start in
UN(X)min and end in Upr(x),..., every set Uy for k an integer with the same parity as
deg X in the interval [N (X)min, N (X )max] will be visited. See Fig. 1 for an example and
also for the disconnectedness of the Uj. We start by studying the topology of the sets

U, in Gr(N —d—1,N — 1)g.
Lemma 2.2.

(a) For k € N(X), the set Uy, is non-empty and open in Gr(N —d — 1, N — 1)g with the
Euclidean topology.

(b) The set B :== Gr(N—d—1, N_l)R_UkeN(X) Uy, is a hypersurface. It is the boundary
of Uke./\/(X) Uy, and contains linear spaces in Pﬂg_l that intersect X at some point
with multiplicity at least two or in some positive dimension variety.
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Proof. Let V be a codimension d linear space in Pév ~1 that intersects X transversely
in exactly k real solutions. Roots of a polynomial system change continuously as its
coefficients change. So if we perturb V in a small open neighborhood around it, all
solutions to VN X are distinct and the complex points in V"N X move to complex points.
By considering the Grobner bases of the ideal generated by polynomials defining X and
the linear relations defining V, the i-th coordinate of the solutions to V' N X are roots
of some univariate polynomial with coefficients that change continuously as we move V.
So, the real points in V' N X remain real. Hence, there is an open neighborhood of V' in
Uy, thus Uy, is open.

When we leave Uy, and enter Uy, along some path in Gr(N —d — 1, N — 1)g, we must
have at least two solutions coming together on the boundary of Uy and Uy/. So, the set

B:=Gr(N-d-1,N-1r— |J U
keN(X)

is the collection of linear spaces in ]P’]g ~1 of codimension d that intersect X singularly.
The set B is the vanishing locus of the Hurwitz form for X and it is an irreducible
hypersurface since X is irreducible, see [34, Theorem 1.1]. O

We will travel from Upr(xy,..., t0 Unr(x),... Via a connected sequence of lines in Gr(N —
d—1,N —1)g. Lines in Gr(N —d — 1, N — 1) are pencils of linear spaces in P& ~". We
use lines to form our path and will make the lines sufficiently generic to reduce to the
case where X is an algebraic curve. We can then use the notion of dual varieties to
understand hyperplanes that intersect an algebraic curve non-transversely.

Lemma 2.3. A line in Gr(N —d — 1,N — 1) is a pencil of linear spaces of dimension
N —d —1 that contain a fived (N — d — 2)-space and are contained in a fived (N — d)-
space in ]P’évfl.

Proof. This is the description of a line in the Grassmannian as a Schubert cycle, which is
well-known. We include a proof for convenience. Let L be a line in Gr(N —d—1, N —1).
Let Vo = Upper V C ]P’évfl. Since a line in Gr(N —d — 1, N — d) is the pencil of
(N —d — 1)-spaces that contain a (N — d — 2)-space, it is enough to show that Vy, is a
(N — d)-space, i.e. a projective variety of dimension N —d and degree one in the Pliicker
embedding of Gr(N —d — 1, N — 1). Let

={(V,p)eGr(N-d—1,N-1)xPY " : [V]€eGr(N-d-1,N-1), peV}

and let p; and ps be the projection of ® onto its first and second factor, respectively.
Then Vi, = ps (pfl(L)) is a projective algebraic variety with dimension N — d and it is
irreducible since p; *(L) is irreducible. Let W be a generic dimension d linear space in
IP’éV ~1 then
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deg(Ve) =#(VenW)=#{VeL:VNW #0}.

Let ¥ be the set of points in Gr(N —d — 1, N — 1) whose corresponding linear spaces
intersect W. It is a hyperplane section of Gr(N —d—1, N —1) in the Pliicker embedding.
Hence

#Vel:VNW#D}=#(LNX)=1
and Vy, has degree one. O
We recall the definition of a dual variety and some of its key properties.

Definition 2.4. Let X C }P’g ~! be an irreducible smooth algebraic variety. The dual
variety XV C (]P’(év ~1)* is the collection of hyperplanes that intersect X singularly. In

general, XV is a hypersurface, otherwise X is ruled by projective spaces of dimension
codim XV — 1.

Proposition 2.5. Let Y C ]P’(évf1 be a non-degenerate smooth algebraic curve with YV a
hypersurface in (]P’év_l)*. If H is a hyperplane that intersects X in at least two points with
multiplicity two or at least one point with multiplicity at least three (including positive
dimensional intersection), then [H] € Sing(YV).

Proof. By a result of [10] (for a proof see [35, Theorem 10.8]), the multiplicity of YV at
[H] is equal to ¥peging(vnm)y #(Y NH, p) where u(Y NH, p) is the Milnor number. If p is an
intersection point with multiplicity m, then u(YNH, p) = m—1. So, if H intersects Y in at
least two points with multiplicity two or at least one point with multiplicity at least three
(including positive dimensional intersection), we obtain ¥,cging(vnm) u(Y N H,p) > 2,
so [H] is a singular point in YV. 0O

Lemma 2.6. Let Y C ]P’(é\]*1 be a non-degenerate smooth algebraic curve defined by real
polynomials with a smooth real point. A generic real line L in (}P’g_l)* will intersect YV

transversely. Moreover, each time the line crosses YV, it travels from Uy, to Ugio or to
Uy,_2 for some k € N(Y).

Proof. If YV is a hypersurface in (P ~')*, Sing(Y'V) has codimension at least two in
(PE™1)*. If YV is not a hypersurface in (P& ~")*, then Sing(Y'V) has codimension at
least three. A generic real line will intersect YV transversely in both cases.

Any hyperplane corresponding to a point in L intersects Y in at most one point with
multiplicity two, by Proposition 2.5. So, each time L crosses YV, two distinct points
become one double point and then become two distinct points. Since L is real, the
double point must be real otherwise there would be a pair of complex conjugate double
points and we would have a bitangent.
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Suppose L crosses YV at some hyperplane Hy where Y N Hy has a double point p
and consider H; in L for ¢ close to 0. First notice that the tangent line to Y at p lies in
Hy. Since Y is smooth at p, H; intersects Y at some point p; close to p. There are two
possibilities:

(i) if p; is not real, its conjugate is also close to p. The secant line from p; to its
conjugate is a real line in H;. This secant line moves to the tangent line at p as ¢
moves to 0;

(ii) if p; is real there is a real secant to Y through p; that is contained in H; and moves
to the tangent line at p as ¢ moves to 0.

Consider possibilities (i) and (ii) as ¢ changes sign at 0. If (i) occurs on both sides, p is
an acnode on Y, an isolated real singularity, against the smoothness assumption. If (ii)
occurs on both sides, Y has a real node at p, again a singularity against the assumption.
So (i) and (ii) occur each on one side. Since all other real intersections of Hy with Y are
transversal, i.e. at smooth points, these real intersections will remain real and distinct
for ¢ close to 0. So the number of real intersection points of H; with Y changes by two
as t passes by 0. O

We use Bertini’s Theorem, [14, Theorem 17.16], to reduce our problem to the smooth
curve case in order to apply Lemma 2.6. It states that for a smooth variety, a generic
member of a linear system of divisors on X is smooth away from the base locus of the
system. It extends to the following.

Corollary 2.7 (of Bertini’s Theorem). Let X be a smooth variety. If the base locus of a
linear system of divisors on X is empty or a finite reduced set of points, then the general
member of the linear system is smooth.

Proof. It suffices to check for singularities at the basepoints. If every divisor is singular
at a base point p € X, i.e. has multiplicity at least two at p, then the base locus contains
the first order neighborhood of p. This is against the hypothesis that the base locus is a
reduced set of points, so the theorem holds. O

When we refer to Bertini’s theorem, we include this corollary. By a real line in Gr(N —
d—1,N — 1)g, we mean a line corresponding to a pencil of real (N — d — 1)-spaces
containing a real (N —d—2)-space in a real (N —d) space. We show that we can construct
a sequence of real lines in Gr(N —d — 1, N — 1)r connecting a point in Upr(x),,, to a
point in U (x),,..., where the (N —d) space corresponding to each line intersects X in a
smooth curve.

For two general codimension d linear spaces W1, W5 in IP’éV ~1. the intersection is empty
if 2d > N — 1 and has codimension 2d if 2d < N — 1. We define ¢ to be —1if 2d > N —1
and N —1—2dif 2d < N —1. It is the dimension of W3 NW5 (—1 when the intersection is
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empty). Let k = N —d— ¢ — 1. The span, Span(W;, W5), has dimension 2N —2 —2d — ¢,
so each W; has codimension k in this span. This is also the codimension of W7 N W5 in
W; for 1 =1, 2.

Lemma 2.8. Fix X C IP’éV_l of dimension d. Suppose Vi, Vi, are two generic codimension
d real linear spaces in ]P’év_l. Then (Vo N Vi) NX =0, Span(Vy, Vi) N X is smooth with
dimension k, and there are real linear spaces Vi,...,Vik_1 of codimension d and real
linear spaces Uy, . ..,Ux_1 in Span(Vy, Vi) of codimension d — 1 satisfying the following
properties:

(i) U; = Span(V;, Viy1) and codimy, (V; N Viy1) =1 fori=0,...,k—1;
(it) Viz1 NV 2 VNV with dim(Vip; NVy) = dim(V; N Vi) +1 and Vi1 NV C VNV,
with Aim(V; 11 N Vp) =dim(V;NVy) — 1 fori=0,....k—1;
(iii) (V;iN Vi) N X =0 and Span(V;, Vi) N X is smooth with dimension k — i for i =

0,....k;
(iv) V; intersects X transversely for i =1,...,k —1 and U; N X is a smooth curve for
1=0,....k—1.

Proof. For generic linear spaces V{ and Vj, the linear space V, NV} is generic with
dimension ¢ or is empty and Span(Vp, V%) is generic with dimension N —d — 1 + k. So,
(VoNVi)N X = ( and Span(Vp, V%) N X is smooth with dimension %k by the smoothness
of X. When k = 1, there is nothing to prove.

When k = 2, we choose Uy to be a generic linear space of dimension N — d in
Span(Vp, V2) containing Vj. By Bertini’s Theorem, Uy N X is a smooth curve since
Span(Vp, V2) N X is smooth and the base locus Vp N X has dimension 0. We choose
U; to be a linear space of dimension N — d in Span(Vp, V) containing Vo such that,
again by Bertini’s Theorem, the intersections U; N X and Uy NU; N X are both smooth.
We define V; = UyNU;. Then U; N X is a smooth curve and V3 N X is smooth and finite.

Now suppose k > 2. We construct Vi,...,Vi_1 and Uy, ..., Uk_1 inductively. Suppose
we have already constructed Vi,...,V; and Uy, ...,U;_1. Suppose first that k — i > 2.
Note that Span(V;, Vi) N X smooth and (V; NV;) N X = 0. We choose U; to be a generic
linear space of dimension N — d in Span(V;,V}) containing V; such that by Bertini’s
Theorem, U; N X is smooth and (U; N'Vj) N X is empty. We define V;;1 to be a generic
N — d — 1 dimensional linear space in U, containing U; N Vj such that by Bertini’s
Theorem, V;11 N X is transverse and Span(V;41, Vi) N X is smooth. Note that we have
Ui NV, = Vig1 N Vi because codimy,,, (V; N Vip1) = 1, U; N Vi contains V; N Vy and
dim(U; N Vi) = dim(V; N'V) + 1. So, in particular (Viu1 N Vi) NX =0. If k —i = 2, we
use the same argument as k = 2 above. 0O

Now, we prove the D half of Proposition 1.4(iii); i.e., we show that

NX) 2 {k: N(X)min <k <N (X)max, k=deg X mod 2}.
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Proof of the D half of Proposition 1.4(iii). By Lemma 2.2(a), there are nonempty open
sets U; € Gr(N —d —1,N — 1)g for all j € N(X) such that any element in I} in-
tersects X in precisely j real distinct points. We take Vj, Vi to be generic points in
UN(X)min s UN (X ) max T€SPeCtively. By Lemma 2.8, there are N — d — 1 dimensional linear
spaces Vi,...,Vip_1 that intersect X transversely and N — d dimensional linear spaces
Uy, ...,Ui_1 that intersect X in a smooth curve with V;, V;41 CU; fori=0,...,k—1. Tt
is enough to show that inside each U;, we can travel from V; to V;41 via a continuous path
in Gr(N—d—1, N—1)g and each time we leave an open chamber Uy, we enter either Uy _o
or Ux42. We denote X; = X NU; and we treat U; = P(év_d as our ambient space. Now,
Vi, Viy1 are real points in (Pgid)*. Since V;, Vi1 intersect X transversely, there are open
neighborhoods D;, D; 11 C (Pg ~%)* around [V;] and [Vi41] respectively, such that D; is
contained in the connected component of [V;] in (Pg'~%)* — (X;)V for j = {i,i+ 1}. We
pick generic points W; € D;, W11 € D;41, then the line segments (V;, W;), (Vit1, Wit1)
don’t cross (X;)¥. The line (W;, W;11) is a general line in (PV~9)* i.e. has transverse
intersection with YV. If X; has a real smooth point, by Lemma 2.6, each time the line
crosses YV it travels from some Uy, to Uiy o or Uy_o for some k € N(Y). If X; does not
have a real smooth point, then (X;)r consists of a finite number of singular points and
a generic line does not intersect it. So, the lines connecting W; to W, stay in Uy. O

We obtain the following corollary from the proof of Proposition 1.4(iii).

Definition 2.9. Let Zx C Gr(N —d — 1, N — 1)g be the set of (N —d — 1)-spaces in
]P’]fg ~! that intersect X in at least two points with multiplicity two or one point with
multiplicity at least three (including positive dimensional intersection).

Corollary 2.10. The set Gr(N —d — 1,N — 1)r — Zx s path-connected. If U;,U; are
smoothly adjacent, meaning that U; N ZTJ contains some smooth point of the boundary
B:=Gr(N—-d—1,N—1r = Uperx)Un, theni=j+2 ori=j—2.

3. Real trisecant trichotomy

In this section, we prove Theorem 1.6. Throughout the section, we suppose X C Pév -1
is a smooth real projective variety of dimension d with a smooth real point and that
Py, ..., P, are points on Xk, sampled randomly from a strictly positive probability
measure on (Xg)™.

Proposition 3.1. Let Py,..., P, be points on Xr sampled randomly from a strictly pos-
itive probability measure on (Xg)". Whenn+d < N, (X NW)g = {P1,..., P,} with
probability 1.

Proof. It suffices to show that for general points P, ..., P, € Xg, we have (X NW)gr =
{P1,..., P,}. General real points are also general complex points since X has a smooth
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real point and Xg is Zariski-dense in X. By the generalized trisecant lemma (see Theo-
rem 1.1) we have X N W = {Py,...,P,} and hence (X NW)gr ={P1,...,P,}. O

Lemma 3.2. Let W be a generic linear space with complementary dimension to X in
Pév_l. Then any subset of dim W + 1 intersection points is linearly independent.

Proof. Denote dim W = n—1. The intersection X NW is non-degenerate, by [14, Proposi-
tion 18.10], so W is spanned by a subset of n intersection points. Assume for contradiction
that, for a generic linear space W of dimension n— 1, there is a linearly dependent subset
of n intersection points. This linearly dependent set of intersection points spans a linear
space Vi of dimension at most £ < n — 2. Let Y, be the collection of k& dimensional
linear spaces in PV ! spanned by k + 1 points in X such that its intersection with
X contains more than these k 4+ 1 points. By the generalized trisecant lemma, Y} has
positive codimension in the image of the map ¢ : X¥*1 ——» Gr(k, N — 1) which sends
k + 1 points on X to the linear space they span. So, dimY, < (k + 1)dim X. By the
hypothesis, a generic linear space in Gr(n — 1, N — 1) is spanned by a linear space in Y},
for some k < n — 2 and n — 1 — k other points in X, so

dimGr(n—1,N —1) < krgax2{dimYk +(n—1—k)dimX}.

But we have dim Y+ (n—1—k)dim X < (k+1)dim X +(n—1—k)dim X = (N—n)n =
Gr(n — 1, N — 1), a contradiction. O

Proposition 3.3. Let P, ..., P, be points on X, sampled randomly from a strictly pos-
itive probability measure on (Xg)™. Define W = Span{Py,...,P,}. Let n = N —d and
we assume that deg X =n mod 2. Then,

(i) (X NW)r
(it) (XN W)r
(iii) (X NW)g

{Py,..., P,} with probability 0 if N'(X)min > n;
{P1,...,P,} with probability 0 < p < 1 if N(X)min <1 < N(X)max;
{Py,..., P} with probability 1 if N'(X)max = n-

Proof. Consider the map ¢ : (Xg)™ --» Gr(n — 1, N — 1)p that sends n points on
XRr to the n — 1 dimensional linear space they span whenever the n points are linearly
independent. The map ¢ is continuous.

Recall from Definition 2.1 and Lemma 2.2 that for each & € N'(X), there is a nonempty
open set U, C Gr(n — 1, N — 1)r parameterizing real (n — 1)-spaces that intersect X
transversely in exactly k real points. We will show that for ¥ € N(X) and k > n (if
such a k exists), the set ¢~1(Uy,) is nonempty and it is open since ¢ is continuous. For a
generic linear space W € Uy, any subset of dim V' 41 = n intersection points of W N X is
linearly independent. The intersection W N X has k real intersection points with k& > n,
so we can choose n real intersection points to span W. In particular, W is in the image
of ¢ and ¢~ 1(Uy,) is non-empty and open. Moreover, the closure of UkeN(X),an oY (Uy)
is the domain of ¢.
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Note that (X N W)g = {P,...,P,} if and only if {Py,..., P,} € ¢~ (U,). So, the
probability is 1 when ¢~ (U,,) is dense. In this case, if K € N(X) and k > n, we must
have k = n, 50 N (X)max = n. The probability is in the interval (0,1) when ¢~ (U,)
is non-empty and open but not dense. This happens when N (X)min < 7 < N (X)max-

Finally, the probability is 0 when ¢~1(U,,) is empty; i.e., when Npin >n. O

Proposition 3.4. Let Py,..., P, be random points on X that follow a strictly positive
probability measure on (Xgr)™. Let W = Span{Py,...,P,}. Assume n+d = N and
deg X #n mod 2 orn+d > N. Then

(XNW)r 2{P1,..., Pa}.
Moreover, when n+d > N, (X NW)r contains infinitely many real points.

Proof. It suffices to show the result for general Py, ..., P, € Xg for which W intersects X
smoothly at the points Py, ..., P,, since such (Py, ..., P,) occurs almost surely. Suppose
first n +d = N and deg X # n mod 2. The intersection X N W is transverse. Since
complex points come in pairs in XNW, #(X NW)g = deg X mod 2. So, if (XNW)g =
{P1,...,P,}, we must have n = deg X mod 2, a contradiction.

Now suppose n+d > N. The intersection XNW contains real smooth points P, ..., P,
and it has complex dimension n+d— N > 0. By [3, Proposition 7.6.2], the set (X NW)r
has a semialgebraic neighborhood of dimension n+d— N around each P; fort =1,...,n.
Hence (X N W)g contains infinitely many points. O

4. Examples
4.1. Segre-Veronese varieties

The integers N(X)min and N (X )max characterize AN(X) and the cases in the real
generalized trisecant trichotomy, see Proposition 1.4 and Theorem 1.6. In this section,
we study N (X )min and N (X)pax for Segre-Veronese varieties. We prove Theorems 1.10
and 1.12.

.....

Lemma 4.1. The dimension of SV, . m,)(d1,...,dyp) is M1+ ... +my and the degree
18

(my+ ...+ my)! ﬁdm
myl-omp!l o '

Proof. This is an exercise about Hilbert polynomials; we include a proof for convenience.

The variety SV, ... m,)(d1,...,dy) has dimension m; + ...+ m,, since it is the image

of an embedding of Pg™ x --- x P, Segre-Veronese varieties are toric varieties. The

corresponding polytope for SV (., .y (d1, ..., dn)is dilpy, X - - Xdp Ay, where di Ay,
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means the simplex of dimension m; dilated d; times. By Kushnirenko’s Theorem [22],
its degree is W Vol(di DNy X -+ X dp Ny, ) = % [T, d™. o

Let x; = [2i0,...,Zim,| be the projective coordinates of Pr". The Segre-Veronese
variety X = SV, . m,)(d1,...,dy) is the image of the monomial map that sends
(x1,...,Xp) to the vector of monomials with multidegree (dy,...,d,). Hence the inter-
section points of X and a complementary dimension real linear space can be expressed
as dim X = my + ...+ m, polynomials in (xq,...,X,) with monomials of multidegree
(diy...,dp).

We consider polynomial systems of the product form

D xr) o £ (%) = 0
2)
A1) o (M (x,) = 0,

where M = mj + --- + m,. Each polynomial consists of monomials of multidegree
(d1,...,dy). Therefore, the solutions to the polynomial system are the intersection points
of X with some complementary dimension real linear space. The x; part of each solution
is a solution to m; equations ffjl)(xi) =0,..., fi(jmi)(xi) =0forsome 1 <j; <...<
For Segre-Veronese varieties, the maximum number of real solutions is the degree.

Lemma 4.2. For any Segre-Veronese variety X = SV (5, .y (d1, ..., dyn), we have

N(X)max = d X:( .
( ) 8 m1!-~-mn! z];[l ‘

Proof. We build a system of equations of the form in (2). Let M = my + ... + my.
Then dimX = M. We pick d;M generic vectors in R™i*! and denote them by
1 d; 1 d; j d; k . .

Eg ),...,Zg ),...,ﬂg\/f), ...,ng). Let fi(])(xi) = szl(EJ( ) -x;) for i = 1,...,n,j =

1,..., M. The polynomial fi(] )(Xi) is homogeneous of degree d; in x;.

There are % many ways to partition M polynomials into subsets of size
(m1,...,my). For the subset of m; polynomials, we set their f; part equal to 0 for
i =1,...,n. This has d;"* solutions, since the system fi(jl)(xi) =0,..., fi(]mi)(xi) =0
where 1 < j; < ... < Jm; < M has d;" real distinct solutions, each one corre-

sponding to the solution of m; linear equations. Hence, the polynomial system (2)
(M)!
mil---my!
generic. 0O

has [T, di** solutions. The solutions are distinct since the linear forms are

When X is a toric variety, triangulations of its associated polytope give information
about N (X )max. The following result also covers the previous Theorem.
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Theorem 4.3 ([353, Corollary 2.4]). Suppose X is a toric variety with associated poly-
tope P. If P admits a unimodular reqular triangulation with each simplex having unit
volume 1, then N(X)max = deg X.

For a large class of Segre-Veronese varieties, the minimum number of real solutions
is 0.

Lemma 4.4. Let X = SV (. m.)(d1,...,dn). If at least one of dy, ..., d, is even, then
N(X)min = 0.

Proof. We build a polynomial system as in (2). Let M = my+...+m,. Then dim X = M.
Without loss of generality, assume d; is even. Pick 2M generic vectors in R™*1 and
denote them by vgl),vf),..., g}),vM) Let f(])(xl) (v; () xq)%h + (v; (2) x1)% for j =

., M. For a system fl(j1 (x1)=0,.. .,fljml)(xl) =0wherel <j; <...<jm, <M,
if it has a real solution, then the solution should satisfy 2m; generic linear relations
which is impossible. However, the system has d{"' distinct complex solutions since each
fi ) (x1) 1s a product of dy linear relations with complex coefficients.

Let f ( ;) be a generic homogeneous degree d; polynomial, for i = 2,...,n and
j=1,...,M. It has W [T, & solutions. All the solutions are complex since

their x; parts are complex and are distinct by genericity. O
Lemma 4.5. Let X =SV, . m,)(d1, ..., dy) with all d; odd. Then
N(X) 2 N(Sv(ml,...,mn)(lv ey 1))

Proof. Let M = my+...4+m,. Thendim X = M. Suppose k € N (SV (1, . m,)(1,...,1))
is achieved by a polynomial system g; = 0, ..., gy = 0 where each g; is a real coefficients
polynomial with multidegree (1,...,1). Let fi(j)(xi) = (vz(lj) cx) 4 4 (v (2) -x;)% 1 for
i=1,...,n,5=1,..., M. We consider the polynomial system

g ) e S0 (x,) =0
(3)
gar - fM () e M (x,) = 0.

Each polynomial consists of multidegree (dy, ..., d,) monomials. Therefore, the solutions

to the polynomial system are the intersection points of X with some complementary
dimension real linear space. All the solutions to (3) are distinct by genericity of vz(lj), UZ(2J)
If there is a real solution satisfying fl-(j )(Xi) = 0, it must satisfy vl(ylj) -x; = 0 and

IS x; = 0. So, it is a solution to a polynomial system with at least M + 1 equations.

i
But this contradicts dim X = M and the genericity of vflj), 52])

solutions of (3) come from g1 =0,...,gp = 0. Hence, k € N(X). O

This implies all real
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Remark 4.6. Note that for fixed my, ..., m,, the codimension of SV (5., . .y (d1, ..., dy)
increases as we increase d, ..., d,. For large enough dy + ... + d,,, we must have

N(Sv(ml,...,mn)(dla ceey dn))min < COdim(SV(mh,,,,mn)(dla ce e 7dn)) + 1.

Hence, if deg(SV(m,,...mn)(d1,. .. dn)) = codim(SV (. oy (di, ..., dy)) +1 mod 2,
we are in the middle case of Theorem 1.6(b).

Lemma 4.7. Let X = SV(y,, . m,)(d1,...,dn). If at least two of my,...,m, are odd,
then N'(X)min = 0.

Proof. Without loss of generality, we assume that m, and ms are odd. We first suppose
that M = my + ... + m, is even. Consider the polynomial system as in (2) where
each fi(j )is a product of d; generic linear forms with coefficients in C™+! and where

2j-1)
£

A is conjugate to fi(2j) for1 <j< % This system can be rewritten as a system

of real polynomials by taking the real and imaginary parts of the conjugate pairs. All
the solutions to this system are distinct since the linear relations are generic. The x;
part of each solution is the solution to m; linear relations, each a factor of fl(j 1)(x1) =
0,.. .,fl(jml)(xl) =0 for some 1 < j; < ... < jm, < M. If it is real, then the linear
relations should be a collection of conjugate pairs, but this is impossible because m; is
odd. Hence, the system (2) has no real solutions.

It remains to consider the case when M is odd. Consider a system of equations as
in (2), where each fi(k) is a product of d; generic linear forms with coefficients in C™¢*1
for Kk < M — 1, where fi(ijl) is conjugate to fi(zj) fori =1,2and 1 < j < L%J,
and where each fi(M) is a product of d; generic linear relations with real coefficients for
i =1,...,n. The x; part of each solution is the solution to m; linear relations that are
factors of fi(jl)(xi),...,fi(j""l)(xi) for some 1 < j; < ... < jm <Mandi=1,...,n.
If it is real, then the linear relations should be a collection of real solutions and pairs
of conjugate solutions. Hence ffM)(x1) = 0. Similarly, we must have fQ(M) (x2) = 0. But
a solution cannot make two factors of the same polynomial in our system vanish, by
genericity. Hence this system has no real solutions. 0O

Proof of Theorem 1.10. Part (i) is shown in Lemma 4.2. Part (iii) is shown in Lemma 4.4.
Part (iv) is shown in Lemma 4.5. Part (ii) follows from Lemma 4.7. O

The variety SV1,,(1,1) has degree n + 1. Hence it is a variety with minimal degree.
The above results do not cover the case of N (SVy ,,(1,1))min when n is even. However,
we can use induction to show the following.

Lemma 4.8. The Segre variety X = SV1 ,(1,1) has degree n + 1 and

NX)={k:0<k<n+1l,k=n+1 mod 2}.
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Proof. Suppose first that n is odd. By Lemma 4.2, N'(X)max = n + 1. By Lemma 4.7,
N(X)min =0.So, N(X)={k :0<k<n+1, k=n+1 mod2}.

Now, suppose that n is even. It suffices to show that A/(X)min = 1. Let the coordinates
for P¢ and PE be [xo, 1] and [yo, . . ., ¥»). Consider a generic system of real polynomials:

f1(®o, 1,90, -+ s Yn—1) + Yn(A121 + p120) = 0

fn(w()a Z1,Y0,--- 7yn71) + yn()\nxl + ﬂnx()) =0
YnT1 = Oa (4)

where each f; is bihomogeneous with multidegree (1,1) in [zg,z1] and [yo, ..., Yn—1],
and the system fi(zo,21,%0,---,Yn-1) = 0,..., fn(Z0,21,¥1,...,Yn—1) = 0 has no real
solutions (which is possible by the result when n is odd). We may further assume the
system has no solution with x; = 0, by genericity. Substituting z; = 0 in the first n
polynomials of (4) gives back n linear equations with one real solution; we assume the
solution has y,, # 0, by genericity. Thus (4) has

degSV1,-1(1,1) +1 =deg SVy ,(1,1)
distinct solutions, of which exactly one is real. Hence, N(X)pin = 1. O

We can use the result about N'(SV1 ,(1,1)) to inductively construct polynomial sys-
tems and gain information about N'(SVy ,, (1, 1)). The result of N'(SV32)(1,1) is obtained
using numerical algebraic geometry software [6] and certified via [5]. The remaining cases
use a result about orbits of tensors under the action of general linear groups.

Lemma 4.9. For Segre varieties X = SVg ,(1,1) with n > 2, we have

n—2

NX)D{k: | 5

| <k<degX, k=degX mod2}.

Proof. We prove the result by induction on n. When n = 2, it can be checked using [6,5]
that the polynomial system

2x0y2 + T1Y2 + 2T2Y0 + T2y1 + T2y2 =0
Zoyo + 2xoy1 + 2xoy2 + T1Yo — T1Y2 + 2x2y1 =0
ZoYo + 2xoy1 + 2x1y0 — T2yo — T2y1 =0
Zoy1 + 2x0Yy2 + 221Y1 — T1Y2 — T2Yo + 2x2y2 =0

has 0 real solutions. Therefore, N'(SV5,2(1,1))min = 0. By Lemma 4.2 and Theorem 1.6,
N(SV22(1,1)) = {0,2,4,6}.
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Now, we assume the result for n — 1. Suppose that the coordinates for ]P’(% and P¢ are
[0, x1, 2] and [yo, ..., yn]. We have ("'1*'2) = (";‘1) + ("'1"1), ie.
degSVa ,(1,1) = degSVy n—1(1,1) + deg SV (1, 1).

We construct a system with real coefficients of the following structure

S W+ YD 1Py + (S vz =0

i<1,j<n—1 j<n—1 i<1

Z Agf}ﬂ)xiyj + xo( Z ﬂ§n+1)yj) + yn(z Vi(n—i—l)xi) =0

i<1,j<n—1 j<n—1 i<1

Z2Yn =0 (5)

For generic choices of coefficients, there is no solution with zo = y,, = 0. So, all solutions
are distinct for (5). And the number of real solutions is the sum of the number of real
solutions for a system in SVy ,(1,1) (by setting zo = 0) and a system in SVa,,_1(1,1)
(by setting y,, = 0).

We pick a generic system with real coeflicients in SV ,,(1, 1) with all solutions distinct
and k of them real. We store the coefficients of zgyo, ..., x1yn—1 of each polynomial in
n+ 1 matrices Aq,..., A, 41 of size 2 x n. We pick a generic system with real coefficients
in SVa ,,—1(1, 1) with all solutions distinct and [ of them real and we store the coefficients
of xoyo,...,T1Yn—1 in n+ 1 matrices By, ..., B,41 of size 2 x n. If we can find invertible
matrices P € GL(2),Q € GL(n) and M € GL(n + 1) such that

n+1

P> M;;A;)Q =B
j=1

fori =1,...,n+ 1, then by a change of basis on {zo,z1} and {yo,...,yn—1} and some
linear transformations of the polynomial equations, we can combine the two systems in
SVi,(1,1) and SVy ,—1(1,1) to generate a system in X of the form (5). The obtained
system will have all complex solutions distinct and k 4+ [ solutions real. By inductive
hypothesis and Lemma 4.8, we can choose k to cover all positive integers in [0,n + 1]

with k = n—3 mod 2 and ¢ to cover all positive integers in [[ 252 |, ("$1)] with ¢ = (1)
mod 2. Hence k + ¢ covers all positive integers between |52 ] + 1“%” = [252] and
(";2) with the same parity as (";2)

We show the existence of P € GL(2),Q € GL(n) and M € GL(n + 1) such that
P(Z?:ll M; ;jA;)Q = B; for i =1,...,n+ 1. We stack the n + 1 matrices A; to form a
2 xnx (n+1) tensor A and similarly we stack B; to form a tensor B. The existence
of (P,Q, M) is equivalent to that A and B are in the same orbit under the group action

G = GL(2) x GL(n) x GL(n+1). Note that the numbers of real solutions for the selected
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polynomial systems in SVy ,,(1,1) and SV ,,_1(1, 1) do not change if we slightly perturb
ntl {B;} L So, the collection of matrices {A;}7*!
and {B;}74]' can be replaced by {A/}7H € V4, {B!/}F]! € Vp in some nonempty open
sets V4, Vp around {Ai}?jll and {Bi}?j}l respectively. We also let V4, Vg denote the

corresponding open sets around the tensors A, B. So, it suffices to show that there are

the entries of the matrices {4;

some tensors in V4 and Vp that share the same orbit under the action of G. By counting
parameters 22 +n%+ (n+1)2 —2 > 2n(n+ 1), so by [30] (alternatively, see [23, Theorem
10.2.2.1]), G has a Zariski-dense orbit ¥V on C2@C"®@C"*!. So, VN (Va)r and VN (Vs)r
are nonempty. The result follows by picking A € VN (V4a)r,B€ VN (Vp)r. O

Remark 4.10. The above induction does not apply to SV, ,(1,1) with m,n > 3 since
there is no longer a dense orbit of GL(m) x GL(n) x GL(m+n—1) in C"®@C"@C™ "1,

Proof of Theorem 1.12. Part (i) is proved in Lemma 4.8 and part (ii) in Lemma 4.9 O
4.2. Varieties with N'(X)max minimal

We say that a d dimensional variety X C Pév ~1 has N (X)max minimal if N'(X)max =
N —d. This implies that in Theorem 1.6(b), the probability of (X NW)r = {P1,..., Pn}
is 1 where n = N —d and W = Span{ Py, ..., P,} for n generic points P, ..., P, on Xg.

A real variety of minimal degree with a smooth point has N (X)mpax minimal, e.g.
the Segre Veronese varieties SV (1, 1), see Lemma 4.8. It is a natural question whether
there are real varieties of non-minimal degrees and A (X )nax minimal. We give examples
of plane curves and hypersurfaces.

Lemma 4.11. Suppose X is a smooth real plane curve with a smooth real point. Then
N(X)max 18 minimal if and only if Xr s a convex oval.

Proof. When X is a real plane curve with a smooth real point, N'(X)mnax is minimal
when a line in ]P’ﬂ% intersects X in at most two real points.

Assuming that X is a convex oval, it immediately follows that N (X )mpax is minimal.
Now, we suppose N (X )max is minimal. If deg X is even, Xg consists of ovals and if deg X
is odd, X consists of ovals and one pseudoline. In the first case, if we have at least two
ovals, we can choose a line passing through two interior points of the two ovals, resulting
in at least four intersection points with Xg. In the second case, we can choose a line
passing through an interior point of one oval. The line will also intersect the pseudoline,
resulting in at least three intersection points with Xg. So, Xk consists of one oval. The
oval must be convex otherwise there would be a line intersecting X in more than two
real points. O

There exists a plane curve X with A/(X)pax minimal for every even degree.
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Example 4.12. For d € N, the real part of the curve Xy : x2d +y2d = 224 hag N(Xg)max
minimal. Since the curve X; does not intersect z = 0, we will also denote the plane curve
22% + 424 = 1 by X,4. The curve X, has one oval contained in the unit square [0, 1]2.
Define F(x,y) = 22¢ + y?? — 1. The curvature of X, at a point (z,y) is
4d=2,2d=2 | pdd—22d—2
(z44-2 4 y4d—2)%

_ F}Fu, = 2F,F,Fyy + F2F,,

)?J
(F2 + Fy?)%

K > 0.

=(2d -1

The curvature is always positive, so X4 has a convex oval, and N (Xg)max is minimal.

With similar ideas, we can construct hypersurfaces X with N (X)max minimal for
every even degree.

Example 4.13. For d € N, the hypersurface Xy : 22¢ + ... + 22¢ = 229 has N'(X4)max
minimal. Since Xy does not intersect xg = 0, by an abuse of notation, we will also denote
the affine hypersurface 22?4 ... +22¢ = 1 by X,4. The real part of X4 has one connected
component, so it is enough to show that it is convex. Suppose that a = (aq,...,a,) and
b = (b1,...,b,) are two distinct points on X4, then we need to show that

(Aap + (1 — )\)bl)2d +.o+ (Nan + (1 - )\)bn)Qd <1,
for A € (0,1). By Holder’s inequality (see [15, Equation 2.7.2]),

(Aa?? 4+ (1= A)b2D) 21 (A + 1 — A\) 5T > A21]qyA*5T + (1 — A)2a b, (1 — N) 57
> |)\CL2 + (1 — )\)b1|

and the equality holds if and only if a; = b;. Hence,

(har + (1= B+ oo+ (a4 (1= A < 3" (a4 (1 X)) = 1.

i=1
There are curves X C ]P’é)’: of infinitely many possible degrees with N (X )pax minimal.

Example 4.14 (Kummer, Manevich [19]). Let X be the curve in Pg of degree k + 2¢ +1
defined in [19, Construction 1]. It has N (X) = {k — 1,k + 1}. Take k = 2. Then X has
N(X)max = 3 = codim X + 1 minimal. Since e can take any positive integer value, there
is a curve X in P@ with deg X > 3 odd and N(X)max minimal.

We pose the following open problem.

Question 4.15. Does there exist, for every triple of positive integers d,n,m, with d >
n+1>2 d=n+1 mod2, and m > 1, an irreducible, smooth, non-degenerate m-
dimensional real projective variety X of degree d with codim X =n > 1 and N'(X)max =
codim X + 1 =n + 1 minimal?



K. Ranestad et al. / Journal of Algebra 694 (2026) 703-729 725

5. Applications

In this section, we discuss applications of the real generalized trisecant trichotomy
Theorem 1.6 and our characterization of the set of possible real intersection points Propo-
sition 1.4 to independent component analysis, tensor decompositions and the study of
typical tensor ranks.

5.1. Independent component analysis (ICA)

ICA writes observed variables as linear mixtures of independent sources. That is,

x = As,

where s = (s1,...,57)" is a vector of independent sources, x = (x1,...,x7)" collects the

R7*7 is an unknown mixing matrix. The ICA model is said

observed variables, and A €
to be identifiable if the mixing matrix A can be uniquely recovered, up to scaling and
permutation of its columns.

In [37], a matrix A € R?*7 is called identifiable if for any vector of source variables
s = (s1,...,87) with at most one Gaussian source, one can recover A uniquely up to
column scaling and permutation from observation As. This translates to the following

algebraic geometric criterion.

Theorem 5.1 ([37, Theorem 1.5]). Fiz A € RT*J with columns ai,...,a; and no pair of

columns collinear. Then A is identifiable if and only if the linear span of ai@z, e ,afz;ﬂ
does not contain any real matriz b®? unless b is collinear to a; for some j € {1,...,J}.

This result poses the question: when does a linear space spanned by J points in
SV7_1(2), the second Veronese embedding of IF’éfl, intersect the linear space in exactly
these J points. Hence, one obtains a complete classification of generic identifiability via
the real generalized trisecant trichotomy on second Veronese varieties.

Theorem 5.2 ([37, Theorem 1.9]). Let A € RI*7 be generic. Then

(i) If J < (3) orif (I,J) = (2,2) or (3,4), then A is identifiable;
(i) If J = (é) +1, where I > 4 and I = 2,3 mod 4, then there is a positive probability
that A is identifiable and a positive probability that A is non-identifiable;
(iti) If J > (é) +1orifJ= (é) +1and I =0,1 mod 4, then A is non-identifiable.
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5.2. Uniqueness of tensor decompositions

Consider a generic partially symmetric tensor

T =
J

. )\j(v(lj))®2d1 Q- ® (V%j))@m"

=1

of rank J in Symyy; R™* ®- .- ® Sym,, R™» 1. We flatten T into a square matrix M

by grouping its indices into two blocks of equal size. Each rank one term (vgj ))®2d1 &
- ® (v5$'>)®2dn is flattened into the rank one matrix Vect(T}) Vect(T;)T, where T; =

(vgj))®d1 R ® (vg))(@dn for j =1,...,J, (-)7 denotes the transpose and Vect(-) is the

vectorization operator that maps a tensor to a column vector by stacking its entries in

lexicographic order. Thus,

J
M = Z \j Vect(T) Vect(T;)".

j=1
If J < dimSymg R™ ™ @ .- ® Sym, R™*! the linear space
W := Span{Vect(T1), ..., Vect(Ty)}

is the column span of M. We also use W to denote Span{Ty,...,Ts}.

The real part of the Segre-Veronese embedding SV, . m, (d1,...,d,) is the projec-
tivization of the space of partially symmetric tensors Sym,, RMHlg...@ Symg Rmnt1L,
The tensor T" has a unique real tensor decomposition if

(WASVany oo (i dn))r = {Th, ..., Ty} (6)

The tensor T has a unique tensor decomposition when J < (mld'fdl) e ("“:;'d”) —(m1 +

...+ my), by Theorem 1.6. When J = (mljdl) (m@td") — (my + ...+ my), the

1

equality (6) occurs with positive probability if J = W [T, d" mod 2 and
SViny,..m, (d1, ..., dy) is one of the cases in Theorem 1.10. This generalizes [20, Propo-

sition 3.2] from symmetric tensors to partially symmetric tensors.
5.3. Typical tensor ranks

In a space of tensors with certain size and order, an integer r is called a typical rank
if for a tensor T' with Gaussian entries, we have P{rank(7T) = r} > 0. In [4], the authors
relate the typical ranks of a tensor in R™ @ R™ ® R to the intersection of a dimension
£ — 1 linear space with the Segre variety SV (,;,_1,,—1)(1,1).
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Theorem 5.3 ([}, Theorems 1.2 and 1.3]).

(i) Suppose that (m — 1)(n — 1) + 1 < £ < mn. The typical ranks of a tensor in
R™ @ R™ @ R are contained in {¢,£+ 1} and ¢ is always a typical rank.

(i) Forl = (m—1)(n—1)+1, £+1 is a typical rank if there is a { —1 dimensional real
projective linear space that intersects the Segre variety SV,,_1.,-1(1,1) transversely
in less than £ real points.

(iii) For £ > (m — 1)(n — 1) + 1, £ + 1 is a typical rank if the intersection of some
£—1 dimensional real projective linear space and the Segre variety SVp,—1,n-1(1,1)
contains only complex points.

We can generalize the result to partially symmetric tensors with multidegree
(di,...,dn,1), by Theorem 1.10.

Theorem 5.4. Suppose (mldfdl) e (m@td")—(m1+. b )L <0< (A L (e
(i) The typical ranks of the tensors Symy R™ 1 x ... x Sym,; R™ 1 x R¢ are con-
tained in {¢,€ + 1} and ¢ is always a typical rank.
(i) When { = (mld—i_dl) e (mndtdn)i(mlJr' tmy)+1 andN(SV(m1,~-7mn)(1v <++51))min
< {, then  + 1 is a typical rank. In particular, this happens in the following sce-
narios:

(a) one of d; is even;

(b) all d; are odd, at least one of my,...,m, is odd when my + ...+ m, is even
or at least two of my ..., my, are odd when my + ...+ m, is odd;

(¢) n=2,dy =ds =1 and min{mq,ms} € {1,2}.

Proof. Let X = SV(n,, ..m,)(d1,...,d,). The number (mldtdl) (m"ﬂl") - (my +

dy
...+ my) is the codimension of X in its ambient space. Let T be a generic tensor
in Symg R™*1 x ... x Sym, R™» 1 x R with slices T7,..., Ty in Symy, R™ 1 x ... x

Sym, R™»+1 Let W = (Ty,...,T;) be the linear span of the slices. With probability
one, dimW = ¢ — 1 and so the rank of T is at least ¢ by [13, Theorem 2.4] (see also
[4, Theorem 2.1]). So, typical ranks are bounded below by ¢. If W N X contains at least
¢ real points, the rank of T is £. Otherwise, £ is not the rank of T but W’ = W & (p)
intersects X in infinitely many real points by Theorem 1.6(c) for some generic p € X
and W’ is spanned by real points in X. Hence, rank T < £+ 1

Now suppose £ = (mld"l'dl) e (m”dtd") —(m1+...4+my) + 1. The number £+ 1 is a
typical rank when there is a positive probability for a dimension £ — 1 real linear space
to intersect SV(m, .. m,)(d1,...,d,) in less than ¢ real points. This happens precisely
when N (X)min < £. By Theorem 1.10, we have N (X)nin = 0 for the first two cases listed
above. For the third case, if min{m,ms} = 1 then N'(X)min = 0 or 1. If min{m;, ma} =
2 and without loss of generality m; = 2, then N (X )pin < Lmz’T“'ZJ <f=2my+1. O
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