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DECOMPOSING TENSORS VIA RANK-ONE APPROXIMATIONS\ast 

\'ALVARO RIBOT\dagger , EMIL HOROBET\ddagger , ANNA SEIGAL\dagger , AND ETTORE T. TURATTI\S 

Abstract. Matrices can be decomposed via rank-one approximations: the best rank-one ap-
proximation is a singular vector pair, and the singular value decomposition writes a matrix as a sum
of singular vector pairs. The singular vector tuples of a tensor are the critical points of its best rank-
one approximation problem. In this paper, we study tensors that can be decomposed via successive
rank-one approximations: compute a singular vector tuple, subtract it off, compute a singular vector
tuple of the new deflated tensor, and repeat. The number of terms in such a decomposition may
exceed the tensor rank. Moreover, the decomposition may depend on the order in which terms are
subtracted. We show that the decomposition is valid independent of order if and only if all singular
vectors in the process are orthogonal in at least two factors. We study the variety of such tensors. We
lower bound its dimension, showing that it is significantly larger than the variety of odeco tensors.

Key words. tensor decomposition, two-orthogonal tensors, singular vector tuples, odeco
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1. Introduction. For matrices, critical rank-one approximations combine to
give the singular value decomposition: a matrix M can be decomposed via succes-
sive critical rank-one approximations as M  - \lambda 1u1 \otimes v1  - \cdot \cdot \cdot  - \lambda rur \otimes vr = 0, where
r = rank(M). Each term \lambda iui \otimes vi is a critical rank-one approximation of both the
original matrix M and the deflated matrix M  - 

\sum 
j<i \lambda juj \otimes vj . According to the

Schmidt--Eckart--Young theorem [10], truncating to the k largest \lambda i's gives the best
rank-k approximation of M . Thus, the best rank-k approximation problem reduces
to iteratively solving best rank-one approximation problems.

Low-rank approximation of tensors can also be computed via rank-one updates.
Though this approach may not lead to the best low-rank approximation [20, 31], it
has proven successful in practice [38, 30, 1]. Numerically, a rank-one approximation
can be computed efficiently with the power method and its variants [6, 21], for which
there are convergence guarantees [34].

For tensors of order 3 or higher, a best rank-r approximation may not even exist
for r > 1 [7], but a best rank-one approximation always exists because the set of rank-
one tensors is closed. However, note that computing a best rank-one approximation
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DECOMPOSING TENSORS VIA RANK-ONE APPROXIMATIONS 283

Algorithm 1.1. Decompose \scrT via rank-one approximations.

Input: Tensor \scrT \in \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd

1: i= 1
2: \scrS = \scrT 
3: while \scrS \not = 0 do

4: Compute a critical rank-one approximation xi = x
(1)
i \otimes \cdot \cdot \cdot \otimes x

(d)
i of \scrS 

5: Deflate \scrS \leftarrow \scrS  - xi
6: i\leftarrow i+ 1
7: end while

Output: Decomposition \scrT =
\sum 

i xi.

is NP-hard [17]. A global approach to computing a best rank-one approximation of a
tensor is to compute the critical points of the distance function to the variety of rank-
one tensors and to choose a critical point whose residual is smallest. A generic tensor
has a finite number of such critical points [12]. These are the singular vector tuples of
the tensor [25]. We use the terms critical rank-one approximation and singular vector
tuple interchangeably.

A minimal decomposition via rank-one approximations is known to exist only on
a measure zero set; see the Schmidt--Eckart--Young decomposition in [35]. In this
article, rather than producing a minimal decomposition via rank-one approximations,
we are interested in tensors that are a finite sum of critical rank-one approximations.
The decomposition need not be of minimal length. That is, we seek those tensors \scrT 
for which there exists a decomposition \scrT =

\sum r
i=1 xi such that each xj is a critical

rank-one approximation of \scrT  - 
\sum 

i<j xi. These are the tensors for which the following
algorithm terminates for some rank-one approximations xi.

The varieties of tensors that admit such a decomposition are data loci in the sense
of [18]. We denote by DLr the variety of tensors that admit such a decomposition
of length r. We obtain a chain of varieties DL1 \subseteq DL2 \subseteq \cdot \cdot \cdot , such that any tensor
\scrT \in DLr has a rank-one approximation x with \scrT  - x\in DLr - 1. For symmetric tensors,
this chain of varieties stabilizes and the limit is the variety of weakly odeco tensors
[19]. For matrices, DLr is the variety of matrices of rank at most r, so the chain also
stabilizes, filling the ambient space. In general, the rank-one tensor xi need not be a
singular vector tuple of \scrT for i\geq 2. That is, the decomposition is order dependent.

Example 1.1. Let \{ e0, e1\} be an orthonormal basis of \BbbR 2, and fix

\scrT = e1 \otimes (e0 + e1)\otimes (e0  - e1)\underbrace{}  \underbrace{}  
x1

+e0 \otimes e1 \otimes e1\underbrace{}  \underbrace{}  
x2

+e0 \otimes e0 \otimes e0\underbrace{}  \underbrace{}  
x3

\in (\BbbR 2)\otimes 3.

We observe that \scrT \in DL3, and that x1 is a critical rank-one approximation of \scrT , but
x2 and x3 are not critical rank-one approximations of \scrT .

We consider subvarieties of DLr consisting of tensors for which the decomposition
does not depend on the order. These are the tensors \scrT =

\sum r
i=1 xi in which, for any

order of the summands, xj is a critical rank-one approximation of \scrT  - 
\sum 

i<j xi. In
particular, every xi is a critical rank-one approximation of the original tensor \scrT .
Put differently, for these tensors Algorithm 1.1 terminates with \scrS replaced by \scrT in
line 4. While a generic tensor lies in the span of its singular vector tuples [9], one does
not know the coefficient of each singular vector tuple, i.e., how much of each one to
subtract off. For the tensors we consider, the coefficient of each singular vector tuple
is its singular value, so the tensor is a sum of critical rank-one approximations.
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284 \'A. RIBOT, E. HOROBET, A. SEIGAL, AND E. T. TURATTI

Fig. 1. The affine slice of the two-orthogonal variety in \BbbR 2 \otimes \BbbR 2 \otimes \BbbR 2 when t010 = 1, t100 =
2t000, t110 = 1, t101 = 2, t011 = 3. The image on the right is a zoomed-in and rescaled version of the
image on the left. The surface is W4 \setminus W3. The black curve is W3 \setminus W2. The red, green, and blue
curves are the three components of W2. The intersection of these three curves is the odeco variety.
These plots were made with Mathematica [37]. Note: color appears only in the online article.

One class of tensors known to possess such a property are the odeco (orthogonally

decomposable) tensors, those that have a decomposition \scrT =
\sum r

i=1 x
(1)
i \otimes \cdot \cdot \cdot \otimes x

(d)
i

such that for all i \not = j we have the orthogonality x
(k)
i \bot x(k)j in all factors 1 \leq k \leq d

[28, 29]. We relax this notion by requiring only that for all i \not = j, the ith and jth
summands are orthogonal in at least two factors. We call such a decomposition two-
orthogonal. We define Wr to be the Zariski closure of the set of tensors that have
a two-orthogonal decomposition of length at most r. The two-orthogonal variety is
W =

\bigcup 
r\geq 1Wr. See Figure 1.

The notion of a two-orthogonal tensor also appears in [35, Definition 3.2], where
it is called weakly two-orthogonal. We drop ``weakly"" to avoid confusion with the
weakly odeco tensors, which appear in [19]. Two-orthogonality is necessary for hav-
ing a Schmidt--Eckart--Young decomposition [35, Theorem 3.3]. The singular value
decomposition implies that every matrix is two-orthogonal. For symmetric decompo-
sitions, two-orthogonality implies orthogonality in all factors, so it leads to an odeco
tensor. We will see that a generic 2 \times 2 \times 2 tensor is not two-orthogonal in sec-
tion 5. We believe this is the general behavior for tensors of order at least three, as
two-orthogonality imposes closed conditions on the singular vector tuples.

Now we state our main results. First, we show that the two-orthogonal tensors
are the tensors that can be decomposed via rank-one approximations.

Theorem 1.2. The set of two-orthogonal tensors in \BbbR n1\otimes \cdot \cdot \cdot \otimes \BbbR nd coincides with
the set of tensors with a decomposition \scrT =

\sum r
i=1 xi such that each xj is a critical

rank-one approximation of \scrT  - 
\sum 

i\in \scrI xi for all \scrI \subseteq \{ 1, . . . , r\} \setminus \{ j\} .
Two-orthogonal decompositions cannot have arbitrarily many summands. We

count the maximum number of possible summands in the following.

Theorem 1.3. The maximal length of a two-orthogonal decomposition in \BbbR n1 \otimes 
\cdot \cdot \cdot \otimes \BbbR nd is N = min1\leq k\leq d

\prod 
j \not =k nj. In particular, the two-orthogonal variety is

W =WN .

By constructing two-orthogonal decompositions of maximal length, we parame-
trize a family of two-orthogonal tensors with a dimension-preserving map. This gives
a lower bound on the dimension of the two-orthogonal variety.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DECOMPOSING TENSORS VIA RANK-ONE APPROXIMATIONS 285

Theorem 1.4. The dimension of the two-orthogonal variety in (\BbbR n)\otimes d is at least

nd - 1 + d

\biggl( 
n

2

\biggr) 
.

In V = (\BbbR n)\otimes d, the odeco variety has dimension n+ d
\bigl( 
n
2

\bigr) 
. Hence, the dimension

of the two-orthogonal variety exceeds that of the odeco variety by at least n(nd - 2 - 1).
Finally, we show that two-orthogonal decompositions are generically identifiable for
2\times 2\times 2 tensors. We suspect that this is also true for generic two-orthogonal tensors
in \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd .

Theorem 1.5. A generic tensor in W \subseteq (\BbbR 2)\otimes 3 has a unique two-orthogonal
decomposition.

The article is organized as follows. In section 2 we study the main properties of
two-orthogonal decompositions. We prove Theorems 1.2 and 1.3, we introduce the
notion of two-orthogonal rank and how it relates to the usual rank, and we extend
some of our results to partially symmetric tensors. We also show that truncating two-
orthogonal decompositions may lead to best low-rank approximations and answer an
open question posed in [35]. In section 3 we prove Theorem 1.4. In section 4 we provide
a parametric description of the two-orthogonal variety using graphs, with a focus on
binary tensors. There is an interplay between algebraic geometry and combinatorics,
with open directions for future work. Finally, in section 5 we provide an algebraic
description of the two-orthogonal variety in (\BbbR 2)\otimes 3 and prove Theorem 1.5.

2. Two-orthogonal decompositions. Let V = \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd with d \geq 2
and each nk \geq 2. Let X = \{ v1 \otimes \cdot \cdot \cdot \otimes vd | vk \in \BbbR nk\} \subset V denote the cone over the
Segre variety, the set of rank-one tensors. Let \langle \cdot , \cdot \rangle k be nondegenerate bilinear forms
in \BbbR nk for k = 1, . . . , d. They induce a nondegenerate bilinear form in V, called the
Bombieri--Weyl inner product, defined on two rank-one tensors as

\langle v1 \otimes \cdot \cdot \cdot \otimes vd,w1 \otimes \cdot \cdot \cdot \otimes wd\rangle =
d\prod 

k=1

\langle vk,wk\rangle k

and extended to all of V by bilinearity. We write vk \bot wk to denote orthogonality:
\langle vk,wk\rangle k=0. Given a positive integer n, let [n] = \{ 1, . . . , n\} , and let \{ e1, . . . , en\} be
an orthonormal basis of \BbbR n. We use the same letters for the bases of different factors
of V . That is, the set \{ ei1 \otimes \cdot \cdot \cdot \otimes eid | ik \in [nk]\} is an orthonormal basis of V . Let
\| \cdot \| denote the Frobenius norm on V induced by the inner product.

Definition 2.1. A two-orthogonal decomposition of \scrT is an expression \scrT =\sum r
i=1 xi, where xi = x

(1)
i \otimes \cdot \cdot \cdot \otimes x

(d)
i \not = 0 and all pairs of summands xi and xj with

i \not = j are orthogonal in at least two factors: there exist indices k1 \not = k2 such that
x
(k1)
i \bot x(k1)

j and x
(k2)
i \bot x(k2)

j . A tensor \scrT is two-orthogonal if it has a two-orthogonal
decomposition for some r.

Remark 2.2. The summands in a two-orthogonal decomposition are orthogonal
to each other. Hence, a two-orthogonal decomposition \scrT =

\sum r
i=1 xi has \| \scrT \| 2 =\sum r

i=1 \| xi\| 2.
Definition 2.3. Given a tensor \scrT \in V , a rank-one tensor x= x(1)\otimes \cdot \cdot \cdot \otimes x(d) is

a singular vector tuple of \scrT if for all k \in [d] there exists \lambda k \in \BbbR such that

\scrT (x(1), . . . , x(k - 1), \cdot , x(k+1), . . . , x(d)) = \lambda kx
(k),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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286 \'A. RIBOT, E. HOROBET, A. SEIGAL, AND E. T. TURATTI

where \scrT is viewed as a multilinear map and \BbbR nk is identified with its dual (\BbbR nk)\ast via
\langle \cdot , \cdot \rangle k. If \langle x(k), x(k)\rangle k = 1 for all k, then \lambda k = \lambda for all k, and \lambda is called the singular
value of x.

Remark 2.4. We consider singular vector tuples defined over \BbbR , though they are
usually defined over \BbbC . We focus on \BbbR because approximating tensors by rank-one
tensors is done primarily on the real numbers in applications. To define them over
\BbbC , one considers the bilinear form \langle \cdot , \cdot \rangle k as an extension of a real inner product to
a complex product instead of opting for a Hermitian inner product. However, such
extensions introduce isotropic vectors: v \in \BbbC nk \setminus \{ 0\} with \langle v, v\rangle k = 0. While a
general tensor has no isotropic singular vector tuples [9, Proposition 2.6], our tensors
are special. In fact, self-orthogonality plays a role in the study of symmetric odeco
tensors [19]. We leave the study of two-orthogonal tensors in \BbbC n1\otimes \cdot \cdot \cdot \otimes \BbbC nd for future
work.

We view singular vector tuples as points in the corresponding Segre product
[12]. Hence, the normalization \langle x(k), x(k)\rangle k = 1 is without loss of generality, although
it is necessary for the singular value to be well defined. Let \scrT =

\sum r
i=1 xi be a

two-orthogonal decomposition. Then, each xi is a singular vector tuple for \scrT and,
after normalizing each factor, the corresponding singular value is \| xi\| . We recall the
following facts.

Proposition 2.5. Fix \scrT \in V and x= x(1) \otimes \cdot \cdot \cdot \otimes x(d) \in X \setminus \{ 0\} \subset V .
1. The tangent space to X at x is

TxX =

d\sum 
k=1

x(1) \otimes \cdot \cdot \cdot \otimes x(k - 1) \otimes \BbbR nk \otimes x(k+1) \otimes \cdot \cdot \cdot \otimes x(d).

2. Suppose that \langle x(k), x(k)\rangle k = 1 for all k \in [d], then x is a singular vector tuple
of \scrT with singular value \lambda if and only if T  - \lambda x\in NxX = (TxX)\bot , the normal
space to X at x.

3. The singular vector tuples correspond to the critical points of the distance
function d\scrT (y) := \langle \scrT  - y,\scrT  - y\rangle , on y \in X. A singular vector tuple x with
nonzero singular value \lambda corresponds to the critical rank-one approximation
\lambda x, and vice versa.

Proof. Part (1) follows by applying the Leibniz rule to the parametrization of X.
For part (2), the equations in Definition 2.3 are equivalent to

\langle \scrT , x(1) \otimes \cdot \cdot \cdot \otimes x(k - 1) \otimes v(k) \otimes x(k+1) \otimes \cdot \cdot \cdot \otimes x(d)\rangle = \lambda \langle v(k), x(k)\rangle k

for all v(k) \in \BbbR nk . Since \langle x(k), x(k)\rangle k = 1 for all k \in [d], this can be rewritten as

\langle \scrT  - \lambda x,x(1) \otimes \cdot \cdot \cdot \otimes x(k - 1) \otimes v(k) \otimes x(k+1) \otimes \cdot \cdot \cdot \otimes x(d)\rangle = 0

for all v(k) \in \BbbR nk , so the statement follows. Part (3) follows from (2); see [25, sec-
tion 3].

The following proposition shows that every tensor can be approximated as a sum
of critical rank-one approximations: subtracting off best rank-one approximations
decreases the norm of a tensor, and the norm of the residual tends to zero in the limit.
This has been studied before [11, 27], but we will provide a proof for completeness.

Proposition 2.6. Fix a tensor \scrT \in \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd . For each j \in \BbbN , let xj be a
best rank-one approximation of \scrT  - 

\sum 
i<j xi. Then

\sum n
i=1 xi\rightarrow \scrT as n\rightarrow \infty .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DECOMPOSING TENSORS VIA RANK-ONE APPROXIMATIONS 287

Proof. We show that \| \scrT  - 
\sum n

i=1 xi\| \rightarrow 0 as n\rightarrow \infty . Let \| \cdot \| \sigma denote the spectral
norm. We have \| x1\| = \| \scrT \| \sigma , by the definition of best rank-one approximation.
Moreover, \| \scrT \| 2 = \| \scrT  - x1\| 2 + \| x1\| 2, since a critical rank-one approximation x1 and
its residual \scrT  - x1 are orthogonal. Hence

\| \scrT  - x1\| 2 = \| \scrT \| 2  - \| \scrT \| 2\sigma \leq (1 - c2)\| \scrT \| 2,

where the constant c > 0 relates the spectral and Frobenius norms, i.e., c\| \scrS \| \leq \| \scrS \| \sigma 
for all tensors \scrS \in \BbbR n1\otimes \cdot \cdot \cdot \otimes \BbbR nd . This constant exists because two norms in a finite-
dimensional vector space are equivalent. We have 0< c< 1, since \| \scrS \| \sigma < \| \scrS \| if \scrS is
not a rank-one tensor. Repeating the above for iterated best rank-one approximations
yields

\| \scrT  - 
\sum 
i\leq j

xi\| 2 \leq (1 - c2)\| \scrT  - 
\sum 
i<j

xi\| 2 \leq \cdot \cdot \cdot \leq (1 - c2)j\| \scrT \| 2.

Since 0< c< 1, we have \| \scrT  - 
\sum 

i\leq n xi\| \rightarrow 0 as n\rightarrow \infty .

The previous result shows that one can use Algorithm 1.1 for any input tensor
\scrT and get arbitrarily good approximations from a numerical perspective. We study
when these decompositions are exact, not just arbitrarily good. Moreover, as shown
in Example 1.1, these decompositions may be order dependent. We are interested in
decompositions that are valid independent of the order. The following result charac-
terizes these decompositions.

Theorem 1.2. The set of two-orthogonal tensors in \BbbR n1\otimes \cdot \cdot \cdot \otimes \BbbR nd coincides with
the set of tensors with a decomposition \scrT =

\sum r
i=1 xi such that each xj is a critical

rank-one approximation of \scrT  - 
\sum 

i\in \scrI xi for all \scrI \subseteq \{ 1, . . . , r\} \setminus \{ j\} .

Proof. For a rank-one tensor x= x(1) \otimes \cdot \cdot \cdot \otimes x(d) \in X \subset \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd we have
that x is a critical rank-one approximation of a tensor \scrT if and only if \scrT  - x\in NxX,
and TxX =

\sum d
k=1 x

(1) \otimes \cdot \cdot \cdot \otimes \BbbR nk \otimes \cdot \cdot \cdot \otimes x(d); see Proposition 2.5.
If \scrT =

\sum r
i=1 xi is two-orthogonal, then for all i \not = j we have xi \in Nxj

X. Therefore,
any linear combination

\sum 
i \not =j \alpha ixi lies in Nxj

X. Hence, xj is a critical rank-one
approximation of \scrT  - 

\sum 
i\in \scrI xi for all \scrI \subseteq \{ 1, . . . , r\} \setminus \{ j\} .

Conversely, consider a tensor \scrT =
\sum r

i=1 xi such that xj is a critical rank-one
approximation of \scrT  - 

\sum 
i\in \scrI xi for all \scrI \subseteq \{ 1, . . . , r\} \setminus \{ j\} . Then, for any i \not = j, xj is a

critical rank-one approximation of xi + xj . Hence, xi \in Nxj
X. So, for all k \in [d] and

all vk \in \BbbR nk we have

\langle x(1)i \otimes \cdot \cdot \cdot \otimes x
(d)
i , x

(1)
j \otimes \cdot \cdot \cdot \otimes v

(k) \otimes \cdot \cdot \cdot \otimes x(d)j \rangle = \langle x
(k)
i , v(k)\rangle k

\prod 
l \not =k

\langle x(l)i , x
(l)
j \rangle l = 0.

These equations are satisfied if and only if there exist two indices k1 \not = k2 \in [d] such

that x
(k1)
i \bot x(k1)

j and x
(k2)
i \bot x(k2)

j . This holds for all pairs of summands, so \scrT is a
two-orthogonal tensor.

Definition 2.7. Define Wr to be the variety of length-at-most-r two-orthogonal
tensors

Wr=

\Biggl\{ 
r\sum 

i=1

x
(1)
i \otimes \cdot \cdot \cdot \otimes x

(d)
i | x

(k1)
i \bot x(k1)

j , x
(k2)
i \bot x(k2)

j for at least two indices k1 \not =k2

\Biggr\} 
.

We allow zero summands here, so the length can be smaller than r. For r = 1, no
conditions are imposed, so W1 = X is the set of rank-one tensors. The overline
denotes Zariski closure. We define the two-orthogonal variety to be W =

\bigcup 
rWr.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

0/
26

 to
 7

3.
11

9.
45

.1
68

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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Remark 2.8. The two-orthogonal variety W \subseteq V = \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd is invariant
under the action of the product of special orthogonal groups G=SO(n1)\times \cdot \cdot \cdot \times SO(nd)
on V , acting by change of basis in each factor.

Remark 2.9. The equations defining some components of the two-orthogonal
variety relate to the odeco equations [2, Theorem 9]. For example, consider a two-
orthogonal tensor \scrT = x1 + x2 \in W2 \subset (\BbbR 2)\otimes d such that x1 and x2 are orthogonal
in the k1th and k2th factors, then \scrT  \star ki\scrT \in 

\bigotimes 
l \not =ki

S2(\BbbR 2) for i= 1,2, where  \star ki denotes

contraction along the kith factor and S2(\BbbR 2) denotes the space of 2 \times 2 symmetric
matrices. One can check that these equations define the components ofW2 for (\BbbR 2)\otimes 3

(see section 5) and (\BbbR 2)\otimes 4. A similar argument may be used for some components
of Wn \subset (\BbbR n)\otimes d. Finding the implicit equations that describe the two-orthogonal
variety is left to future work.

2.1. Maximal length of two-orthogonal decompositions. From the defini-
tion of Wr, we have a chain of varieties X =W1 \subseteq W2 \subseteq \cdot \cdot \cdot \subseteq Wr \subseteq \cdot \cdot \cdot . The following
result shows that this chain stabilizes in finitely many steps. That is, there exists
N \in \BbbN such that WN =WN+1 = \cdot \cdot \cdot .

Lemma 2.10. A two-orthogonal decomposition of a tensor in \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd has
at most N =mink\in [d]

\prod 
j \not =k nj summands. In particular, the two-orthogonal variety is

W =WN .

Proof. Fix \scrT = x1 + \cdot \cdot \cdot + xr \in Wr \subset \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd , where xi = x
(1)
i \otimes x

(2)
i \otimes 

\cdot \cdot \cdot \otimes x
(d)
i \not = 0 for all i \in [r] and these summands are orthogonal in at least two

factors. Without loss of generality, suppose that n1 \leq \cdot \cdot \cdot \leq nd. Consider the tensor
\~\scrT = \~x1 + \cdot \cdot \cdot + \~xr \in \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd - 1 , where \~xi = x

(1)
i \otimes \cdot \cdot \cdot \otimes x

(d - 1)
i for all i \in [r].

The tensors \~xi and \~xj are orthogonal (in at least one factor) for all i \not = j, since xi
and xj are orthogonal in at least two factors. In particular, \~x(1), . . . , \~x(r) are linearly
independent. Indeed, if we had \~xi =

\sum 
j \not =i\alpha j \~xj , taking the inner product with \~xi

leads to \| \~xi\| 2 = 0, a contradiction. In conclusion,

r=dim
\Bigl( 
span\{ \~x(1), . . . , \~x(r)\} 

\Bigr) 
\leq dim(\BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd - 1) = n1n2 \cdot \cdot \cdot nd - 1.

Definition 2.11 (see [26]). A Latin square L is an n\times n matrix with elements
in [n] such that every row and every column of L are a permutation of [n]. Put
differently, for every i \in [n] the maps k \mapsto \rightarrow L(i, k) and k \mapsto \rightarrow L(k, i) are permutations
of n. More generally, a Latin hypercube is an array L indexed by [n]d satisfying
the following: for every j \in [d] and every (i1, . . . , ij - 1, ij+1, . . . , id) \in [n]d - 1 the map
k \mapsto \rightarrow L(i1, . . . , ij - 1, k, ij+1, . . . , id) is a permutation of [n].

There exists a Latin hypercube for every n and d, e.g., L(i1, . . . , id) = i1+ \cdot \cdot \cdot + id
mod n, where the sum is understood to be an element in [n]. A Latin square L gives
two-orthogonal tensors of order three, as follows. Consider the set \scrI = \{ (i, j,L(i, j)) | 
i, j \in [n]\} \subset [n]3. We can identify each tuple i = (i1, i2, i3) \in \scrI with the rank-one
tensor ei1 \otimes ei2 \otimes ei3 . Every pair of distinct tuples i, j \in \scrI differs in at least two
indices. Therefore, the tensors ei1 \otimes ei2 \otimes ei3 and ej1 \otimes ej2 \otimes ej3 are orthogonal in at
least two factors.

Example 2.12. Let V = (\BbbR 3)\otimes 3. A 3 \times 3 Latin square corresponds to a two-
orthogonal tensor in V with 9 summands. For example,
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DECOMPOSING TENSORS VIA RANK-ONE APPROXIMATIONS 289

Lemma 2.10 implies that the maximum number of summands of a two-orthogonal
tensor in V is nine. Each summand can be scaled arbitrarily and two-orthogonality
is preserved.

Lemma 2.13. There exists a two-orthogonal decomposition in V =\BbbR n1\otimes \cdot \cdot \cdot \otimes \BbbR nd

with N =mink\in [d]

\prod 
j \not =k nj summands.

Proof. We construct a two-orthogonal decomposition of maximal length using
Latin hypercubes. First, suppose n1 = \cdot \cdot \cdot = nd = n. Let L be a Latin hypercube
indexed by [n]d - 1. Consider the set \scrI = \{ (i1, . . . , id - 1,L(i1, . . . , id - 1)) | ik \in [n]\} .
Then | \scrI | = nd - 1 and every pair of tuples in \scrI differ in at least two indices. This gives
the family of two-orthogonal tensors in (\BbbR n)\otimes d:\sum 

i\in \scrI 

\lambda iei1 \otimes \cdot \cdot \cdot \otimes eid

for any \lambda i \in \BbbR . Let V = \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd , with n1 \leq \cdot \cdot \cdot \leq nd. Consider a Latin
hypercube indexed by [nd - 1]

d - 1 and choose a subarray of format n1 \times \cdot \cdot \cdot \times nd - 1.
This gives a two-orthogonal decomposition of length n1 \cdot \cdot \cdot nd - 1 in V , following the
same reasoning.

Theorem 1.3. The maximal length of a two-orthogonal decomposition in \BbbR n1 \otimes 
\cdot \cdot \cdot \otimes \BbbR nd is N = min1\leq k\leq d

\prod 
j \not =k nj. In particular, the two-orthogonal variety is

W =WN .

Proof. Lemma 2.10 implies that a two-orthogonal decomposition cannot have
more than N = mink\in [d]

\prod 
j \not =k nj summands. Lemma 2.13 shows how to construct

two-orthogonal decompositions with N summands.

Decompositions obtained from Latin hypercubes satisfy the following property.

Definition 2.14. A two-orthogonal decomposition \scrT =
\sum r

i=1 x
(1)
i \otimes \cdot \cdot \cdot \otimes x

(d)
i is

basis-aligned if for all k \in [d] and all i, j \in [r], x
(k)
i and x

(k)
j are either collinear or

orthogonal.

Not all two-orthogonal decompositions are basis-aligned. For example, consider
the decomposition \scrT = e1\otimes e1\otimes e1+(e1+e2)\otimes e2\otimes e2 \in W2. We explore two-orthogonal
decompositions that are not basis-aligned in section 4.

2.2. Two-orthogonal rank. Two-orthogonal decompositions are not unique,
in general.

Example 2.15. Let d \geq 2, let V = (\BbbR 2)\otimes d, and let \scrI be the set of binary strings
of length d with an even number of ones: \scrI = \{ (i1, . . . , id) \in \{ 0,1\} d | 

\sum d
k=1 ik = 0

mod 2\} . Let \{ e0, e1\} be an orthogonal basis of \BbbR 2. The following tensor admits two
different two-orthogonal decompositions:

\scrT =
\sum 

(i1,...,id)\in \scrI 

ei1 \otimes \cdot \cdot \cdot \otimes eid =
1

2
(e0 + e1)

\otimes d +
1

2
(e0  - e1)\otimes d.

The first decomposition has maximal length, but the second one shows that \scrT \in W2.
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290 \'A. RIBOT, E. HOROBET, A. SEIGAL, AND E. T. TURATTI

While Lemma 2.13 constructs two-orthogonal decompositions of maximal length,
it is unclear whether these tensors may have two-orthogonal decompositions with
fewer terms. We do not know whether the stabilization of the chain W1 \subseteq W2 \subseteq \cdot \cdot \cdot 
occurs exactly in N = mink\in [d]

\prod 
j \not =k nj steps or before. That is, we do not know

whether WN - 1 =WN . The previous example motivates the following definition.

Definition 2.16. The two-orthogonal rank of a two-orthogonal tensor \scrT \in \BbbR n1\otimes 
\cdot \cdot \cdot \otimes \BbbR nd is the smallest number r such that \scrT admits a two-orthogonal decomposition
of length r.

The rank of a tensor \scrT is the smallest number r such that \scrT can be expressed
as the sum of r rank-one tensors. The two-orthogonal rank and rank coincide for
matrices, due to the singular value decomposition. For higher-order tensors, we can
only say that the two-orthogonal rank of \scrT is at least the rank of \scrT . We will see in
section 5 that for 2\times 2\times 2 tensors the maximum two-orthogonal rank is 4 while the
maximum rank is 3.

The notions of rank and two-orthogonal rank could potentially coincide up to the
maximal rank. For example, in (\BbbR n)\otimes 3, the maximal rank is at most 1

2n(n+2) - 1 [33,
Theorem 3.4], while the maximal potential two-orthogonal rank is n2. Proposition
2.17 shows that this is the case for small enough ranks. The border rank of a tensor
\scrT is the smallest r such that \scrT = lim\epsilon \rightarrow 0 \scrT \epsilon where each \scrT \epsilon has rank r, and it may be
smaller than the rank of \scrT (see Example 2.21).

Proposition 2.17. In (\BbbR n)\otimes d, Wr - 1 \subsetneq Wr if r\leq n. Moreover, a general tensor
in Wr \setminus Wr - 1 with r\leq n has border rank r, so it has rank r.

Proof. After an orthogonal change of basis, an odeco tensor of two-orthogonal
rank r is of the form \scrT =

\sum r
i=1 \lambda ie

\otimes d
i for \lambda i \in \BbbR . This tensor has border rank r, e.g.,

by looking at the flattenings [22]. Therefore, Wr - 1 \not = Wr. A property holds for a
general tensor if it holds on a dense open set, and odeco tensors of rank r lie in the
intersection of all the irreducible components of Wr \setminus Wr - 1.

This result can be improved by considering the following class of two-orthogonal
tensors. A decomposition \scrT =

\sum r
i=1 x

(1)
i \otimes \cdot \cdot \cdot \otimes x

(d)
i \in \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd is called strong

two-orthogonal ([35, Definition 3.5]) if the orthogonalities between summands always
occur in the same partition of the factors: there exists a nonempty set \scrJ \subsetneq [d] such

that for all i \not = j we have x
(k1)
i \bot x(k1)

j and x
(k2)
i \bot x(k2)

j for some indices k1 \in \scrJ and
k2 \in [d]\setminus \scrJ . Put differently, the decomposition is still two-orthogonal when viewed as

a matrix decomposition in
\Bigl( \bigotimes 

j\in \scrJ \BbbR nj

\Bigr) 
\otimes 
\Bigl( \bigotimes 

j \not \in \scrJ \BbbR nj

\Bigr) 
.

Proposition 2.18. Let V =\BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd and let

m= max
\scrJ \subsetneq [d]

min

\left\{   \prod 
j\in \scrJ 

nj ,
\prod 
j \not \in \scrJ 

nj

\right\}   .

Then, for all r\leq m, a sufficiently general tensor of Wr has border rank r. In partic-
ular, we have that Wm - 1 \subsetneq Wm.

Proof. By sufficiently general we mean that it holds for some components of
Wr \setminus Wr - 1. Consider a nonempty \scrJ \subsetneq [d]. Picking an orthogonal basis for

\bigotimes 
j\in \scrJ \BbbR nj

and
\bigotimes 

j \not \in \scrJ \BbbR nj we can construct a strong two-orthogonal decomposition of length
min\{ 

\prod 
j\in \scrJ nj ,

\prod 
j \not \in \scrJ nj\} . By flattening the tensor into a matrix, the singular value

decomposition implies that strong two-orthogonal decompositions of length r lead to
tensors of border rank r; see [35, Theorem 3.6].
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Example 2.19. When V = (\BbbR n)\otimes d, Proposition 2.18 implies that Wr - 1 \subsetneq Wr if
r\leq n\lfloor d

2 \rfloor .

Conjecture 2.20. Let rg be the generic rank in \BbbC n1 \otimes \cdot \cdot \cdot \otimes \BbbC nd . For every
r\leq rg, a sufficiently general tensor \scrT \in Wr \subset \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd has rank r.

The following examples provide evidence for this conjecture. One can compute
the rank of the tensors by applying the technique used in [36], which is illustrated in
Example 2.24.

Example 2.21. The two-orthogonal tensor

\scrT = e1 \otimes e1 \otimes e2 + e1 \otimes e2 \otimes e1 + e2 \otimes e1 \otimes e1 \in W3 \subset (\BbbR 2)\otimes 3

has rank 3, which is the maximal rank in (\BbbR 2)\otimes 3. This example can also be embedded
in \BbbC 2 \otimes \BbbC 3 \otimes \BbbC 3 and \BbbC 2 \otimes \BbbC 2 \otimes \BbbC 3, where the generic rank is 3 [22]. However, note
that \scrT = lim\epsilon \rightarrow 0

1
\epsilon 

\bigl( 
(e1 + \epsilon e2)

\otimes 3  - e\otimes 3
1

\bigr) 
, so its border rank is two.

Example 2.22. The two-orthogonal tensor

\scrT = e1 \otimes e1 \otimes e1 \otimes e1 + e1 \otimes e2 \otimes e1 \otimes e2 + e2 \otimes e1 \otimes e2 \otimes e1
+ e2 \otimes e2 \otimes e2 \otimes e2 \in (\BbbR 2)\otimes 4

has rank 4, which is the generic rank in (\BbbC 2)\otimes 4 [4]. Looking at the flattenings, we
see that the border rank of \scrT is also 4. Actually, this decomposition is strong two-
orthogonal.

Example 2.23. The two-orthogonal tensor

\scrT = e1 \otimes e1 \otimes e1 + e1 \otimes e2 \otimes e2 + e1 \otimes e3 \otimes e3 + e2 \otimes e1 \otimes e2 + e3 \otimes e1 \otimes e3 \in (\BbbR 3)\otimes 3

has rank 5, which is the generic rank in (\BbbC 3)\otimes 3 [32]. The maximal real rank of 3\times 3\times 3
tensors is also 5 [3].

Example 2.24. The two-orthogonal tensor

\scrT = e1 \otimes e1 \otimes e1 + e1 \otimes e2 \otimes e2 + e1 \otimes e3 \otimes e3 + e1 \otimes e4 \otimes e4
+ e2 \otimes e1 \otimes e2 + e3 \otimes e1 \otimes e3 + e4 \otimes e1 \otimes e4 \in (\BbbR 4)\otimes 4

has rank 7, which is the generic rank in (\BbbC 4)\otimes 3 [24], as follows.
Let \scrL =span\{ \scrT (e1, \cdot , \cdot ),\scrT (e2, \cdot , \cdot ),\scrT (e3, \cdot , \cdot ),\scrT (e4, \cdot , \cdot )\} be the linear space spanned

by the slices of T obtained by fixing the first factor. The rank of \scrT is the minimal
number of rank-one matrices whose linear span contains \scrL (e.g., see [36, Proposition
3.3]). The two-orthogonal decomposition above has seven summands, so rank(\scrT )\leq 7.
Suppose that rank(\scrT )\leq 6, meaning that there exist six rank-one matrices spanning a
space \scrK that contains \scrL . Then, \scrK is spanned by \scrL along with two rank-one matrices,
so every element of \scrK is of the form\left(    

a1 a2 a3 a4
0 a1 0 0
0 0 a1 0
0 0 0 a1

\right)    + a5

\left(    
x11
x12
x13
x14

\right)    \otimes 
\left(    
x21
x22
x23
x24

\right)    + a6

\left(    
y11
y12
y13
y14

\right)    \otimes 
\left(    
y21
y22
y23
y24

\right)    
for fixed \{ xij\} ,\{ yij\} and variable coefficients \{ ai\} . Computing the 2 \times 2 minors of
these matrices we get that all the rank-one matrices in \scrK have a1 = 0, and such
matrices do not span \scrL . Hence, rank(\scrT ) = 7.
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Computing the tensor rank is NP-hard [15]. This means that, although a generic
tensor has generic rank, it is computationally infeasible to verify whether or not the
rank of an arbitrary tensor is smaller, equal, or bigger than the generic rank. We hope
that this may be more feasible for two-orthogonal tensors. Perhaps two-orthogonal
tensors may be good candidates for tensors with provably high rank, even above the
generic rank. Note that the expected generic rank of a tensor of (\BbbC n)\otimes d is \lceil nd

d(n - 1)+1\rceil ,
which is smaller than the maximal two-orthogonal rank in (\BbbR n)\otimes d.

2.3. Optimal truncations. When the two-orthogonal rank and the usual rank
of a tensor coincide, the two-orthogonal decomposition has good truncation properties.
The kth secant variety of X, denoted \sigma k(X), is the closure of the set of rank-at-most-k
tensors:

\sigma k(X) =
\bigcup 

x1,...,xk\in X

span\{ x1, . . . , xk\} .

Consider a rank-r tensor \scrT and let k < r. A critical rank-k approximation of \scrT is a
tensor \scrS = x1 + \cdot \cdot \cdot + xk \in \sigma k(X)smooth such that \scrT  - \scrS \bot T\scrS \sigma k(X).

Proposition 2.25. Consider a two-orthogonal decomposition \scrT =
\sum r

i=1 xi \in Wr.

Suppose that rank(\scrT ) = r and that the truncation \scrS =
\sum k

i=1 xi, where k < r, is
sufficiently general as a point in \sigma k(X). Then, \scrS is a critical rank-k approximation
of \scrT .

Proof. Suppose that \scrS is sufficiently general in the sense that it satisfies Ter-
racini's lemma, i.e., we have T\scrS \sigma k(X) = span\{ Tx1X, . . . , Txk

X\} . Recall that the
tangent space to X at x is TxX =

\sum d
l=1 x

(1) \otimes \cdot \cdot \cdot \otimes x(l - 1) \otimes \BbbR nl \otimes x(l+1) \otimes \cdot \cdot \cdot \otimes x(d).
Two-orthogonality implies xj \bot Txi

X for all j > k and i \leq k. Hence, \scrS is a critical
rank-k approximation of \scrT .

The previous result suggests that if we order the summands such that \| x1\| \geq 
\cdot \cdot \cdot \geq \| xr\| , then the truncation \scrS =

\sum k
i=1 xi is a good candidate for a best rank-

k approximation of \scrT =
\sum r

i=1 xi. Following [35], a Schmidt--Eckart--Young (SEY)
decomposition is a tensor decomposition \scrT =

\sum r
i=1 xi such that for all k < r, retaining

the first k summands gives an optimal solution in the sense that
\sum k

i=1 xi is a minimizer
of \| \scrT  - \scrS \| over all \scrS of rank at most k.

Two-orthogonality is necessary for having an SEY decomposition [35, Theorem
3.3], but it is insufficient because a tensor \scrT cannot have an SEY decomposition if
its border rank and rank disagree (Example 2.21). Taking flattenings, the singular
value decomposition shows that strong two-orthogonality is sufficient to be an SEY
decomposition [35, Theorem 3.6]. The authors in [35] state the following: ``It remains
an open question whether strong two-orthogonality is also necessary."" The following
counterexample shows that it is not necessary.

Example 2.26. Consider the two-orthogonal decomposition

\scrT = 3e1 \otimes e1 \otimes e1 + e2 \otimes e2 \otimes 
\biggl( 
1

2
e1 + 2e2

\biggr) 
+ e1 \otimes e2 \otimes e3 \in \BbbR 2 \otimes \BbbR 2 \otimes \BbbR 3.(2.1)

We claim that this is an SEY decomposition, despite not being strong two-orthogonal
(there is no factor for which the three summands are orthogonal). The border rank
of \scrT is three, e.g., by looking at its flattenings. Critical rank-one approximations
correspond to singular vector tuples, by Proposition 2.5. If x is a singular vector
tuple of \scrT with singular value \lambda , then \| \scrT  - \lambda x\| 2 = \| T\| 2  - \lambda 2. The tensor \scrT has
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eight singular vector tuples, which is the generic number for a tensor of this format
[12]. The singular vector tuple e1 \otimes e1 \otimes e1 has singular value 3, and one can check
that all the other singular vector tuples have singular values smaller than 3. Hence,
3e1 \otimes e1 \otimes e1 is the best rank-one approximation of \scrT .

The tensor \scrT has three critical rank-two approximations (which can be computed,
for example, using the notion of critical ideal defined in [8]). One of them comes from
the first two summands in our decomposition: \scrS = 3e1\otimes e1\otimes e1+e2\otimes e2\otimes (1/2e1+2e2),
which leads to a residual \| \scrT  - \scrS \| 2 = 1. The other two are the tensors\biggl( 

120 - 63\alpha 
38 0 12 - 12\alpha 

19 0 0 1
0 72 - 53\alpha 

76 0 \alpha 0 0

\biggr) 
\in \BbbR 2 \otimes \BbbR 2 \otimes \BbbR 3,

where 505\alpha 2  - 1010\alpha + 144 = 0. The rank of these tensors is greater than two, but
their border rank is two. One can check that both solutions lead to a residual greater
than one. Hence, \scrS is the best rank-two approximation of \scrT , so (2.1) is an SEY
decomposition.

2.4. Two-orthogonality for partially symmetric tensors. We study two-
orthogonal decompositions for partially symmetric tensors. A tensor \scrT \in (\BbbR n)\otimes d is
symmetric if \scrT i1,...,id = \scrT \pi (i1),...,\pi (id) for any permutation \pi \in Sd. For d= 2, this says
M =M\top . Let Sd(\BbbR n) denote the space of symmetric tensors of format n\times \cdot \cdot \cdot \times n (d
times), which is naturally identified with the space of homogeneous polynomials in n
variables of degree d [5]. Using this identification, we express the rank-one tensors in
Sd(\BbbR n) as \ell d for \ell \in (\BbbR n)\ast .

Let V = Sd1\BbbR n1 \otimes \cdot \cdot \cdot \otimes Sdp\BbbR np and let X = \{ \ell d1
1 \otimes \cdot \cdot \cdot \otimes \ell 

dp
p | \ell i \in (\BbbR ni)\ast \} \subset V be

the cone over the Segre--Veronese variety, the set of rank-one tensors in V . An inner
product \langle \cdot , \cdot \rangle in (\BbbR n)\ast gives a unique inner product on Sd\BbbR n defined on two rank-one
tensors as \langle fd, gd\rangle = \langle f, g\rangle d and extended to all Sd\BbbR n by linearity. This implies that
\langle f1 \cdot \cdot \cdot fd, g1 \cdot \cdot \cdot gd\rangle = 1

d!

\sum 
\pi \in Sd

\prod d
k=1\langle fk, g\pi (k)\rangle . As before, a set of inner products in

(\BbbR n1)\ast , . . . , (\BbbR np)\ast defines an inner product in V .

Definition 2.27. A partially symmetric tensor \scrT \in Sd1\BbbR n1 \otimes \cdot \cdot \cdot \otimes Sdp\BbbR np is
called two-orthogonal if it admits a decomposition \scrT =

\sum r
i=1 xi, where xi = \ell d1

1,i \otimes 
\cdot \cdot \cdot \otimes \ell dp

p,i \not = 0 and all pairs of summands xi and xj with i \not = j are orthogonal in at
least two factors, counting multiplicities dk. We define Wr as the closure of the set of
length-at-most-r two-orthogonal partially symmetric tensors, and W =

\bigcup 
rWr as the

two-orthogonal variety.

Example 2.28. The tensor f21 \otimes g1 + f22 \otimes g2 \in S2\BbbR m \otimes \BbbR n with f1 \bot f2 is two-
orthogonal.

Proposition 2.29. Let x= \ell d1
1 \otimes \cdot \cdot \cdot \otimes \ell 

dp
p \in X \setminus \{ 0\} \subseteq V .

1. The tangent space to X at x is

TxX =

\Biggl\{ 
d\sum 

k=1

\ell d1
1 \otimes \cdot \cdot \cdot \otimes \ell 

dk - 1
k \ell \otimes \cdot \cdot \cdot \otimes \ell dp

p | \ell \in (\BbbR nk)\ast 

\Biggr\} 
.

2. If dk \geq 2 for all k, then

NxX \cap X =
\Bigl\{ 
yd1
1 \otimes \cdot \cdot \cdot \otimes ydp

p | \langle \ell k, yk\rangle = 0, for some k
\Bigr\} 
.
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294 \'A. RIBOT, E. HOROBET, A. SEIGAL, AND E. T. TURATTI

Proof. Part (1) follows by applying the Leibniz rule to the parametrization of X.
For part (2), suppose that y= yd1

1 \otimes \cdot \cdot \cdot \otimes y
d1
1 \in NxX, then

\langle y, \ell d1
1 \otimes \cdot \cdot \cdot \otimes \ell 

dk - 1
k \ell \otimes \cdot \cdot \cdot \otimes \ell dp

p \rangle = \langle yk, \ell k\rangle d - 1\langle yk, \ell \rangle 
\prod 
j \not =k

\langle yj , \ell j\rangle dj = 0

for all k \in [p] and all \ell \in (\BbbR nk)\ast . So there exists k \in [p] such that \langle yk, \ell k\rangle = 0.

Proposition 2.29 implies that Theorem 1.2 also holds for partially symmetric
tensors. Theorem 2.30 is an extension of Theorem 1.3 to partially symmetric tensors.
The proof is similar; we include it for completeness.

Theorem 2.30. Let V = Sd1\BbbR m1 \otimes \cdot \cdot \cdot \otimes Sdp\BbbR mp \otimes \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nq , n1 \leq \cdot \cdot \cdot \leq nq,
and dk \geq 2 for all k \in [p]. Then, the maximal length of a two-orthogonal decomposition
is N =m1 \cdot \cdot \cdot mpn1 \cdot \cdot \cdot nq - 1. In particular, W =WN .

Proof. Let \scrT =
\sum r

i=1 \ell 
d1
1,i \otimes \cdot \cdot \cdot \otimes \ell 

dp

p,i \otimes u1,i \otimes \cdot \cdot \cdot \otimes uq,i \in V be two-orthogonal.
Consider the tensor \scrT \prime =

\sum r
i=1 \ell 1,i \otimes \cdot \cdot \cdot \otimes \ell p,i \otimes u1,i \otimes \cdot \cdot \cdot \otimes uq - 1,i. Each pair of

summands of \scrT \prime are orthogonal in at least one factor, so they are linearly indepen-
dent. Therefore, r \leq m1 \cdot \cdot \cdot mpn1 \cdot \cdot \cdot nq - 1. It remains to show that the bound can be
achieved: let \{ ek,1, . . . , ek,mk

\} be an orthogonal basis of (\BbbR mk)\ast , let \{ e\prime k,1, . . . , e\prime k,nk
\} 

be an orthogonal basis of \BbbR nk , and let \scrJ \subseteq [n1]\times \cdot \cdot \cdot \times [nq] be a maximal set of indices
given by a Latin hypercube, as in Lemma 2.13. Then, the tensor

\scrT =
\sum 

j\in \scrJ ,i1,\cdot \cdot \cdot ,ip

ed1
1,i1
\otimes \cdot \cdot \cdot \otimes edp

p,ip
\otimes e\prime 1,j1 \otimes \cdot \cdot \cdot \otimes e

\prime 
d,jd

is two-orthogonal and consists of m1 \cdot \cdot \cdot mpn1 \cdot \cdot \cdot nq - 1 terms.

3. Dimension of the two-orthogonal variety. In this section, we prove The-
orem 1.4, which lower bounds the dimension of the two-orthogonal variety. To do this,
we construct a dimension-preserving map that parametrizes a set of basis-aligned two-
orthogonal tensors. Recall that the Hamming distance on [n]d is dH(i, j)=| \{ k | ik \not =jk\} | .

Lemma 3.1. Let n\geq 2, d\geq 3, and let L be the Latin hypercube on [n]d - 1 cells given
by L(i1, . . . , id - 1) = id - 1 +

\sum d - 2
k=1( - 1)k+1ik mod n. Let \scrI = \{ (i1, . . . , id - 1,L(i1, . . . ,

id - 1))\} . Then there exists a subset \scrJ \subset \scrI with | \scrJ | = n - 1 and dH(i, j) \geq 3 for all
distinct i, j\in \scrJ .

Proof. If d is even, then L(i, . . . , i) = i, so we can let \scrJ = \{ (i, i, . . . , i) | i\in [n - 1]\} .
If d is odd, then L(i, . . . , i) = 2i mod n, so we consider two cases. If n is odd, let
\scrJ = \{ (i, . . . , i,2i mod n) | i\in [n - 1]\} . If n is even, let

\scrJ =
\Bigl\{ 
(i, . . . , i, i,2i) | 1\leq i\leq n

2

\Bigr\} 
\cup 
\Bigl\{ 
(i, . . . , i, i+ 1,2i+ 1 - n) | n

2
< i\leq n - 1

\Bigr\} 
.

Theorem 1.4. The dimension of the two-orthogonal variety in (\BbbR n)\otimes d is at least

nd - 1 + d

\biggl( 
n

2

\biggr) 
.

Proof. We parametrize a set of two-orthogonal tensors via a dimension-preserving
map. This lower bounds the dimension. Let L be the Latin hypercube in Lemma 3.1,
and let \scrI =\{ (i1, . . . , id - 1,L(i1, . . . , id - 1))| ij\in [n]\} . Given a set of scalars \{ \lambda i | i\in \scrI \} \subset \BbbR 
and an orthonormal basis \{ u(k)1 , . . . , u

(k)
n \} \subset \BbbR n for each k \in [d], we construct

\scrT =
\sum 
i\in \scrI 

\lambda iu
(1)
i1
\otimes \cdot \cdot \cdot \otimes u(d)id

\in Wnd - 1 .
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DECOMPOSING TENSORS VIA RANK-ONE APPROXIMATIONS 295

There are nd - 1 degrees of freedom to choose the \lambda i's and, for each factor k \in [d], we

have
\bigl( 
n
2

\bigr) 
degrees of freedom to choose \{ u(k)1 , . . . , u

(k)
n \} . Hence, the expected dimension

of the variety of tensors with such a decomposition is nd - 1 + d
\bigl( 
n
2

\bigr) 
.

We can rescale each u
(k)
i and scale the \lambda i's accordingly. Hence, in the following

parametrization we fix an entry of the vectors to be one, instead of imposing that

they have norm one. Let \theta = (\theta ij | 1\leq j < i\leq n)\in \BbbR (
n
2) and consider the matrix

U(\theta ) =

\left(  | | 
u1(\theta ) \cdot \cdot \cdot un(\theta )
| | 

\right)  =

\left(       
1 p1,2(\theta ) p1,3(\theta ) \cdot \cdot \cdot p1,n(\theta )
\theta 2,1 1 p2,3(\theta ) \cdot \cdot \cdot p2,n(\theta )
\theta 3,1 \theta 3,2 1 \cdot \cdot \cdot p3,n(\theta )
...

...
...

. . .
...

\theta n,1 \theta n,2 \cdot \cdot \cdot \cdot \cdot \cdot 1

\right)       ,

where pij(\theta ) \in \BbbR (\theta ) are chosen such that the columns of U are orthogonal (for sim-
plicity in notation, we consider the Euclidean inner product throughout this proof).
We parametrize a family of basis-aligned tensors in Wnd - 1 by

\phi : \BbbR nd - 1 \times 
\Bigl( 
\BbbR (

n
2)
\Bigr) d

\rightarrow (\BbbR n)
\otimes d
,

(\lambda i) , \theta (1), . . . , \theta (d) \mapsto \rightarrow 
\sum 

i\in \scrI \lambda iui1(\theta 
(1))\otimes \cdot \cdot \cdot \otimes uid(\theta (d)).

We show that the Jacobian of \phi is generically full-rank. In other words, given a generic

\scrS \in Im(\phi )\subseteq Wnd - 1 , we show that J\phi :\BbbR nd - 1 \times 
\Bigl( 
\BbbR (

n
2)
\Bigr) d

\rightarrow T\scrS Wnd - 1 is injective. We

study J\phi | \theta (1)=\cdot \cdot \cdot =\theta (d)=0. Orthogonality implies that pij(0) = 0 for all i, j. Let i < j,
then

0 = \langle ui(\theta ), uj(\theta )\rangle =
\sum 
k<i

pki(\theta )pkj(\theta ) + pij(\theta ) +
\sum 

i<k<j

\theta kipkj(\theta ) + \theta ji +
\sum 
k>j

\theta ki\theta kj .

Taking derivatives and evaluating at \theta = 0, we get

\partial pij(\theta )

\partial \theta kl

\bigm| \bigm| \bigm| \bigm| 
\theta =0

=

\Biggl\{ 
 - 1 if (i, j) = (l, k),

0 otherwise.

In what follows, we write \Theta = 0 to denote \theta (1) = \cdot \cdot \cdot = \theta (d) = 0. Note that dH(i, j)\geq 2
for all distinct i, j\in \scrI . Hence

\partial \phi i
\partial \lambda j

\bigm| \bigm| \bigm| \bigm| 
\Theta =0

=

\Biggl\{ 
\delta ij if j\in \scrI ,
0 otherwise,

\partial \phi i

\partial \theta 
(k)
\ell 1\ell 2

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Theta =0

=

\Biggl\{ 
\pm \lambda j if j\in \scrI , dH(i, j) = 1, ik \not = jk, and \{ \ell 1, \ell 2\} = \{ ik, jk\} ,
0 otherwise.

The sign in the last expression depends on L and whether ik < jk. Note that
\partial \phi i

\partial \theta 
(k)
\ell 1\ell 2

| \Theta =0 = 0 if i \in \scrI and \partial \phi i

\partial \lambda j
| \Theta =0 = 0 if i /\in \scrI . Therefore, after reordering rows,

J\phi | \Theta =0 is a block matrix. The block of partial derivatives with respect to \{ \lambda i\} is a
full-rank nd - 1\times nd - 1 matrix (a permutation matrix). The other block, corresponding

to partial derivatives with respect to \{ \theta (k)\ell 1\ell 2
\} , is an nd - 1(n - 1)\times d

\bigl( 
n
2

\bigr) 
matrix. Entries

outside these two blocks are zero (see Example 3.2). We show that J\phi | \Theta =0 is full-rank
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296 \'A. RIBOT, E. HOROBET, A. SEIGAL, AND E. T. TURATTI

for generic \lambda i's. Let \scrJ be as in Lemma 3.1 and consider the following submatrix of
J\phi | \Theta =0 where we set \lambda i to zero if i /\in \scrJ :

M =

\left(  \partial \phi i

\partial \theta 
(k)
\ell 1\ell 2

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Theta =0, \lambda i=0 if i/\in \scrJ 

\right)  
i,(k,\ell 1,\ell 2)

\in \BbbR nd\times d(n2).

Since | \scrJ | = (n - 1) for every k \in [d] and every \ell 2 < \ell 1 \in [n], there is some j\in \scrJ such that
jk = \ell 1 or jk = \ell 2, so every column of M is nonzero. Moreover, we have dH(j1, j2)\geq 3
for all distinct j1, j2 \in \scrJ , so there is no i \in [n]d with dH(i, j1) = dH(i, j2) = 1. Hence,
every row of M has at most one nonzero entry. Therefore, M is full-rank as long as
\lambda i \not = 0 for i \in \scrJ . By continuity of the determinant, J\phi | \Theta =0 is full-rank for generic
\lambda i's.

Example 3.2. The Jacobian of \phi in the proof of Theorem 1.4 is given below for
(\BbbR 2)\otimes 3:

Jφ|Θ“0 “

λ112 λ121 λ211 λ222 θ
p1q
21 θ

p2q
21 θ

p3q
21

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

112 1
121 1
211 1
222 1 .
111 ´λ211 ´λ121 ´λ112

122 ´λ222 λ112 λ121

212 λ112 ´λ222 λ211

221 λ121 λ211 ´λ222

This matrix is full-rank for generic \lambda i \in \BbbR . Hence, the two-orthogonal decompositions

\lambda 112u
(1)
1 \otimes u

(2)
1 \otimes u

(3)
2 + \lambda 121u

(1)
1 \otimes u

(2)
2 \otimes u

(3)
1 + \lambda 211u

(1)
2 \otimes u

(2)
1 \otimes u

(3)
1

+ \lambda 222u
(1)
2 \otimes u

(2)
2 \otimes u

(3)
2 ,

where u
(k)
1 = (1, \theta 

(k)
21 ) \bot ( - \theta (k)21 ,1) = u

(k)
2 , parametrize a variety of dimension 4 +

3
\bigl( 
2
2

\bigr) 
= 7.

We have seen how some components defined by maximal basis-aligned tensors
are nondefective, i.e., the dimension is the expected one. However, these components
could be part of a higher-dimensional component. Indeed, there exist two-orthogonal
decompositions of maximal length that are not basis-aligned, which implies having
more degrees of freedom in the parametrization. The following example shows that
the lower bound of Theorem 1.4 is not tight. Calculating the dimension of the two-
orthogonal variety remains an open question.

Example 3.3. Consider the following family of two-orthogonal tensors in (\BbbR 4)\otimes 3,

\lambda 111 e1 \otimes e1 \otimes e1 + \lambda 122 e1 \otimes e2 \otimes e2 + \lambda 133 e
\prime 
1 \otimes e3 \otimes e3 + \lambda 144 e

\prime 
1 \otimes e4 \otimes e4

+ \lambda 212 e2 \otimes e1 \otimes e2 + \lambda 221 e2 \otimes e2 \otimes e1 + \lambda 234 e
\prime 
2 \otimes e3 \otimes e4 + \lambda 243 e

\prime 
2 \otimes e4 \otimes e3

+ \lambda 313 e3 \otimes e\prime 1 \otimes e\prime 3 + \lambda 324 e3 \otimes e\prime 2 \otimes e\prime 4 + \lambda 331 e
\prime 
3 \otimes e\prime 3 \otimes e\prime 1 + \lambda 342 e

\prime 
3 \otimes e\prime 4 \otimes e\prime 2

+ \lambda 414 e4 \otimes e\prime 1 \otimes e\prime 4 + \lambda 423 e4 \otimes e\prime 2 \otimes e\prime 3 + \lambda 432 e
\prime 
4 \otimes e\prime 3 \otimes e\prime 2 + \lambda 441 e

\prime 
4 \otimes e\prime 4 \otimes e\prime 1,

where e\prime 1, e
\prime 
2 \in span\{ e1, e2\} , e\prime 3, e\prime 4 \in span\{ e3, e4\} , \langle e\prime 1, e\prime 2\rangle = \langle e\prime 3, e\prime 4\rangle = 0, and \| e\prime i\| = 1

for all i. We have
\bigl( 
4
2

\bigr) 
= 6 degrees of freedom to choose \{ e1, . . . , e4\} , one degree of
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DECOMPOSING TENSORS VIA RANK-ONE APPROXIMATIONS 297

freedom to choose \{ e\prime 1, e\prime 2\} , and one degree of freedom to choose \{ e\prime 3, e\prime 4\} . This adds
up to eight degrees of freedom for each factor, so a total of 24. We can arbitrarily
scale each summand, which adds 16 degrees of freedom. Using the computer algebra
software Macaulay2 [13], we computed the Jacobian of the corresponding parametri-
zation and checked that it is generically full-rank. Hence, the dimension of the variety
parametrized by these decompositions is 40, while the lower bound given by Theorem
1.4 is 34.

4. Parametric description of the two-orthogonal variety. We give a com-
binatorial parametrization of the two-orthogonal variety using a graph-theoretical
perspective. For binary tensors, the resulting graphs are bipartite; we study this case
in more depth.

4.1. Graphical descriptions. A graph is a pair \scrG = (V (\scrG ),E(\scrG )), where V (\scrG )
is a set of vertices and E(\scrG ) is a set of unordered pairs of vertices, called edges. We
describe two-orthogonal decompositions via graphs, as follows.

Definition 4.1. Let V = \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd . The graphical description of a two-
orthogonal decomposition \scrT =

\sum r
i=1 x

(1)
i \otimes \cdot \cdot \cdot \otimes x

(d)
i \in V is a tuple of d graphs (\scrG 1, . . . ,

\scrG d) such that V (\scrG k) = [r] and \{ i, j\} \in E(\scrG k) if and only if x
(k)
i \bot x

(k)
j .

Example 4.2. The graphical description of an odeco decomposition of rank r is
(Kr, . . . ,Kr), where Kr is the complete graph on r vertices.

Example 4.3. Consider the tensor e1\otimes e1\otimes e1+e2\otimes (e1+e2)\otimes e2+(e1 - e2)\otimes e3\otimes e3.
Of the three vectors x

(1)
i appearing in the first factor, the first and second vectors are

orthogonal. In the second factor, the first and third vectors are orthogonal and the
second and third vectors are orthogonal. In the third factor, all three vectors are
orthogonal. Hence the graphical description of the decomposition is the following:

1 2

3

G1

1 2

3

G2

1 2

3

G3

A multigraph is \scrG = (V (\scrG ),E(\scrG )), where V (\scrG ) is the set of vertices and E(\scrG ) is a
multiset of unordered pairs of vertices. Given \mu ,n\in \BbbN , the complete multigraph \mu Kn

is the complete graph Kn in which every edge appears \mu times. We define the union
of two graphs \scrG 1,\scrG 2 as the multigraph \scrG = \scrG 1 \cup \scrG 2, where V (\scrG ) = V (\scrG 1)\cup V (\scrG 2) and
E(\scrG ) = E(\scrG 1) \sqcup E(\scrG 2). Given a pair of (multi)graphs \scrG 1,\scrG 2, we say that \scrG 1 \subseteq \scrG 2 if
V (\scrG 1) \subseteq V (\scrG 2) and E(\scrG 1) \subseteq E(G2). For example, the multigraph obtained as the
union of the three graphs from Example 4.3 is

1 2

3

G “ G1 Y G2 Y G3

Definition 4.4 (see [16]). Given a (multi)graph \scrG and a positive integer n, an
orthogonal vector n-coloring of \scrG is an assignment of vectors of \BbbR n\setminus \{ 0\} to V (\scrG ) such
that if \{ v,w\} \in E(\scrG ) then v and w receive orthogonal vectors. The vector chromatic
number \chi v(\scrG ) is the least n such that \scrG has an orthogonal vector n-coloring.

Proposition 4.5. Let (\scrG 1, . . . ,\scrG d) be the graphical description of a two-orthogonal

decomposition \scrT =
\sum r

i=1 x
(1)
i \otimes \cdot \cdot \cdot \otimes x

(d)
i \in \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd . Then \chi v(\scrG j)\leq nj for all

j \in [d], and 2Kr \subseteq 
\bigcup 

j \scrG j.
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298 \'A. RIBOT, E. HOROBET, A. SEIGAL, AND E. T. TURATTI

Proof. For each j \in [d], assigning x(j)i to vertex i \in [r] gives an orthogonal vector
nj-coloring of \scrG j . The fact that 2Kr \subseteq 

\bigcup 
j \scrG j follows from two-orthogonality.

In view of Proposition 4.5, we define the notion of a valid graphical description
for the two-orthogonal variety W \subset \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd to mean a tuple of d graphs that
encode the orthogonality relations of some two-orthogonal tensor in \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd .

Definition 4.6. A valid graphical description for W \subset \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd is a tuple
of graphs (\scrG 1, . . . ,\scrG d) such that V (\scrG 1) = \cdot \cdot \cdot = V (\scrG d) = [r], \chi v(\scrG j)\leq nj for all j, and
2Kr \subseteq 

\bigcup 
j \scrG j.

Remark 4.7. Lemma 2.10 can be proved using the combinatorial tools in this sec-
tion. Given two graphs \scrG ,\scrG \prime on the same vertex set, we have \chi v(\scrG \cup \scrG \prime )\leq \chi v(\scrG )\chi v(\scrG \prime )
[16, Lemma 1.14]. Fix n1 \leq \cdot \cdot \cdot \leq nd and let (\scrG 1, . . . ,\scrG d) with V (\scrG j) = [r] for all j be

a valid graphical description for W \subset \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd . Since 2Kr \subseteq 
\bigcup d

j=1 \scrG j we have

Kr \subseteq 
\bigcup d - 1

j=1 \scrG j , so

r= \chi v(Kr) = \chi v

\left(  d - 1\bigcup 
j=1

\scrG j

\right)  \leq \chi v(\scrG 1) \cdot \cdot \cdot \chi v(\scrG d - 1)\leq n1 \cdot \cdot \cdot nd - 1.

Given a valid graphical description for W \subset \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd , we are interested in
obtaining the two-orthogonal decompositions that have that graphical description.

Definition 4.8. The orthogonal vector n-coloring ideal of a graph \scrG is

I\scrG ,n= (\langle ui, uj\rangle | \{ i, j\} \in E(\scrG )) + (\langle ui, ui\rangle  - 1 | i\in V (\scrG ))\subset \BbbR [ui,1, . . . , ui,n | i\in V (\scrG )].

The zero locus Z(I\scrG ,n)\subseteq (\BbbR n)\times | V (\scrG )| consists of all orthogonal vector n-colorings
of \scrG with unit vectors. If \chi v(\scrG )\leq n, then Z(I\scrG ,n) \not =\varnothing by definition. This implies the
following.

Proposition 4.9. The two-orthogonal variety W \subset \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd is equal to
the union of Im(\psi (\scrG 1,...,\scrG d)) over all valid graphical descriptions (\scrG 1, . . . ,\scrG d) for W ,
where

\psi (\scrG 1,...,\scrG d) : Z(I\scrG 1,n1
) \times \cdot \cdot \cdot \times Z(I\scrG d,nd

) \times \BbbR r \rightarrow \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nd ,\bigl( 
(x

(1)
1 , . . . , x

(1)
r ) , . . . , (x

(d)
1 , . . . , x

(d)
r ) , (\lambda 1, . . . , \lambda r)

\bigr) 
\mapsto \rightarrow 

r\sum 
i=1

\lambda ix
(1)
i \otimes \cdot \cdot \cdot \otimes x

(d)
i .

Remark 4.10. We cannot guarantee that Im(\psi (\scrG 1,...,\scrG d)) is irreducible, since I\scrG ,n
is not prime in general. For example, for \scrG = ([4],\{ \{ 1,2\} ,\{ 1,3\} ,\{ 1,4\} ,\{ 2,3\} ,\{ 2,4\} \} ),
I\scrG ,3 is generated by

u1,1u2,1 + u1,2u2,2 + u1,3u2,3, u2,1u3,1 + u2,2u3,2 + u2,3u3,3, u22,1 + u22,2 + u22,3  - 1,
u1,1u3,1 + u1,2u3,2 + u1,3u3,3, u2,1u4,1 + u2,2u4,2 + u2,3u4,3, u23,1 + u23,2 + u23,3  - 1,
u1,1u4,1 + u1,2u4,2 + u1,3u4,3, u21,1 + u21,2 + u21,3  - 1, u24,1 + u24,2 + u24,3  - 1,

and its primary decomposition consists of four components.

Remark 4.11. Graphical descriptions give inclusions between components of W .
We define a partial order on the valid graphical descriptions for W as follows:

(\scrG 1, . . . ,\scrG d)\preceq (\scrG \prime 1, . . . ,\scrG \prime d) if V (\scrG j) = V (\scrG \prime j) and E(\scrG \prime j)\subseteq E(\scrG j) forall j \in [d].

If (\scrG 1, . . . ,\scrG d) \preceq (\scrG \prime 1, . . . ,\scrG \prime d), then Im(\psi (\scrG 1,...,\scrG d)) \subseteq Im(\psi (\scrG \prime 
1,...,\scrG \prime 

d)
). The graphical

description depends on the order of the summands. To avoid this dependence, the
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DECOMPOSING TENSORS VIA RANK-ONE APPROXIMATIONS 299

partial order can be defined up to graph isomorphism. This leads to a notion of
maximal valid graphical descriptions. Counting and characterizing the maximal valid
graphical descriptions remains an open question.

4.2. Binary tensors. In this section, we focus on two-orthogonal tensors in
V = (\BbbR 2)\otimes d. Let (\scrG 1, . . . ,\scrG d) be the graphical description of a two-orthogonal de-
composition in V . Then, each \scrG j is a disjoint union of complete bipartite graphs, as
follows. If u, v,w \in \BbbR 2, u\bot v, and u\bot w, then v and w are collinear. Therefore, with-
out loss of generality, in this section we will only consider valid graphical descriptions
such that each graph is a disjoint union of complete bipartite graphs.

Remark 4.10 shows that I\scrG ,n is not prime in general, so a valid graphical descrip-
tion containing \scrG may not parametrize an irreducible variety. The following result
shows that these varieties are irreducible for binary tensors.

Proposition 4.12. Fix a tuple of graphs (\scrG 1, . . . ,\scrG d) on vertex set [r]. Assume
that it is a valid graphical description for W \subset (\BbbR 2)\otimes d, so each \scrG j is a disjoint union
of cj complete bipartite graphs. Then Im(\psi (\scrG 1,...,\scrG d)) is irreducible and its expected

dimension is r+
\sum d

j=1 cj.

Proof. First, suppose that \scrG is a complete bipartite graph with V (\scrG ) = [r]. Let
(ei1 , . . . , eir ) with ij \in \{ 1,2\} be an orthogonal vector two-coloring of \scrG . Acting with
SO(2), we get all orthogonal vector two-colorings of \scrG with unit vectors, up to sign.
This is an irreducible subvariety of Z(I\scrG ,2) of dimension one, let us call it Y\scrG . Now
suppose that \scrG is a disjoint union of complete bipartite graphs, i.e., \scrG =\scrH 1\sqcup \cdot \cdot \cdot \sqcup \scrH c.
Then, Y\scrG = Y\scrH 1 \times \cdot \cdot \cdot \times Y\scrH c is a product of irreducible varieties, hence irreducible,
and its dimension is c.

Using the previous reasoning for each \scrG j , we get that Y\scrG 1
\times \cdot \cdot \cdot \times Y\scrG d

\times \BbbR r is a

product of irreducible varieties, hence irreducible, and its dimension is r+
\sum d

j=1 cj . In
the tensor decomposition given by \psi (\scrG 1,...,\scrG d), the signs of the vectors can be absorbed
by \lambda \in \BbbR r, so

\psi (\scrG 1,...,\scrG d)(Z(I\scrG 1
)\times \cdot \cdot \cdot \times Z(I\scrG d

)\times \BbbR r) =\psi (\scrG 1,...,\scrG d)(Y\scrG 1
\times \cdot \cdot \cdot \times Y\scrG d

\times \BbbR r).

Finally, since \psi (\scrG 1,\cdot \cdot \cdot ,\scrG d) is a polynomial map, the variety Im(\psi (\scrG 1,...,\scrG d)) is also irreduc-
ible, and its expected dimension is dim(Y\scrG 1

\times \cdot \cdot \cdot \times Y\scrG d
\times \BbbR r) = r +\sum d

j=1 cj .

Theorem 1.4 says that dim(W )\geq 2d - 1+d. We conjecture that for binary tensors
we have equality, and the top-dimensional component is W2d - 1 \setminus W2d - 1 - 1.

Conjecture 4.13. Fix a tuple of graphs (\scrG 1, . . . ,\scrG d) on vertex set [r]. Assume
that it is a valid graphical description for W \subset (\BbbR 2)\otimes d, so each \scrG j is a disjoint union
of cj complete bipartite graphs. Then

r+

d\sum 
j=1

cj \leq 2d - 1 + d

with equality only if r= 2d - 1.

Table 1 shows that Conjecture 4.13 is true for d = 3; we compute the graphical
descriptions of all two-orthogonal decompositions for 2 \times 2 \times 2 tensors. Using an
analogous approach, one can check that this conjecture is also true for d= 4. In what
follows, we provide further evidence for Conjecture 4.13 and study its consequences.
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300 \'A. RIBOT, E. HOROBET, A. SEIGAL, AND E. T. TURATTI

Table 1
Graphical descriptions of the two-orthogonal variety in (\BbbR 2)\otimes 3. Vertices are summands in a

two-orthogonal decomposition. An edge in \scrG k represents an orthogonality in the kth factor. The
table shows that W1\subseteq odeco\subseteq W2 and W3 \setminus W2 \subset W4 \setminus W3. See section 5 for more details.

G1 G2 G3

W1
1 1 1

odeco 1 2 1 2 1 2

W
t2,3u

2
1 2 1 2 1 2

W
t1,3u

2
1 2 1 2 1 2

W
t1,2u

2
1 2 1 2 1 2

W3zW2
1 2

3

1 2

3

1 2

3

W4zW3
1 2

34

1 2

34

1 2

34

Proposition 4.14. The complete multigraph 2Kr can be expressed as the union
of d bipartite graphs if and only if r\leq 2d - 1.

Proof. This is equivalent to Theorem 1.3 for binary tensors.

Proposition 4.15. Fix a tuple of graphs (\scrG 1, . . . ,\scrG d) on vertex set [2d - 1]. As-
sume that it is a valid graphical description for W \subset (\BbbR 2)\otimes d. Then each \scrG j is a
complete bipartite graph K2d - 2,2d - 2 . This graphical description satisfies the bound
from Conjecture 4.13 with equality.

Proof. First, we show that \scrG d is connected, and the same argument works for any
\scrG j . Since each \scrG j is bipartite, they are two-colorable. We label each vertex with a
binary string of length d - 1 such that if two vertices are connected in \scrG j , their labels
differ in the jth position. All vertices have distinct labels, as follows. Two vertices
with the same label are not connected in any of \scrG 1, . . . ,\scrG d - 1. So even if they were
connected in \scrG d, there is at most one edge between them. Hence each of the 2d - 1

possible labels is used exactly once. Moreover, if two labels differ in only one position,
then they are only connected in one of \scrG 1, . . . ,\scrG d - 1, hence they are connected in \scrG d.

We construct a path between any two vertices u and v in \scrG d, as follows. Let u and
v be labeled by binary strings \ell u and \ell v in \{ 0,1\} d - 1. We can convert \ell u into \ell v via a
sequence of binary strings, each differing from the previous one in only one position.
Since every binary string is a vertex in our graph, this is a sequence of vertices in the
graph. All vertices with labels that differ in only one position are connected in \scrG d.
Hence it is a path in \scrG d.

We have shown that each \scrG j is connected. Let A,B be two independent sets
of \scrG j , so that every edge in \scrG j connects a vertex from A with a vertex from B.
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DECOMPOSING TENSORS VIA RANK-ONE APPROXIMATIONS 301

Then | A| = | B| = 2d - 2, otherwise we would need to connect more than 2d - 2 ver-
tices, with at least two edges for every pair of vertices, using only d  - 1 graphs, a
contradiction to Proposition 4.14.

Corollary 4.16. If the difference W2d - 1 \setminus W2d - 1 - 1 \subset (\BbbR 2)\otimes d is nonempty,

then it consists of basis-aligned tensors (up to closure), so dim
\Bigl( 
W2d - 1 \setminus W2d - 1 - 1

\Bigr) 
=

2d - 1 + d.

Proof. The first part of the statement follows from Proposition 4.15. The second
part follows from Theorem 1.4 and Proposition 4.12.

Corollary 4.17. The variety W2d - 1 \setminus W2d - 1 - 1 \subset (\BbbR 2)\otimes d is irreducible.

Proof. The statement is vacuously true ifW2d - 1\setminus W2d - 1 - 1 =\varnothing . Otherwise, Corol-
lary 4.16 implies thatW2d - 1 \setminus W2d - 1 - 1 consists of basis-aligned tensors. In particular,
a two-orthogonal decomposition with 2d - 1 summands comes from a Latin hypercube.
Two Latin cubes are isotopic if one can be obtained from the other by permuting its
rows, columns, and symbols. Similarly, two Latin hypercubes are called isotopic if one
can be obtained from the other by permuting its mode-k fibers (e.g., rows, columns,
tubes, etc.) and symbols. Two-orthogonal decompositions coming from two isotopic
Latin squares lie in the same irreducible component since permuting mode-k fibers
and symbols can be seen as acting with an element of SO(n). The number of isotopy
classes of a Latin d-cube on n = 2 symbols is 1, by induction. The case d = 2 (i.e.,
a Latin square) is well known. A 3-cube can be thought of as a 2-cube on symbols
(1,2) and (2,1). The same reasoning extends to higher-dimensional cubes.

The following two results provide more evidence for Conjecture 4.13.

Proposition 4.18. Fix a tuple of graphs (\scrG 1, . . . ,\scrG d) on vertex set [r]. Assume
that it is a valid graphical description for W \subset (\BbbR 2)\otimes d. Let \scrG d be a disjoint union of
cd complete bipartite graphs. Then cd + r\leq 2d - 1 + 1 with equality only if r= 2d - 1.

Proof. If r = 2d - 1, then cd = 1, by Proposition 4.15. Suppose that r < 2d - 1.
Each vertex in \scrG d can be labeled with a binary string of length d - 1, given by two-
colorings of \scrG 1, . . . ,\scrG d - 1. All labels are distinct and labels at Hamming distance one
are connected in \scrG d. We show that for every connected component in \scrG d there is a
binary string that cannot be a label for a vertex in \scrG d. Consider a Hamiltonian cycle
on the hypercube \{ 0,1\} d - 1, where vertices of Hamming distance one are connected.
This induces a linear ordering \ell 1 \prec \cdot \cdot \cdot \prec \ell 2d - 1 . Since r < 2d - 1 we can assume that
\ell 1 does not label any vertex in \scrG d. Given a connected component \scrH i of \scrG d, let \ell mi

be the minimal label appearing in \scrH i. Then \ell mi - 1 cannot label any vertex in \scrG d.
Of course, for different connected components, the corresponding minimal labels are
different. Therefore, cd + r\leq 2d - 1 < 2d - 1 + 1.

Corollary 4.19. Fix a tuple of graphs (\scrG 1, . . . ,\scrG d) on vertex set [r]. Assume
that it is a valid graphical description for W \subset (\BbbR 2)\otimes d. Suppose that \scrG 1, \cdot \cdot \cdot ,\scrG d - 1 are
connected. If \scrG d is not connected, then

dimIm(\psi (\scrG 1,...,\scrG d))< 2d - 1 + d.

Proof. It follows from Proposition 4.12 and Proposition 4.18.

The previous results combine to give the following.

Corollary 4.20. If Conjecture 4.13 is true, then W2d - 1 - 1 \not = W2d - 1 and
W2d - 1 \setminus W2d - 1 - 1 is an irreducible variety. Moreover, dimW2d - 1 \setminus W2d - 1 - 1 = 2d - 1+d
and dimW2d - 1 - 1 < 2d - 1 + d.
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302 \'A. RIBOT, E. HOROBET, A. SEIGAL, AND E. T. TURATTI

5. 2\times 2\times 2 tensors.

5.1. Stratification and equations of the two-orthogonal variety. In this
section we study the two-orthogonal variety W \subseteq (\BbbR 2)\otimes 3. We describe the varieties
in the chain

W1 \subseteq W2 \subseteq W3 \subseteq W4 =W.

In Table 1 we saw a combinatorial description of the two-orthogonal variety in (\BbbR 2)\otimes 3.
Here we describe this variety algebraically. Consider the Euclidean inner product in
\BbbR 2 and let \{ e0, e1\} be an orthonormal basis of \BbbR 2. Using these coordinates, we express
a tensor as \scrT =

\sum 
i,j,k\in \{ 0,1\} tijkei\otimes ej\otimes ek. The equations shown below were obtained

with Macaulay2.
Recall that each of the Wr's is invariant under the action of G = SO(2)\times 3 on

(\BbbR 2)\otimes 3. This gives a concise way to describe our varieties: we only give a represen-
tative of each orbit. Let u \in \BbbR 2 be an arbitrary unit vector, and let \lambda 1, \lambda 2, \lambda 3, \lambda 4 \in \BbbR 
be arbitrary scalars.

First, we have W1 =X, the cone over the Segre variety. The tensors in W1 are of
the form

\lambda 1e0 \otimes e0 \otimes e0 \in W1,

up to the action of G. The equations defining W1 are the 2 \times 2 minors of all the
flattenings [14, Example 2.11].

Tensors in W2 \setminus W1 consist of two summands that are orthogonal in at least two

factors. Let us denote by W
\{ i,j\} 
2 the tensors in W2 whose two-orthogonal decomposi-

tions are orthogonal in the ith and jth factors. We have three families of tensors:

\lambda 1e0 \otimes e0 \otimes e0 + \lambda 2u\otimes e1 \otimes e1 \in W \{ 2,3\} 
2 ,

\lambda 1e0 \otimes e0 \otimes e0 + \lambda 2e1 \otimes u\otimes e1 \in W \{ 1,3\} 
2 ,

\lambda 1e0 \otimes e0 \otimes e0 + \lambda 2e1 \otimes e1 \otimes u\in W \{ 1,2\} 
2 .

The equations defining each of these irreducible components are

W
\{ 2,3\} 
2 :

\Biggl\{ 
 - t000t101 + t100t001  - t010t111 + t110t011 = 0,

 - t000t110 + t100t010  - t001t111 + t101t011 = 0,

and we obtain the equations for the other two by swapping indices. Each component
is defined by a subset of the equations defining the odeco tensors, as discussed in
Remark 2.9. The intersection of the three components is the odeco variety.

Given \scrT = \lambda 1e0 \otimes e0 \otimes e0 + \lambda 2u \otimes e1 \otimes e1 \in W2, to add a third summand to
\scrT satisfying two-orthogonality we need u = \pm e0. We can then add \lambda 3e1 \otimes e0 \otimes e1
or \lambda 3e1 \otimes e1 \otimes e0. Both two-orthogonal decompositions have the same orthogonality
pattern between summands, up to permutation. If we repeat this analysis for the other
two components of W2 we also get equivalent tensors. Hence W3 \setminus W2 is irreducible
and consists of tensors of the form

\lambda 1e0 \otimes e0 \otimes e0 + \lambda 2e0 \otimes e1 \otimes e1 + \lambda 3e1 \otimes e0 \otimes e1.

The variety W3 \setminus W2 is defined by two polynomials. One is Cayley's hyperdetermi-
nant:
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DECOMPOSING TENSORS VIA RANK-ONE APPROXIMATIONS 303

Table 2
Description of the two-orthogonal variety in (\BbbR 2)\otimes 3.

Variety Codimension Degree \#components Generators per component

W1 =X 4 6 1 9 quadrics

odeco 3 8 1 3 quadrics

W2 =W2 \setminus W1 2 12 3 2 quadrics

W3 \setminus W2 2 16 1 2 quartics

W4 \setminus W3 1 4 1 1 quartic

W=W4 \setminus W3\cup W2 1 4 4 1 quartic / 2 quadrics

Det(\scrT ) = t2000t
2
111 + t2001t

2
110 + t2010t

2
101 + t2100t

2
011

 - 2 t000t001t110t111  - 2 t000t010t101t111  - 2 t000t100t011t111

 - 2 t001t100t011t110  - 2 t001t010t101t110  - 2 t010t100t011t101

+ 4 t000t011t101t110 + 4 t001t010t100t111.

The other polynomial is a quartic with 40 monomials. This quartic is invariant under
the action of SO(2)\times 3. In particular, it is invariant under flipping indices 0\updownarrow 1. After
such relabeling, there are 5 distinct monomials. Consider the homogenization of the
polynomial that defines the elliptope [23]:

g(z1, z2, z3, z4) = 2z1z2z3 + z21z4 + z22z4 + z23z4  - z34 .(5.1)

Then, the other quartic that defines W3 \setminus W2 is

f(\scrT ) =
\sum 

(i,j,k)\in \{ 0,1\} 3

( - 1)i+j+k ti,j,k g(ti+1,j,k, ti,j+1,k, ti,j,k+1, ti+1,j+1,k+1),(5.2)

where the sum in the indices is taken modulo 2. Hence, W3 \setminus W2 =Z(f)\cap Z(Det).
Finally, the tensors in W4 \setminus W3 are of the form

\lambda 1e0 \otimes e0 \otimes e0 + \lambda 2e0 \otimes e1 \otimes e1 + \lambda 3e1 \otimes e0 \otimes e1 + \lambda 4e1 \otimes e1 \otimes e0,

and W4 \setminus W3 is the zero locus of f , from (5.2). The above combines to give the
following.

Proposition 5.1. Table 2 describes the stratification of the two-orthogonal va-
riety in (\BbbR 2)\otimes 3. We have the inclusions W1 \subset odeco \subset W2 and W3 \setminus W2 \subset W4 \setminus W3.
Hence, W =W4 \setminus W3 \cup W2.

Given \scrT \in (\BbbR 2)\otimes 3, we seek the closest two-orthogonal tensor to \scrT . To do so, we
compute the critical points of \| \scrT  - \scrS \| 2 over \scrS \in W and choose the one that minimizes
this quantity. The Euclidean distance degree (ED degree) of a variety is the number
of critical points of the squared Euclidean distance to a general point outside the
variety [8]. For example, the ED degree of the variety of rank-one tensors X \subset (\BbbR 2)\otimes 3

is six [12]. Applying the technique in [8], we compute EDdegree(W4 \setminus W3) = 12 and

EDdegree(W
\{ i,j\} 
2 ) = 4 for all i \not = j \in [3]. Since the ED degree is additive over the

irreducible components, the ED degree of the two-orthgonal variety W =W4 \setminus W3 \cup 
W2 \subset (\BbbR 2)\otimes 3 is 24.
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5.2. Generic identifiability of two-orthogonal decompositions. In Exam-
ple 2.15 we saw that two-orthogonal decompositions are not always unique. We show
that they are unique for sufficiently general 2\times 2\times 2 tensors.

Remark 5.2. There exist symmetric two-orthogonal tensors that do not have a
symmetric two-orthogonal decomposition. We will see that the symmetric tensor

\scrT = \lambda e0 \otimes e0 \otimes e0 + e0 \otimes e1 \otimes e1 + e1 \otimes e0 \otimes e1 + e1 \otimes e1 \otimes e0 \in W4 \cap S3(\BbbR 2)\subset (\BbbR 2)\otimes 3

does not admit a two-orthogonal decomposition with fewer terms for a sufficiently
general \lambda . The real tensors with symmetric two-orthogonal decompositions are odeco
tensors. Hence \scrT does not admit a symmetric odeco decomposition.

Theorem 1.5. A generic tensor in W \subseteq (\BbbR 2)\otimes 3 has a unique two-orthogonal
decomposition.

Proof. The two-orthogonal variety in (\BbbR 2)\otimes 3 has 4 irreducible components:

W =W4 \setminus W3 \cup W \{ 2,3\} 
2 \cup W \{ 1,3\} 

2 \cup W \{ 1,2\} 
2 .

We show that a generic tensor from each component has six singular vector tuples
and only those appearing in the two-orthogonal decomposition are orthogonal. This
implies the uniqueness of the two-orthogonal decomposition. First, let \scrT be a generic
tensor from W4 \setminus W3:

\scrT = \lambda 1e0 \otimes e0 \otimes e0 + \lambda 2e0 \otimes e1 \otimes e1 + \lambda 3e1 \otimes e0 \otimes e1 + \lambda 4e1 \otimes e1 \otimes e0.

The singular vector tuples are u\otimes v\otimes w such that

det

\biggl( 
\lambda 1v0w0+\lambda 2v1w1 u0
\lambda 3v0w1+\lambda 4v1w0 u1

\biggr) 
=det

\biggl( 
\lambda 1u0w0+\lambda 3u1w1 v0
\lambda 2u0w1+\lambda 4u1w0 v1

\biggr) 
=det

\biggl( 
\lambda 1v0u0+\lambda 4v1u1 w0

\lambda 2u0v1+\lambda 3u1v0 w1

\biggr) 
=0.

This gives linear conditions in the monomials \{ uivjwk\} . Suppose that u0 = 0 and
u1 = 1. If v0 = 0, then w1 = 0, which gives solution e1 \otimes e1 \otimes e0. If v0 = 1, then
w0 = v1 = 0, which gives solution e1 \otimes e0 \otimes e1. The case u1 = 0 is analogous and we
obtain the other two terms in our decomposition.

Now, fix u1 = v1 =w1 = 1 and let g be the homogenization of the elliptope (5.1).
We get

u0  - 2\lambda 1\lambda 2\lambda 3+\lambda 2
1\lambda 4+\lambda 2

2\lambda 4+\lambda 2
3\lambda 4 - \lambda 3

4

\lambda 2
1\lambda 2 - \lambda 3

2+\lambda 2\lambda 2
3+2\lambda 1\lambda 3\lambda 4+\lambda 2\lambda 2

4
w0 = u0  - g(\lambda 1,\lambda 2,\lambda 3,\lambda 4)

g(\lambda 1,\lambda 3,\lambda 4,\lambda 2)
w0 = 0,

v0  - 2\lambda 1\lambda 2\lambda 3+\lambda 2
1\lambda 4+\lambda 2

2\lambda 4+\lambda 2
3\lambda 4 - \lambda 3

4

\lambda 2
1\lambda 3+\lambda 2

2\lambda 3 - \lambda 3
3+2\lambda 1\lambda 2\lambda 4+\lambda 3\lambda 2

4
w0 = v0  - g(\lambda 1,\lambda 2,\lambda 3,\lambda 4)

g(\lambda 1,\lambda 2,\lambda 4,\lambda 3)
w0 = 0,

w2
0 +

(\lambda 2
1\lambda 3+\lambda 2

2\lambda 3 - \lambda 3
3+2\lambda 1\lambda 2\lambda 4+\lambda 3\lambda 

2
4)(\lambda 

2
1\lambda 2 - \lambda 3

2+\lambda 2\lambda 
2
3+2\lambda 1\lambda 3\lambda 4+\lambda 2\lambda 

2
4)

(2\lambda 1\lambda 2\lambda 3+\lambda 2
1\lambda 4+\lambda 2

2\lambda 4+\lambda 2
3\lambda 4 - \lambda 3

4)(\lambda 3
1 - \lambda 1\lambda 2

2 - \lambda 1\lambda 2
3 - 2\lambda 2\lambda 3\lambda 4 - \lambda 1\lambda 2

4)
=

=w2
0  - 

g(\lambda 1,\lambda 2,\lambda 4,\lambda 3)g(\lambda 1,\lambda 3,\lambda 4,\lambda 2)
g(\lambda 1,\lambda 2,\lambda 3,\lambda 4)g(\lambda 2,\lambda 3,\lambda 4,\lambda 1)

= 0.

So we obtain two solutions:

\left(  u0
v0
w0

\right)  =\pm 

\left(      
\Bigl( 

g(\lambda 1,\lambda 2,\lambda 3,\lambda 4)g(\lambda 1,\lambda 2,\lambda 4,\lambda 3)
g(\lambda 1,\lambda 3,\lambda 4,\lambda 2)g(\lambda 2,\lambda 3,\lambda 4,\lambda 1)

\Bigr) 1
2\Bigl( 

g(\lambda 1,\lambda 2,\lambda 3,\lambda 4)g(\lambda 1,\lambda 3,\lambda 4,\lambda 2)
g(\lambda 1,\lambda 2,\lambda 4,\lambda 3)g(\lambda 2,\lambda 3,\lambda 4,\lambda 1)

\Bigr) 1
2\Bigl( 

g(\lambda 1,\lambda 2,\lambda 4,\lambda 3)g(\lambda 1,\lambda 3,\lambda 4,\lambda 2)
g(\lambda 1,\lambda 2,\lambda 3,\lambda 4)g(\lambda 2,\lambda 3,\lambda 4,\lambda 1)

\Bigr) 1
2

\right)      .
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This gives six singular vector tuples, the number of singular vector tuples of a generic
2\times 2\times 2 tensor [12]. For generic \lambda i's we have u20, v

2
0 ,w

2
0 \not = 0,1, which implies that the

two new critical two rank-one approximations are not orthogonal to each other or to
the summands appearing in the decomposition.

Now let \scrT be a generic tensor from W
\{ 1,2\} 
2 . The argument works analogously for

the other two components of W2. After an orthogonal change of basis and rescaling,

\scrT = e0 \otimes e0 \otimes e0 + \lambda e1 \otimes e1 \otimes y

with y= (y0,1)\in \BbbR 2 and \lambda \in \BbbR . The singular vector tuples are u\otimes v\otimes w such that

det

\biggl( 
v0w0 u0

\lambda v1\langle y,w\rangle u1

\biggr) 
=det

\biggl( 
u0w0 v0

\lambda u1\langle y,w\rangle v1

\biggr) 
=det

\biggl( 
v0u0 + \lambda y0v1u1 w0

\lambda u1v1 w1

\biggr) 
= 0.

Suppose that u0 = 1 and u1 = 0. This, implies v1 = w1 = 0, which gives the solution
e0 \otimes e0 \otimes e0. The cases v1 = 0 and w1 = 0 are analogous. Now, fix u1 = v1 = w1 = 1.
We get five solutions. One of them is the second summand from the decomposition
given before. The other four are

\left(  u0
v0
w0

\right)  =

\left(     
\pm 
\Bigl( 

\lambda 2y2
0+\lambda 2 - \lambda y0

1 - \lambda y0

\Bigr) 1
2

\pm 
\Bigl( 

\lambda 2y2
0+\lambda 2 - \lambda y0

1 - \lambda y0

\Bigr) 1
2

\lambda 
1 - \lambda y0

\right)     ,

\left(  u0
v0
w0

\right)  =

\left(     
\mp 
\Bigl( 

\lambda 2y2
0+\lambda 2+\lambda y0

1+\lambda y0

\Bigr) 1
2

\pm 
\Bigl( 

\lambda 2y2
0+\lambda 2+\lambda y0

1+\lambda y0

\Bigr) 1
2

 - \lambda 
1+\lambda y0

\right)     .

For generic y0, \lambda \in \BbbR , the only singular vector tuples orthogonal to each other are the
ones from the decomposition given before. So the two-orthogonal decomposition is
unique.

Using an analogous approach, one can verify that a two-orthogonal decomposition
with 8 summands in (\BbbR 2)\otimes 4 is unique. It would be interesting to generalize this result
to bigger tensors. We present the following conjecture.

Conjecture 5.3. A generic two-orthogonal tensor in \BbbR n1\otimes \cdot \cdot \cdot \otimes \BbbR nd has a unique
two-orthogonal decomposition (up to reordering of the summands). In particular, the
chain

W1 \subseteq W2 \subseteq \cdot \cdot \cdot \subseteq Wr \subseteq \cdot \cdot \cdot 

stabilizes exactly at N =mink\in [d]

\prod 
j \not =k nj. That is, WN - 1 \not =WN =WN+1 = \cdot \cdot \cdot .

Open questions. In this work, we study tensors that can be decomposed via a
sequence of critical rank-one approximations. We focus on the decompositions that
are order-independent, which we show to be characterized by the two-orthogonal
property. In addition to the conjecture above, there are several open directions for
future investigation. We show in Proposition 5.1 that a generic 2 \times 2 \times 2 tensor
does not have a two-orthogonal decomposition. We believe this is also true for larger
higher-order tensors, since it is a closed property on the singular vector tuples, but
do not know the dimension of the two-orthogonal variety and if it can fill the space of
tensors. We propose to study this problem by introducing the notion of valid graphical
descriptions, which also leaves open directions of future work. For binary tensors of
order d, we conjecture that the dimension of the two-orthogonal variety is 2d - 1 + d
(Conjecture 4.13) and connect this to a question about bipartite graphs. Finally, we
conjecture that the notions of rank and two-orthogonal rank coincide generically up
to the generic rank (Conjecture 2.20) and we provide evidence for small tensors.
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