Downloaded 02/20/26 to 73.119.45.168 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. MATRIX ANAL. APPL. © 2026 Society for Industrial and Applied Mathematics
Vol. 47, No. 1, pp. 282-307

DECOMPOSING TENSORS VIA RANK-ONE APPROXIMATIONS*
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Abstract. Matrices can be decomposed via rank-one approximations: the best rank-one ap-
proximation is a singular vector pair, and the singular value decomposition writes a matrix as a sum
of singular vector pairs. The singular vector tuples of a tensor are the critical points of its best rank-
one approximation problem. In this paper, we study tensors that can be decomposed via successive
rank-one approximations: compute a singular vector tuple, subtract it off, compute a singular vector
tuple of the new deflated tensor, and repeat. The number of terms in such a decomposition may
exceed the tensor rank. Moreover, the decomposition may depend on the order in which terms are
subtracted. We show that the decomposition is valid independent of order if and only if all singular
vectors in the process are orthogonal in at least two factors. We study the variety of such tensors. We
lower bound its dimension, showing that it is significantly larger than the variety of odeco tensors.
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1. Introduction. For matrices, critical rank-one approximations combine to
give the singular value decomposition: a matrix M can be decomposed via succes-
sive critical rank-one approximations as M — Ajuy @ v1 — - -+ — Apuy ® v, = 0, where
r = rank(M). Each term M\u; ® v; is a critical rank-one approximation of both the
original matrix M and the deflated matrix M — Zj<i Ajuj ® vj. According to the
Schmidt—Eckart—Young theorem [10], truncating to the k largest \;’s gives the best
rank-k approximation of M. Thus, the best rank-k approximation problem reduces
to iteratively solving best rank-one approximation problems.

Low-rank approximation of tensors can also be computed via rank-one updates.
Though this approach may not lead to the best low-rank approximation [20, 31], it
has proven successful in practice [38, 30, 1]. Numerically, a rank-one approximation
can be computed efficiently with the power method and its variants [6, 21], for which
there are convergence guarantees [34].

For tensors of order 3 or higher, a best rank-r approximation may not even exist
for r > 1 [7], but a best rank-one approximation always exists because the set of rank-
one tensors is closed. However, note that computing a best rank-one approximation
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Algorithm 1.1. Decompose 7 via rank-one approximations.
Input: Tensor T eR™ ® --- Q@ R™
1: =1
2: §=T
3: while § #0 do
4: Compute a critical rank-one approximation x; = xgl) Q- ® :cgd) of S
5
6
7

Deflate S+ S — z;
1+—1+1
: end while
Output: Decomposition 7 =3, x;.

is NP-hard [17]. A global approach to computing a best rank-one approximation of a
tensor is to compute the critical points of the distance function to the variety of rank-
one tensors and to choose a critical point whose residual is smallest. A generic tensor
has a finite number of such critical points [12]. These are the singular vector tuples of
the tensor [25]. We use the terms critical rank-one approximation and singular vector
tuple interchangeably.

A minimal decomposition via rank-one approximations is known to exist only on
a measure zero set; see the Schmidt—Eckart—Young decomposition in [35]. In this
article, rather than producing a minimal decomposition via rank-one approximations,
we are interested in tensors that are a finite sum of critical rank-one approximations.
The decomposition need not be of minimal length. That is, we seek those tensors T
for which there exists a decomposition 7 = Y_/_, z; such that each x; is a critical
rank-one approximation of 73, ; Ti- These are the tensors for which the following
algorithm terminates for some rank-one approximations x;.

The varieties of tensors that admit such a decomposition are data loci in the sense
of [18]. We denote by DL, the variety of tensors that admit such a decomposition
of length r. We obtain a chain of varieties DLy C DLy C -+, such that any tensor
T € DL, has a rank-one approximation x with 7 —x € DL,._;. For symmetric tensors,
this chain of varieties stabilizes and the limit is the variety of weakly odeco tensors
[19]. For matrices, DL, is the variety of matrices of rank at most r, so the chain also
stabilizes, filling the ambient space. In general, the rank-one tensor x; need not be a
singular vector tuple of T for ¢ > 2. That is, the decomposition is order dependent.

Ezample 1.1. Let {eg,e1} be an orthonormal basis of R?, and fix

T=€1®(60+61)®(€0—61)+€0®€1®€1 +egReyPeg € (R2)®3.

x1 T2 x3

We observe that 7 € DL3, and that z; is a critical rank-one approximation of T, but
2o and x3 are not critical rank-one approximations of 7.

We consider subvarieties of DL, consisting of tensors for which the decomposition
does not depend on the order. These are the tensors 7 =)_._, z; in which, for any
order of the summands, z; is a critical rank-one approximation of 7 — 3, _ ; Ti- In
particular, every z; is a critical rank-one approximation of the original tensor 7.
Put differently, for these tensors Algorithm 1.1 terminates with S replaced by T in
line 4. While a generic tensor lies in the span of its singular vector tuples [9], one does
not know the coefficient of each singular vector tuple, i.e., how much of each one to
subtract off. For the tensors we consider, the coefficient of each singular vector tuple
is its singular value, so the tensor is a sum of critical rank-one approximations.
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F1G. 1. The affine slice of the two-orthogonal variety in R? @ R2 @ R? when to1o = 1,t100 =
2t000,t110 = 1,t101 = 2,t011 = 3. The image on the right is a zoomed-in and rescaled version of the
image on the left. The surface is Wy \ W3. The black curve is W3 \ Wa. The red, green, and blue
curves are the three components of Wa. The intersection of these three curves is the odeco variety.
These plots were made with Mathematica [37]. Note: color appears only in the online article.

One class of tensors known to possess such a property are the odeco gorthogonally
decomposable) tensors, those that have a decomposition T = 22:1 :rl(»l R ® :cl(-d)
such that for all i # j we have the orthogonality :cz(-k) il xék) in all factors 1 <k <d
[28, 29]. We relax this notion by requiring only that for all ¢ # j, the ith and jth
summands are orthogonal in at least two factors. We call such a decomposition two-
orthogonal. We define W,. to be the Zariski closure of the set of tensors that have
a two-orthogonal decomposition of length at most r. The two-orthogonal variety is
W =U,>, W,. See Figure 1.

The notion of a two-orthogonal tensor also appears in [35, Definition 3.2], where
it is called weakly two-orthogonal. We drop “weakly” to avoid confusion with the
weakly odeco tensors, which appear in [19]. Two-orthogonality is necessary for hav-
ing a Schmidt—Eckart—Young decomposition [35, Theorem 3.3]. The singular value
decomposition implies that every matrix is two-orthogonal. For symmetric decompo-
sitions, two-orthogonality implies orthogonality in all factors, so it leads to an odeco
tensor. We will see that a generic 2 x 2 X 2 tensor is not two-orthogonal in sec-
tion 5. We believe this is the general behavior for tensors of order at least three, as
two-orthogonality imposes closed conditions on the singular vector tuples.

Now we state our main results. First, we show that the two-orthogonal tensors
are the tensors that can be decomposed via rank-one approximations.

THEOREM 1.2. The set of two-orthogonal tensors in R™ ®- - -®@R"™ coincides with
the set of tensors with a decomposition T = Y_._, x; such that each x; is a critical
rank-one approvimation of T — ) ;.7 x; for all TC{1,...,r}\ {j}.

Two-orthogonal decompositions cannot have arbitrarily many summands. We
count the maximum number of possible summands in the following.

THEOREM 1.3. The maximal length of a two-orthogonal decomposition in R™ &
- @R 45 N = minj<g<q Hj;ék nj. In particular, the two-orthogonal variety is
W=Wy.

By constructing two-orthogonal decompositions of maximal length, we parame-
trize a family of two-orthogonal tensors with a dimension-preserving map. This gives
a lower bound on the dimension of the two-orthogonal variety.
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THEOREM 1.4. The dimension of the two-orthogonal variety in (R™)®? is at least

d—1 n
d .
n + <2>

In V = (R")®? the odeco variety has dimension n + d(g) Hence, the dimension
of the two-orthogonal variety exceeds that of the odeco variety by at least n(n?=2—1).
Finally, we show that two-orthogonal decompositions are generically identifiable for
2 x 2 x 2 tensors. We suspect that this is also true for generic two-orthogonal tensors
inR"®- - @R™.

THEOREM 1.5. A generic tensor in W C (R*)®3 has a unique two-orthogonal
decomposition.

The article is organized as follows. In section 2 we study the main properties of
two-orthogonal decompositions. We prove Theorems 1.2 and 1.3, we introduce the
notion of two-orthogonal rank and how it relates to the usual rank, and we extend
some of our results to partially symmetric tensors. We also show that truncating two-
orthogonal decompositions may lead to best low-rank approximations and answer an
open question posed in [35]. In section 3 we prove Theorem 1.4. In section 4 we provide
a parametric description of the two-orthogonal variety using graphs, with a focus on
binary tensors. There is an interplay between algebraic geometry and combinatorics,
with open directions for future work. Finally, in section 5 we provide an algebraic
description of the two-orthogonal variety in (R?)®3 and prove Theorem 1.5.

2. Two-orthogonal decompositions. Let V = R™ ® --- ® R™ with d > 2
and each ny > 2. Let X ={v1 ®--- Q@ vy | vp € R™} C V denote the cone over the
Segre variety, the set of rank-one tensors. Let (-, -} be nondegenerate bilinear forms
in R™ for k =1,...,d. They induce a nondegenerate bilinear form in V, called the
Bombieri—-Weyl inner product, defined on two rank-one tensors as

d
(V1@ @ug, w1 ® - ®’U)d:H'Uk7wk

and extended to all of V' by bilinearity. We write vy L wy to denote orthogonality:
(vg,wk)r =0. Given a positive integer n, let [n] = {1,...,n}, and let {e1,...,e,} be
an orthonormal basis of R™. We use the same letters for the bases of different factors
of V. That is, the set {e;, @ --- ®e;, | ir € [nk]} is an orthonormal basis of V. Let
|| - || denote the Frobenius norm on V induced by the inner product.

DEFINITION 2.1. A two- orthogonal decomposition of T is an expression T =
Z: 1%i, where x; = x( ) R ® 37 ;é 0 and all pairs of summands x; and x; with
i # j are orthogonal in at least two factors: there exist indices ki1 # ko such that

(kl)J_x] Y and (kQ)J_ (k2 . A tensor T is two-orthogonal if it has a two-orthogonal
decomposition for some r

Remark 2.2. The summands in a two-orthogonal decomposition are orthogonal
to each other. Hence, a two-orthogonal decomposition 7 = Y./_, 2; has ||T|* =

i sl
DEFINITION 2.3. Given a tensor T €V, a rank-one tensor t =z @--- @ 2@ s
a singular vector tuple of T if for all k € [d] there exists A, € R such that

’T(x(l), B L gD ,I’(d)) =Mpz®,

)
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where T is viewed as a multilinear map and R™ is identified with its dual (R™)* via
(e If () 2N, =1 for all k, then A\, = X\ for all k, and X is called the singular
value of x.

Remark 2.4. We consider singular vector tuples defined over R, though they are
usually defined over C. We focus on R because approximating tensors by rank-one
tensors is done primarily on the real numbers in applications. To define them over
C, one considers the bilinear form (-,-); as an extension of a real inner product to
a complex product instead of opting for a Hermitian inner product. However, such
extensions introduce isotropic vectors: v € C™ \ {0} with (v,v);, = 0. While a
general tensor has no isotropic singular vector tuples [9, Proposition 2.6], our tensors
are special. In fact, self-orthogonality plays a role in the study of symmetric odeco
tensors [19]. We leave the study of two-orthogonal tensors in C" ®---@C"™¢ for future
work.

We view singular vector tuples as points in the corresponding Segre product
[12]. Hence, the normalization (z*),z(*)); =1 is without loss of generality, although
it is necessary for the singular value to be well defined. Let 7 = Y./, z; be a
two-orthogonal decomposition. Then, each x; is a singular vector tuple for 7 and,
after normalizing each factor, the corresponding singular value is ||z;||. We recall the
following facts.

PROPOSITION 2.5. Fiz T €V andz =M @---@z@ c X\ {0} C V.
1. The tangent space to X at x is

d
T.X=Y eV e @z*DegR™*gs*)g...@a@,
k=1

2. Suppose that () )Y, =1 for all k € [d], then = is a singular vector tuple
of T with singular value X if and only if T — Az € N, X = (T, X)*, the normal
space to X at x.

3. The singular vector tuples correspond to the critical points of the distance
function dr(y) :=(T —y, T —y), ony € X. A singular vector tuple x with
nonzero singular value X corresponds to the critical rank-one approximation
Az, and vice versa.

Proof. Part (1) follows by applying the Leibniz rule to the parametrization of X.
For part (2), the equations in Definition 2.3 are equivalent to

(T30 @ 026D @y @ 26D g g @y 2 \u®) 50)y,
for all v(®) € R™. Since (z®), z(*)), =1 for all k € [d], this can be rewritten as
(T = Az,2® @ - @ 2D @ o® @ z(+1) g ... g gy —
for all] v®) € R™ so the statement follows. Part (3) follows from (2); see [25, sec-
tion 3|. 0

The following proposition shows that every tensor can be approximated as a sum
of critical rank-one approximations: subtracting off best rank-one approximations
decreases the norm of a tensor, and the norm of the residual tends to zero in the limit.
This has been studied before [11, 27], but we will provide a proof for completeness.

PROPOSITION 2.6. Fiz a tensor T e R™ @ --- @ R™. For each j €N, let x; be a

best rank-one approximation of T — Ziq z;. Then Y ! x; =T asn— oco.
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Proof. We show that |7 — > " z;|| = 0 as n — co. Let || - ||, denote the spectral
norm. We have ||z1]] = ||T||s, by the definition of best rank-one approximation.
Moreover, || T]|?> = ||T — z1||* + ||«1]|?, since a critical rank-one approximation x; and
its residual 7 — x1 are orthogonal. Hence

1T = = 1T = I 75 < (2 = AT,

where the constant ¢ > 0 relates the spectral and Frobenius norms, i.e., ¢||S|| < ||S||»
for all tensors S € R"* ®---®R™4. This constant exists because two norms in a finite-
dimensional vector space are equivalent. We have 0 < ¢ < 1, since ||S]|, < ||S]| if S is
not a rank-one tensor. Repeating the above for iterated best rank-one approximations
yields

1T =Y wl?<Q=ANT =Y wl?<---< (1= SY T
i<j 1<j
Since 0 <c <1, we have |7 =3, @[ =0 as n— oo. O

The previous result shows that one can use Algorithm 1.1 for any input tensor
T and get arbitrarily good approximations from a numerical perspective. We study
when these decompositions are exact, not just arbitrarily good. Moreover, as shown
in Example 1.1, these decompositions may be order dependent. We are interested in
decompositions that are valid independent of the order. The following result charac-
terizes these decompositions.

THEOREM 1.2. The set of two-orthogonal tensors in R™M ®- - -@R™ coincides with
the set of tensors with a decomposition T = Y_._, x; such that each x; is a critical
rank-one approvimation of T — ) ;7 x; for all TC{1,...,7}\ {j}.

Proof. For a rank-one tensor z =z() @ --- @ 2(¥ ¢ X CR™ @ --- ® R™ we have
that z is a critical rank-one approximation of a tensor 7 if and only if T —x € N, X,
and T, X =3 _ 20 @ - @R™ @--- @ z(®; see Proposition 2.5.

If T=3%,_, @ is two-orthogonal, then for all 7 # j we have x; € N, X. Therefore,
any linear combination ) ., . «;x; lies in N,;X. Hence, x; is a critical rank-one
approximation of 7 — 37,y x; for all ZC {1,...,r}\ {j}.

Conversely, consider a tensor T = 22:1 x; such that x; is a critical rank-one
approximation of 7 —3> ., x; for all ZC {1,...,7}\ {j}. Then, for any i # j, z; is a
critical rank-one approximation of z; + x;. Hence, z; € N, X. So, for all k € [d] and
all v, € R™ we have

DaV e 0u® . el =@, o®) ") =0.
I#k
These equations are satisfied if and only if there exist two indices ky # k2 € [d] such

that xl(kl) L zgkl) and 1:51”) L xEkZ). This holds for all pairs of summands, so 7 is a
two-orthogonal tensor. 0

DEFINITION 2.7. Define W, to be the variety of length-at-most-r two-orthogonal
tensors

.

WTZ{Z:E?)(X) e ®m§d) |x§k1)Lx§kl),x§k2)Lm§-k2) for at least two indices kﬁékQ}.
i=1

We allow zero summands here, so the length can be smaller than r. For r =1, no

conditions are imposed, so Wy = X 1is the set of rank-one tensors. The overline

denotes Zariski closure. We define the two-orthogonal variety to be W =, W,.
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Remark 2.8. The two-orthogonal variety W CV =R™ ® --- ® R™ is invariant
under the action of the product of special orthogonal groups G =SO(n1)x---xSO(ng)
on V, acting by change of basis in each factor.

Remark 2.9. The equations defining some components of the two-orthogonal
variety relate to the odeco equations [2, Theorem 9]. For example, consider a two-
orthogonal tensor 7 = x1 + 22 € Wy C (R2)®d such that z; and x5 are orthogonal
in the k1 th and koth factors, then Ty, T € @4, S%(R?) for i = 1,2, where i, denotes
contraction along the k;th factor and S?(R?) denotes the space of 2 x 2 symmetric
matrices. One can check that these equations define the components of Wy for (R?)®3
(see section 5) and (R?)®4. A similar argument may be used for some components
of W,, € (R")®?. Finding the implicit equations that describe the two-orthogonal
variety is left to future work.

2.1. Maximal length of two-orthogonal decompositions. From the defini-
tion of W,., we have a chain of varieties X =W; CW5 C..- CW,. C---. The following
result shows that this chain stabilizes in finitely many steps. That is, there exists
N € N such that Wy =Wy =---.

LEMMA 2.10. A two-orthogonal decomposition of a tensor in R™M ® --- @ R™ has
at most N = ming¢[q) Hj#k n; summands. In particular, the two-orthogonal variety is

W=Wy.

Proof. Fix T =z1+ - +xz, € W, CR" ®--- ® R", where x; :xz(»l) ®xz(»2) ®
o ® xl(vd) # 0 for all ¢ € [r] and these summands are orthogonal in at least two
factors. Without loss of generality, suppose that nq; < --- < ng. Consider the tensor
T =&+ +& € R" @..-@R"™-1 where &; = :1:1(»1) Q- ®1:Z(-d_1) for all ¢ € [r].
The tensors &; and &; are orthogonal (in at least one factor) for all ¢ # j, since z;
and z; are orthogonal in at least two factors. In particular, W, ... 2" are linearly
independent. Indeed, if we had #; = Zj# o, taking the inner product with Z;
leads to ||Z;||*> =0, a contradiction. In conclusion,

r=dim (Span{gﬁ(l), . ,56(7')}) <dim(RM @+ @R™-1) =njng---ng_1. O

DEFINITION 2.11 (see [26]). A Latin square L is an n x n matriz with elements
in [n] such that every row and every column of L are a permutation of [n]. Put
differently, for every i € [n] the maps k> L(i,k) and k — L(k,i) are permutations
of n. More generally, a Latin hypercube is an array L indexed by [n]? satisfying
the following: for every j € [d] and every (i1,...,ij—1,ij4+1,.--,i4) € [n]9~! the map
kv L(i1,...,t5—1,k,ij41,...,1q) is a permutation of [n].

There exists a Latin hypercube for every n and d, e.g., L(i1,...,iq) =41+ +1iq4
mod n, where the sum is understood to be an element in [n]. A Latin square L gives
two-orthogonal tensors of order three, as follows. Consider the set Z = {(4, 7, L(¢,J)) |
i,j € [n]} C [n]>. We can identify each tuple i = (i1,i2,i3) € Z with the rank-one
tensor e;; ® e;, ® e;,. Every pair of distinct tuples i,j € Z differs in at least two
indices. Therefore, the tensors e;; ® e;, ® e;;, and e;, ® e;, ® e;, are orthogonal in at
least two factors.

Ezample 2.12. Let V = (R3)®3. A 3 x 3 Latin square corresponds to a two-
orthogonal tensor in V' with 9 summands. For example,
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112]3 e1®@e1®er +e1@e2®ea +e1@ez@es
213 |1 ] o +ea®@e1@er+ea®@ea®e3+er@ez®@e
3 1 2 +63®61®63+63®62®61+63®€3®62.

Lemma 2.10 implies that the maximum number of summands of a two-orthogonal
tensor in V is nine. Each summand can be scaled arbitrarily and two-orthogonality
is preserved.

LEMMA 2.13. There exists a two-orthogonal decomposition in V =R™ ®-.-@R"™
with N =minge g [[; 2, nj summands.

Proof. We construct a two-orthogonal decomposition of maximal length using
Latin hypercubes. First, suppose ny = --- = ng = n. Let L be a Latin hypercube
indexed by [n]?~!. Consider the set T = {(i,...,iq_1,L(i1,...,iq_1)) | ir € [n]}.
Then |Z| =n?~! and every pair of tuples in Z differ in at least two indices. This gives
the family of two-orthogonal tensors in (R™)®4:

ZAieil ® ®eid
icZ

for any \j € R. Let V=R" ®@--- @ R", with n; < --- < ng. Consider a Latin
hypercube indexed by [nd,l]d*1 and choose a subarray of format n; X -+ X ng_1.
This gives a two-orthogonal decomposition of length n;---ng_1 in V, following the
same reasoning. 0

THEOREM 1.3. The mazimal length of a two-orthogonal decomposition in R™ ®
- @R™ 45 N = minj<k<gq Hj;ék nj. In particular, the two-orthogonal variety is
W=Wy.

Proof. Lemma 2.10 implies that a two-orthogonal decomposition cannot have
more than N = ming¢g Hj;ék n; summands. Lemma 2.13 shows how to construct
two-orthogonal decompositions with N summands. ]

Decompositions obtained from Latin hypercubes satisfy the following property.
DEFINITION 2.14. A two-orthogonal decomposition T =Y :_, xgl) R ® xl(d) 18
basis-aligned if for all k € [d] and all i,7 € [r], 2% and 2(F)

: 5 are either collinear or
orthogonal.

Not all two-orthogonal decompositions are basis-aligned. For example, consider
the decomposition T = e;®e; ®e1+(e1+e2)Qea®eq € Wa. We explore two-orthogonal
decompositions that are not basis-aligned in section 4.

2.2. Two-orthogonal rank. Two-orthogonal decompositions are not unique,

in general.

Ezample 2.15. Let d > 2, let V = (R?)®4 and let Z be the set of binary strings
of length d with an even number of ones: T = {(iy,...,iq) € {0,1}% | Zzzl ir =0
mod 2}. Let {eg,e1} be an orthogonal basis of R2. The following tensor admits two
different two-orthogonal decompositions:

1 1
T= ) en®-®e=gleo+e)®+(eo—e)®
(1,.42q)ET

The first decomposition has maximal length, but the second one shows that 7 € Wj.
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While Lemma 2.13 constructs two-orthogonal decompositions of maximal length,
it is unclear whether these tensors may have two-orthogonal decompositions with
fewer terms. We do not know whether the stabilization of the chain W; C W5 C ---
occurs exactly in N = ming¢[g H#k n; steps or before. That is, we do not know
whether Wy _1 = Wy. The previous example motivates the following definition.

DEFINITION 2.16. The two-orthogonal rank of a two-orthogonal tensor T € RM ®
-+ @R"™ 4s the smallest number r such that T admits a two-orthogonal decomposition
of length r.

The rank of a tensor 7 is the smallest number r such that 7 can be expressed
as the sum of r rank-one tensors. The two-orthogonal rank and rank coincide for
matrices, due to the singular value decomposition. For higher-order tensors, we can
only say that the two-orthogonal rank of T is at least the rank of 7. We will see in
section 5 that for 2 x 2 x 2 tensors the maximum two-orthogonal rank is 4 while the
maximum rank is 3.

The notions of rank and two-orthogonal rank could potentially coincide up to the
maximal rank. For example, in (R")®3, the maximal rank is at most $n(n+2)—1 [33,
Theorem 3.4], while the maximal potential two-orthogonal rank is n?. Proposition
2.17 shows that this is the case for small enough ranks. The border rank of a tensor
T is the smallest r such that 7 =lim._,o 7. where each 7. has rank r, and it may be
smaller than the rank of T (see Example 2.21).

PROPOSITION 2.17. In (R™)®4 W,_; CW, if r <n. Moreover, a general tensor
in Wi\ W,_1 with r <n has border rank r, so it has rank r.

Proof. After an orthogonal change of basis, an odeco tensor of two-orthogonal
rank 7 is of the form 7T=3>""_, )\iez@d for \; € R. This tensor has border rank r, e.g.,
by looking at the flattenings [22]. Therefore, W,._; # W,.. A property holds for a
general tensor if it holds on a dense open set, and odeco tensors of rank r lie in the
intersection of all the irreducible components of W,. \ W,._;. 0

This result can be improved by considering the following class of two-orthogonal
tensors. A decomposition 7=3""_, x2(1) ®--- ®xl(»d) €eR™ ®---®@R" is called strong
two-orthogonal ([35, Definition 3.5]) if the orthogonalities between summands always
occur in the same partition of the factors: there exists a nonempty set J C [d] such
that for all ¢ # j we have xgkl) 1 xgkl) and xEkQ) 1 x§-k2) for some indices k1 € J and
ks € [d]\ J. Put differently, the decomposition is still two-orthogonal when viewed as

a matrix decomposition in (®j€J R”J') ® (®j€] R"a’).
PROPOSITION 2.18. Let V=R™"M ®--- Q R" and let

m = max min g, n;
Jeld H ! H !
jeg  J&J
Then, for all r <m, a sufficiently general tensor of W, has border rank r. In partic-
ular, we have that W,—1 C W,.

Proof. By sufficiently general we mean that it holds for some components of
W, \W,_1. Consider a nonempty J ¢ [d]. Picking an orthogonal basis for &), , R™
and & 2T R™ we can construct a strong two-orthogonal decomposition of length
min{][;c 77, [[;¢7 7} By flattening the tensor into a matrix, the singular value
decomposition implies that strong two-orthogonal decompositions of length r lead to
tensors of border rank r; see [35, Theorem 3.6]. d
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Example 2.19. When V = (R")®?, Proposition 2.18 implies that W,_; C W, if
7 < nlsl.

CONJECTURE 2.20. Let vy be the generic rank in C" ® --- ® C"¢. For every
r <ry, a sufficiently general tensor T € W, CR™ @ ---® R™¢ has rank r.

The following examples provide evidence for this conjecture. One can compute
the rank of the tensors by applying the technique used in [36], which is illustrated in
Example 2.24.

Example 2.21. The two-orthogonal tensor
T=e1®e1RegterRea®@e; +ea®e; ®ey € Wi C (RH)®?

has rank 3, which is the maximal rank in (R?)®3. This example can also be embedded
in C2®C?® C? and C? ® C? ® C3, where the generic rank is 3 [22]. However, note
that 7 = limeﬁoé ((61 + €e9)®3 — 6(183), so its border rank is two.

Example 2.22. The two-orthogonal tensor

T=e1Re1Re1Re;+e1Rea Ve ey +ea®e Qe ey
+er@ey @eg ®eg € (R2)®4

has rank 4, which is the generic rank in (C?)®* [4]. Looking at the flattenings, we
see that the border rank of 7 is also 4. Actually, this decomposition is strong two-
orthogonal.

FEzxample 2.23. The two-orthogonal tensor
T=ec1®e1®e1+e1@es®exte;®ez@ez+ea@e Dea+e3@e; ®es € (R?)F?

has rank 5, which is the generic rank in (C3)®3 [32]. The maximal real rank of 3x 3 x 3
tensors is also 5 [3].

Ezample 2.24. The two-orthogonal tensor

T=e1Re1Re1+e1RQea®er+e1QezRes+e1Qes®ey
+62®€1®ez+€3®61®63+e4®61®e4€(R4)®4

has rank 7, which is the generic rank in (C*)®3 [24], as follows.

Let L=span{T (e1,-,-), T (e2,-,-), T (es,-,-), T (€a,-,-)} be the linear space spanned
by the slices of T obtained by fixing the first factor. The rank of 7 is the minimal
number of rank-one matrices whose linear span contains £ (e.g., see [36, Proposition
3.3]). The two-orthogonal decomposition above has seven summands, so rank(7) < 7.
Suppose that rank(7) < 6, meaning that there exist six rank-one matrices spanning a
space K that contains £. Then, K is spanned by L along with two rank-one matrices,
so every element of K is of the form

ay as asz a4 x11 x21 Y11 Y21

0 a 0 O T12 T22 Y12 Y22
+a ® +a ®

0 0 a1 O ° 13 T23 6 Y13 Y23

0 0 0 a T14 To4 Y14 You

for fixed {z;;},{y:;} and variable coefficients {a;}. Computing the 2 x 2 minors of
these matrices we get that all the rank-one matrices in K have a; = 0, and such
matrices do not span £. Hence, rank(7) =7.
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Computing the tensor rank is NP-hard [15]. This means that, although a generic
tensor has generic rank, it is computationally infeasible to verify whether or not the
rank of an arbitrary tensor is smaller, equal, or bigger than the generic rank. We hope
that this may be more feasible for two-orthogonal tensors. Perhaps two-orthogonal
tensors may be good candidates for tensors with provably high rank, even above the
generic rank. Note that the expected generic rank of a tensor of (C™)®? is fd(nfii)ﬂh

which is smaller than the maximal two-orthogonal rank in (R™)®4.

2.3. Optimal truncations. When the two-orthogonal rank and the usual rank
of a tensor coincide, the two-orthogonal decomposition has good truncation properties.
The kth secant variety of X, denoted oy (X), is the closure of the set of rank-at-most-k
tensors:

ox(X) = U span{xy,..., g}

L1y, T E€X

Consider a rank-r tensor 7 and let k < r. A critical rank-k approximation of T is a
tensor S =1 + -+ + 2 € 0%(X)smooth Such that T — 8 L Tsor(X).

PROPOSITION 2.25. Consider a two-orthogonal decomposition T = Zle x; € W,.
Suppose that rank(T) = r and that the truncation S = Zle x;, where k < r, is
sufficiently general as a point in op(X). Then, S is a critical rank-k approzimation

of T.

Proof. Suppose that S is sufficiently general in the sense that it satisfies Ter-
racini’s lemma, i.e., we have Tsoy(X) = span{T,, X,...,T;, X}. Recall that the
tangent space to X at z is T, X =Y 2P @ @zt oR" @ z(t) ... @ z@.
Two-orthogonality implies x; L T, X for all j > k and i < k. Hence, S is a critical
rank-k approximation of 7. d

The previous result suggests that if we order the summands such that ||z1| >
.-+ > ||zr||, then the truncation S = Zf:l x; is a good candidate for a best rank-
k approximation of 7 = >.!_, ;. Following [35], a Schmidi-Eckart-Young (SEY)
decomposition is a tensor decomposition 7 =Y_._, ; such that for all k£ <r, retaining
the first £ summands gives an optimal solution in the sense that Zle x; is a minimizer
of |7 — 8|l over all S of rank at most k.

Two-orthogonality is necessary for having an SEY decomposition [35, Theorem
3.3], but it is insufficient because a tensor 7 cannot have an SEY decomposition if
its border rank and rank disagree (Example 2.21). Taking flattenings, the singular
value decomposition shows that strong two-orthogonality is sufficient to be an SEY
decomposition [35, Theorem 3.6]. The authors in [35] state the following: “It remains
an open question whether strong two-orthogonality is also necessary.” The following
counterexample shows that it is not necessary.

Ezample 2.26. Consider the two-orthogonal decomposition
1
(21) T:361 Re1Rer+ea®ers® (261 +2€2> +e1 Qe @es €R2®R2®R3.

We claim that this is an SEY decomposition, despite not being strong two-orthogonal
(there is no factor for which the three summands are orthogonal). The border rank
of T is three, e.g., by looking at its flattenings. Critical rank-one approximations
correspond to singular vector tuples, by Proposition 2.5. If x is a singular vector
tuple of 7 with singular value ), then ||7 — Az||?> = ||T'||> — A%2. The tensor 7 has
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eight singular vector tuples, which is the generic number for a tensor of this format
[12]. The singular vector tuple e; ® e; ® e has singular value 3, and one can check
that all the other singular vector tuples have singular values smaller than 3. Hence,
3e; ®e; ® ey is the best rank-one approximation of 7.

The tensor 7 has three critical rank-two approximations (which can be computed,
for example, using the notion of critical ideal defined in [8]). One of them comes from
the first two summands in our decomposition: § =3e;®e1®e1+eaRea®(1/2e1+2e),
which leads to a residual |7 — S||? = 1. The other two are the tensors

120-63a 12-120
120-63a 12-120 1
( o 72953a 0 0 8 0 ) cR?QR*QR?,
76

where 505a? — 1010« 4 144 = 0. The rank of these tensors is greater than two, but
their border rank is two. One can check that both solutions lead to a residual greater
than one. Hence, S is the best rank-two approximation of 7, so (2.1) is an SEY
decomposition.

2.4. Two-orthogonality for partially symmetric tensors. We study two-
orthogonal decompositions for partially symmetric tensors. A tensor 7 € (R")®? is
symmetric if T, i, = Tr(iy),..., ) for any permutation 7 € Sy. For d =2, this says
M=MT. Let S%(R") denote the space of symmetric tensors of format n x --- x n (d
times), which is naturally identified with the space of homogeneous polynomials in n
variables of degree d [5]. Using this identification, we express the rank-one tensors in
S4(R™) as ¢4 for £ € (R™)*.

Let V=SU"R" @ .. S%R"™ and let X = {/* @ --. ®Eg” | ¢; € (R")*} CV be
the cone over the Segre—Veronese variety, the set of rank-one tensors in V. An inner
product (-,-) in (R™)* gives a unique inner product on SYR™ defined on two rank-one
tensors as ( fd gl = < f,9)® and extended to all SYR™ by linearity. This implies that

(fr--fa91-9a) = g Zwesd Hk 1<fk,gw(k)> As before, a set of inner products in
(R™2)* ,...,(R"P) defines an inner product in V.

DEFINITION 2.27. A partially symmetric tensor T € ShR™ @ --- @ SwR™ s
called two—orthogonal if it admits a decomposition T = Y_._, x;, where z; = E‘fli

- ® E . # 0 and all pairs of summands x; and x; with i # j are orthogonal in at
least two factors, counting multiplicities dy,. We define W,. as the closure of the set of
length-at-most-r two-orthogonal partially symmetric tensors, and W =, W, as the
two-orthogonal variety.

Ezample 2.28. The tensor fZ ® g1 + f2 @ g2 € S?R™ @ R™ with f; L f5 is two-

orthogonal.

PROPOSITION 2.29. Let z=(" @ @67 € X\ {0} C V.
1. The tangent space to X at x is

d
- {Zg‘lil ®...®gzk*1g®...®gzp |€€(Rnk)*}.
k=1
2. If di, > 2 for all k, then

N, XNX= {yfl ®~~®ng | (U, yi) =0, for some k}
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Proof. Part (1) follows by applying the Leibniz rule to the parametrization of X.
For part (2), suppose that y = yfl R ® yfl € N, X, then

(b @ @@ @ ) = (Y, ) e ) [ [ (w5 ) =0
itk
for all k € [p] and all £ € (R™)*. So there exists k € [p] such that (yx, k) =0. O

Proposition 2.29 implies that Theorem 1.2 also holds for partially symmetric
tensors. Theorem 2.30 is an extension of Theorem 1.3 to partially symmetric tensors.
The proof is similar; we include it for completeness.

THEOREM 2.30. Let V=8"R™ @...@ S»R™ @R @---@R", ny <. <n,,
and dy, > 2 for all k € [p]. Then, the mazimal length of a two-orthogonal decomposition
is N=my---mpni---ng_1. In particular, W =Wy.

Proof. Let T = Z::1£illz - ® K L@ U ® - ®ug; €V be two-orthogonal.
Consider the tensor 7' = ZZ 1€1 i @y QUi ® - @ug—1,. Bach pair of
summands of 7' are orthogonal in at least one factor, so they are linearly indepen-
dent. Therefore, r <mjy---mpng---ng—1. It remains to show that the bound can be
achieved: let {ej1,...,exm,} be an orthogonal basis of (R™*)*, let {e} ;... e}, }
be an orthogonal basis of R™*, and let J C [n1] X - - - X [ny] be a maximal set of indices
given by a Latin hypercube, as in Lemma 2.13. Then, the tensor

f— p ! CEEIRY / .
T= E : 61 i1 & - ®epz ®617j1 ® ®6d7]d
JET i1, iy

is two-orthogonal and consists of my ---mpny -+ ng_; terms. 0

3. Dimension of the two-orthogonal variety. In this section, we prove The-
orem 1.4, which lower bounds the dimension of the two-orthogonal variety. To do this,
we construct a dimension-preserving map that parametrizes a set of basis-aligned two-
orthogonal tensors. Recall that the Hamming distance on [n]|? is dg (i,§)=|{k|ix # ji }|-

LEMMA 3.1. Letn >2,d >3, and let L be the Latin hypercube on [n]?~" cells given
by L(i1,...,0q-1) = iq— 1+Z ( 1)**%, modn. Let T = {(i1,...,iq-1,L(i1,...,
id—1))}. Then there exists a subset J CT with |J|=n—1 and dg(i,j) > 3 for all
distinct i,j € J .

Proof. If d is even, then L(i,...,i) =1, so we can let 7 ={(¢,%,...,1) |i € [n—1]}.
If d is odd, then L(i,...,i) = 2i mod n, so we consider two cases. If n is odd, let
J =A{(i,...,4,2i modn)|i€[n—1]}. If nis even, let

j:{(i,...,z’,i,?z’)\lgigg}u{(i,...,i,i+1,2i+1—n)|%<i§n—1}. O

THEOREM 1.4. The dimension of the two-orthogonal variety in (R™)®? is at least

d—1 n
d .
n + (2>

Proof. We parametrize a set of two-orthogonal tensors via a dimension-preserving
map. This lower bounds the dimension. Let L be the Latin hypercube in Lemma 3.1,
and let Z={(41,...,4q-1,L(i1, ... 04— 1))\1] [n]}. Given a set of scalars {\;|i€Z}CR

and an orthonormal basis {u(lk oo U } C R™ for each k € [d], we construct
T = Z)\u ® - ®U()€Wnd1
ieZ
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There are n?~! degrees of freedom to choose the \;’s and, for each factor k € [d], we
have (g) degrees of freedom to choose {ugk), - ,u;"’)}. Hence, the expected dimension
of the variety of tensors with such a decomposition is n¢~! +d (g)

We can rescale each ugk) and scale the A;’s accordingly. Hence, in the following
parametrization we fix an entry of the vectors to be one, instead of imposing that

they have norm one. Let = (6;; |1 <j<i<n)e€ R(3) and consider the matrix

I p1200) p13(@) - pia(0)
02,1 1 p23(0) -+ pan(0)
| \
UB)=[ui(0) - un,(0)]= 031 039 1 o p3n(f)
0,1 0,2 . . 1

where p;;(0) € R(0) are chosen such that the columns of U are orthogonal (for sim-
plicity in notation, we consider the Euclidean inner product throughout this proof).
We parametrize a family of basis-aligned tensors in W,,a—1 by
, )\ ¢ ®d
o: R x (R(2) = (R™)®?

), 0D 0D s S N, (D) @ - @, (0.

We show that the Jacobian of ¢ is generically full-rank. £n other words, given a generic
S € Im(¢) C Wa 1, we show that Jo: R™ ' x R(’%)) — TsW,a—1 is injective. We

study Jo|pa)_..._gwa_o- Orthogonality implies that p;;(0) = 0 for all 4,5. Let i < j,
then

0= (u;(0),u;(0)) = Zpki(a)pkj(g) +pi;(0) + Z Oripr; (0) +05; + Z9ki9kj-
k<t i<k<j k>j

Taking derivatives and evaluating at 8 =0, we get

Iy0)| {—1 if (i) = (L),
0=0

00k

0 otherwise.

In what follows, we write © =0 to denote §() = ... =@ = 0. Note that dg(i,j) > 2
for all distinct i,j € Z. Hence

0¢; . {5ij if jeZ,

AN lo—o 0  otherwise,

Oy _ {ﬂj ifjE€Z, du(i,j) =1, ix # jr, and {1, 6o} = {ix, jn},
aaéfzz oo 0 otherwise.

The sign in the last expression depends on L and whether i < ji. Note that

aj%kazo =0ifieZ and gff o=0 = 0 if i ¢ Z. Therefore, after reordering rows,
010 J

J gb]\(_)zzo is a block matrix. The block of partial derivatives with respect to {\;} is a
full-rank n9=1 x n?~! matrix (a permutation matrix). The other block, corresponding
to partial derivatives with respect to {9@22}, is an n~!(n—1) x d(}) matrix. Entries
outside these two blocks are zero (see Example 3.2). We show that J¢|g_ is full-rank
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for generic Ai’s. Let J be as in Lemma 3.1 and consider the following submatrix of
Jolg_o where we set \; to zero if i ¢ J:

_ a(,bl c Rndxd(g).

(k)
805152 ©=0, \;=0 if i¢.J i,(k,01,62)

Since |J| = (n—1) for every k € [d] and every {3 < {1 € [n], there is some j € J such that
Jr =101 or ji ={a, so every column of M is nonzero. Moreover, we have dg (j;,js) >3
for all distinct j;,jo € J, so there is no i € [n]? with dg(i,j;) = du(i,j,) = 1. Hence,
every row of M has at most one nonzero entry. Therefore, M is full-rank as long as
Ai # 0 for i € J. By continuity of the determinant, J¢|g_, is full-rank for generic
Ai’s. d

Ezample 3.2. The Jacobian of ¢ in the proof of Theorem 1.4 is given below for
(R2)®31

A2 Az Aoir Aoz 9511) 9521) 9531)

112 1
121 1
211 1

Jblo—g = 222 1
111 —A211 —A121 —Aii2
122 —A222 A2 A121
212 A2 —Aze2  Aon
221 A121 A211 —Aaa2

This matrix is full-rank for generic A\; € R. Hence, the two-orthogonal decompositions

)\nggl) ® ng) ® 'I.ng) + )\121u(11) ® uéQ) X UgS) + )\2117.11%1) X ’LL(12) ® Ugg)

+ )\2221151) ® UQQ) ® U53)7

where ugk) =(1, 95?) € (—9%’?, 1)= uék), parametrize a variety of dimension 4 +
3)="1.

We have seen how some components defined by maximal basis-aligned tensors
are nondefective, i.e., the dimension is the expected one. However, these components
could be part of a higher-dimensional component. Indeed, there exist two-orthogonal
decompositions of maximal length that are not basis-aligned, which implies having
more degrees of freedom in the parametrization. The following example shows that
the lower bound of Theorem 1.4 is not tight. Calculating the dimension of the two-
orthogonal variety remains an open question.

Example 3.3. Consider the following family of two-orthogonal tensors in (R*)®3,

AMi1e1 ®er®er+ Aase; @ea ®ex+ Aizze] ez @es+ Aaae] Qes Qey
+A212€2®e1 ®ea+ A1 ea ®ep @ ey + Aazg e @ e3 @ eq + Agaz ey ® eq ® e3
+Az13e3@ €1 ®es+ Azpaez @en @e) + Azz1e3 @es @) + Azapes @ ey @ el
+Aiaes @) @€+ Mgz @en @ el + Mgz el @ e @ e + Mg e @ e @ e,

where €], ¢, € span{ey, e}, €5, e} € span{es,eq}, (€},eh) = (e},e4) =0, and |le|| =1
for all 2. We have (;1) = 6 degrees of freedom to choose {eq,...,eq}, one degree of
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freedom to choose {e},€e5}, and one degree of freedom to choose {ej,e,}. This adds
up to eight degrees of freedom for each factor, so a total of 24. We can arbitrarily
scale each summand, which adds 16 degrees of freedom. Using the computer algebra
software Macaulay?2 [13], we computed the Jacobian of the corresponding parametri-
zation and checked that it is generically full-rank. Hence, the dimension of the variety
parametrized by these decompositions is 40, while the lower bound given by Theorem
1.4 is 34.

4. Parametric description of the two-orthogonal variety. We give a com-
binatorial parametrization of the two-orthogonal variety using a graph-theoretical
perspective. For binary tensors, the resulting graphs are bipartite; we study this case
in more depth.

4.1. Graphical descriptions. A graph is a pair G = (V(G), E(G)), where V(G)
is a set of vertices and E(G) is a set of unordered pairs of vertices, called edges. We
describe two-orthogonal decompositions via graphs, as follows.

DEFINITION 4.1. Let V =R™ ® --- ® R™. The graphical description of a two-
orthogonal decomposition T = 2221 x§1) K- ®x§d) €V is a tuple of d graphs (G, ...,
Ga) such that V(Gi) =[r] and {i,j} € E(Gx) if and only if xgk) 1 xgk)

Ezxample 4.2. The graphical description of an odeco decomposition of rank r is
(Ky,...,K,), where K, is the complete graph on r vertices.

Ezample 4.3. Consider the tensor e; ®e1 ®e1+e2®(e1+e2)Rea+(e1 —e2)ResRes.
Of the three vectors 3351) appearing in the first factor, the first and second vectors are
orthogonal. In the second factor, the first and third vectors are orthogonal and the
second and third vectors are orthogonal. In the third factor, all three vectors are

orthogonal. Hence the graphical description of the decomposition is the following:
G1 G2 Gs

A multigraph is G = (V(G), E(G)), where V(G) is the set of vertices and E(G) is a
multiset of unordered pairs of vertices. Given u,n € N, the complete multigraph pK,
is the complete graph K, in which every edge appears p times. We define the union
of two graphs G1, Gy as the multigraph G = G; U Gs, where V(G) =V (G1) UV (Gz) and
E(G) = E(G1) U E(G2). Given a pair of (multi)graphs Gi,Gs, we say that G; C Gy if
V(G1) C V(G2) and E(G1) C E(G2). For example, the multigraph obtained as the
union of the three graphs from Example 4.3 is

G=G1uG2UGs

DEFINITION 4.4 (see [16]). Given a (multi)graph G and a positive integer n, an
orthogonal vector n-coloring of G is an assignment of vectors of R\ {0} to V(G) such
that if {v,w} € E(G) then v and w receive orthogonal vectors. The vector chromatic
number x,(G) is the least n such that G has an orthogonal vector n-coloring.

PROPOSITION 4.5. Let (G, ...,Gq) be the graphical description of a two-orthogonal
decomposition T =37, xgl) Q@ mgd) eER™M @---@R™. Then x,(G;) <nj for all
j€ld], and 2K, CJ; ;.
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Proof. For each j € [d], assigning Q:Ej ) to vertex i € [r] gives an orthogonal vector
nj-coloring of G;. The fact that 2K, CJ ; G; follows from two-orthogonality. 0

In view of Proposition 4.5, we define the notion of a valid graphical description
for the two-orthogonal variety W C R™ ® --- ® R™ to mean a tuple of d graphs that
encode the orthogonality relations of some two-orthogonal tensor in R™ ® --- @ R™4,

DEFINITION 4.6. A valid graphical description for W C R™ ®---®@R"™ is a tuple
of graphs (Gu,...,Ga) such that V(G1) =---=V(Ga) =[], x0(G;) <nj for all j, and
2K7" C Uj gj-

Remark 4.7. Lemma 2.10 can be proved using the combinatorial tools in this sec-
tion. Given two graphs G, G’ on the same vertex set, we have x,(GUG") < x4, (G)x»(G’)
[16, Lemma 1.14]. Fix ny <---<ngy and let (Gi,...,Gq) with V(G,;) = [r] for all j be
a valid graphical description for W C R™ ® --- ® R™. Since 2K, C U;l:l G; we have
K, S G, s0

d—1

T:X'U(KT‘):XU Ugj SXU(gl)"'Xv(gd—l)Snl"'nd—L
j=1

Given a valid graphical description for W C R™ ® --- @ R™, we are interested in

obtaining the two-orthogonal decompositions that have that graphical description.

DEFINITION 4.8. The orthogonal vector n-coloring ideal of a graph G is
IQJL: ((ui,uj> I {Z,]} € E(g)) + ((ui,ui> —1 | xS V(Q)) C R[um, cees Ui | 1€ V(g)]

The zero locus Z(Ig.,) C (R™)*IV(9)I consists of all orthogonal vector n-colorings
of G with unit vectors. If x,(G) <n, then Z(Ig,) # @ by definition. This implies the
following.

ProOPOSITION 4.9. The two-orthogonal variety W C R™ ® --- @ R™ 45 equal to
the union of Im(v g, ,....g,)) over all valid graphical descriptions (Gu,...,Ga) for W,

.....

where
1/}(91 ,,,,, Ga) " Z(Ighnl) X oee X Z(Igd’nd) X R" - RM®- - -@R",
((xgl),...,xg»l)) S (acgd),...?mg-d)) , ()\1,...,)\T)) ’—)EAixgl)@"'@JJEd).
i=1

Remark 4.10. We cannot guarantee that Im(vg, ,....g,)) is irreducible, since Ig ,
is not prime in general. For example, for G = ([4],{{1,2},{1,3},{1,4},{2,3},{2,4}}),
Ig 3 is generated by

2 2 2

U1,1U2,1 + U1 2U2,2 + UL3U2,3, U21U3,1 F U2 2U3,2 + U2 3U33, UZq +UZo+ U5 —1,
2 2 2

U11U31 + UL 2U3 2 + UL 3U3 3, U21U41 + U2 2Us2 U 3ULS, UFy FUTot U3 — 1,
2 2 2 2 2 2

U1, 1Uq,1 + UL 2U4 2 + U 3U4 3, uigtuigtuyg—1, uy, tugstuzz—1,

and its primary decomposition consists of four components.

Remark 4.11. Graphical descriptions give inclusions between components of W.
We define a partial order on the valid graphical descriptions for W as follows:

(Grr- 1 G) 3 (G4.G) i V(G;) = V(G)) and E(G}) € E(G;) forall j € [d].

If (gl, - ,gd) =< (gi, R g&), then Im(@/}(glwﬂgd)) - Im(@/}(gi,..ﬂgé)). The graphical
description depends on the order of the summands. To avoid this dependence, the
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partial order can be defined up to graph isomorphism. This leads to a notion of
maximal valid graphical descriptions. Counting and characterizing the maximal valid
graphical descriptions remains an open question.

4.2. Binary tensors. In this section, we focus on two-orthogonal tensors in
V = (R?)®4. Let (Gi,...,Gq) be the graphical description of a two-orthogonal de-
composition in V. Then, each G; is a disjoint union of complete bipartite graphs, as
follows. If u,v,w € R%, u L v, and u L w, then v and w are collinear. Therefore, with-
out loss of generality, in this section we will only consider valid graphical descriptions
such that each graph is a disjoint union of complete bipartite graphs.

Remark 4.10 shows that Ig , is not prime in general, so a valid graphical descrip-
tion containing G may not parametrize an irreducible variety. The following result
shows that these varieties are irreducible for binary tensors.

PROPOSITION 4.12. Fix a tuple of graphs (G1,...,Gq) on vertex set [r]. Assume
that it is a valid graphical description for W C (R?)®?, so each G, is a disjoint union
of ¢; complete bipartite graphs. Then Im(vg, .. g,)) is irreducible and its expected
dimension is r + 2?21 ;.

Proof. First, suppose that G is a complete bipartite graph with V(G) = [r]. Let
(€iys---,€,.) with 7; € {1,2} be an orthogonal vector two-coloring of G. Acting with
SO(2), we get all orthogonal vector two-colorings of G with unit vectors, up to sign.
This is an irreducible subvariety of Z(Ig2) of dimension one, let us call it Yg. Now
suppose that G is a disjoint union of complete bipartite graphs, i.e., G =H; U---UH,.
Then, Yg = Yy, X --- x Yy, is a product of irreducible varieties, hence irreducible,
and its dimension is c.

Using the previous reasoning for each G;, we get that Yg, x --- xYg, x R" is a
product of irreducible varieties, hence irreducible, and its dimension is T+Zj:1 ¢j. In
the tensor decomposition given by g, ... g,), the signs of the vectors can be absorbed
by AeR", so

VGr,...00)(ZUg,) X -+ x Z(Ig,) x R") =1q,,...g.)(Yg, X -+ x Yg, x R").

Finally, since g, ... g,) is a polynomial map, the variety Im(sg, ,....g,)) is also irreduc-
ible, and its expected dimension is dim(Yg, x --- x Yg, x R") = r +

d
Zj:l Cj. 0
Theorem 1.4 says that dim(W) > 29! +d. We conjecture that for binary tensors
we have equality, and the top-dimensional component is Waa-1 \ Waa-1_;.

CONJECTURE 4.13. Fiz a tuple of graphs (Gi,...,Ga) on vertex set [r]. Assume
that it is a valid graphical description for W C (R?)®?, so each G; is a disjoint union
of ¢; complete bipartite graphs. Then

d
r Y <24t 4d
=1
with equality only if r =291,

Table 1 shows that Conjecture 4.13 is true for d = 3; we compute the graphical
descriptions of all two-orthogonal decompositions for 2 x 2 x 2 tensors. Using an
analogous approach, one can check that this conjecture is also true for d =4. In what
follows, we provide further evidence for Conjecture 4.13 and study its consequences.
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TABLE 1
Graphical descriptions of the two-orthogonal variety in (R2)®3. Vertices are summands in a
two-orthogonal decomposition. An edge in G represents an orthogonality in the kth factor. The
table shows that W1 C odecoCWo and W3 \ Wao C Wi\ W3. See section 5 for more details.

G1 Go gs
wm | @ @ @
odeco ®—@ ®—@ ®—@
wie | @ O0—0 0O
wi | O—@ |0 |0
wit |O—0 0|0 @
W, @g@ @%@ d@b

OeOlOmONONO

%

s ol 0|4

PROPOSITION 4.14. The complete multigraph 2K, can be expressed as the union

of d bipartite graphs if and only if r <2471,
Proof. This is equivalent to Theorem 1.3 for binary tensors. a
PROPOSITION 4.15. Fiz a tuple of graphs (Gi,...,Ga) on vertex set [2971]. As-

sume that it is a valid graphical description for W C (R?)®?. Then each g; is a
complete bipartite graph Kga—2 ga-2. This graphical description satisfies the bound
from Conjecture 4.13 with equality.

Proof. First, we show that G; is connected, and the same argument works for any
G;. Since each G; is bipartite, they are two-colorable. We label each vertex with a
binary string of length d — 1 such that if two vertices are connected in G;, their labels
differ in the jth position. All vertices have distinct labels, as follows. Two vertices
with the same label are not connected in any of Gi,...,G4—1. So even if they were
connected in G4, there is at most one edge between them. Hence each of the 2¢~!
possible labels is used exactly once. Moreover, if two labels differ in only one position,
then they are only connected in one of Gy,...,G4_1, hence they are connected in Gg.

We construct a path between any two vertices u and v in Gg, as follows. Let u and
v be labeled by binary strings £, and £, in {0,1}9~1. We can convert ¢, into £, via a
sequence of binary strings, each differing from the previous one in only one position.
Since every binary string is a vertex in our graph, this is a sequence of vertices in the
graph. All vertices with labels that differ in only one position are connected in Gg .
Hence it is a path in G .

We have shown that each G; is connected. Let A, B be two independent sets
of G;, so that every edge in G; connects a vertex from A with a vertex from B.
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2d72

Then |A| = |B| = 2972, otherwise we would need to connect more than ver-
tices, with at least two edges for every pair of vertices, using only d — 1 graphs, a
contradiction to Proposition 4.14. ]

COROLLARY 4.16. If the difference Woa—1 \ Waa—1_1 C (R%)®? is nonempty,
then it consists of basis-aligned tensors (up to closure), so dim (ng—l \ Woa-1_1 ) =
2971 + 4.

Proof. The first part of the statement follows from Proposition 4.15. The second
part follows from Theorem 1.4 and Proposition 4.12. O

COROLLARY 4.17. The variety Waa—1 \ Waa—1_; C (R?)®? s irreducible.

Proof. The statement is vacuously true if Woa—1\Wya-1_; = &. Otherwise, Corol-
lary 4.16 implies that Wya—1 \ Waa-1_; consists of basis-aligned tensors. In particular,
a two-orthogonal decomposition with 2¢~! summands comes from a Latin hypercube.
Two Latin cubes are isotopic if one can be obtained from the other by permuting its
rows, columns, and symbols. Similarly, two Latin hypercubes are called isotopic if one
can be obtained from the other by permuting its mode-k fibers (e.g., rows, columns,
tubes, etc.) and symbols. Two-orthogonal decompositions coming from two isotopic
Latin squares lie in the same irreducible component since permuting mode-k fibers
and symbols can be seen as acting with an element of SO(n). The number of isotopy
classes of a Latin d-cube on n = 2 symbols is 1, by induction. The case d =2 (i.e.,
a Latin square) is well known. A 3-cube can be thought of as a 2-cube on symbols
(1,2) and (2,1). The same reasoning extends to higher-dimensional cubes. |

The following two results provide more evidence for Conjecture 4.13.

PROPOSITION 4.18. Fiz a tuple of graphs (Gi,...,Gq) on vertex set [r]. Assume
that it is a valid graphical description for W C (R?)®4. Let G4 be a disjoint union of
cq complete bipartite graphs. Then cq +r <2971 +1 with equality only if r =2¢71.

Proof. If r = 2971 then ¢4 = 1, by Proposition 4.15. Suppose that r < 2471,
Each vertex in G4 can be labeled with a binary string of length d — 1, given by two-
colorings of Gy,...,G4_1. All labels are distinct and labels at Hamming distance one
are connected in G;. We show that for every connected component in Gy there is a
binary string that cannot be a label for a vertex in G4. Consider a Hamiltonian cycle
on the hypercube {0,1}971, where vertices of Hamming distance one are connected.
This induces a linear ordering ¢; < --- < f9a—1. Since 7 < 2971 we can assume that
£; does not label any vertex in G4. Given a connected component H; of G4, let ¢,,,
be the minimal label appearing in #;. Then ¢,,,_; cannot label any vertex in Gg4.
Of course, for different connected components, the corresponding minimal labels are
different. Therefore, cg +r <241 < 24=1 4 1. 0

COROLLARY 4.19. Fiz a tuple of graphs (Gi,...,Gq) on vertex set [r]. Assume
that it is a valid graphical description for W C (R?)®4. Suppose that G1,--- ,Gq_1 are
connected. If Gq is not connected, then

dimIm(yg, . g,) <277' +d.
Proof. Tt follows from Proposition 4.12 and Proposition 4.18. ]
The previous results combine to give the following.

COROLLARY 4.20. If Conjecture 4.13 is true, then Woa—1_; # Wsa-1 and
Woa-1 \ Waa-1_1 is an irreducible variety. Moreover, dim Waa—1 \ Waa—1_y =271 4-d
and dim Wya-1_y <2971 4 d.
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5. 2 X 2 X 2 tensors.

5.1. Stratification and equations of the two-orthogonal variety. In this
section we study the two-orthogonal variety W C (R?)®3. We describe the varieties
in the chain

Wi CWe CWs CW,=W.

In Table 1 we saw a combinatorial description of the two-orthogonal variety in (R?)®3.
Here we describe this variety algebraically. Consider the Euclidean inner product in
R? and let {eg, e1} be an orthonormal basis of R?. Using these coordinates, we express
a tensor as T = Ei,j,ke{o,l} tijrei®e; ®er. The equations shown below were obtained
with Macaulay?2.

Recall that each of the W,’s is invariant under the action of G' = SO(2)*3 on
(R?)®3. This gives a concise way to describe our varieties: we only give a represen-
tative of each orbit. Let u € R? be an arbitrary unit vector, and let Aj, Ao, A3, A\ €R
be arbitrary scalars.

First, we have W7 = X, the cone over the Segre variety. The tensors in W; are of
the form

)\160 X eg®eg € Wl,

up to the action of G. The equations defining W; are the 2 x 2 minors of all the
flattenings [14, Example 2.11].

Tensors in Wy \ W consist of two summands that are orthogonal in at least two
factors. Let us denote by Wz{w } the tensors in W5 whose two-orthogonal decomposi-
tions are orthogonal in the ith and jth factors. We have three families of tensors:

)\160 ®60 ®€0 + )\2U® €1 ®61 € W2{2,3}’

Aeg ®eg®ep+ Aoeg @u®er € W2{1’3},

Aeg Reg®eg+ Aae] ®ep Qu e W2{l’2}.
The equations defining each of these irreducible components are

wizsh. —tooot101 + t100t001 — to1ot111 + t110t011 =0,
AR
—tooot110 + t100t010 — too1t111 + t101t011 =0,

and we obtain the equations for the other two by swapping indices. Each component
is defined by a subset of the equations defining the odeco tensors, as discussed in
Remark 2.9. The intersection of the three components is the odeco variety.

Given T = Meg® ey R eg + Aou R e ® e € Wa, to add a third summand to
T satisfying two-orthogonality we need u = teg. We can then add Aze; ® eg ® €1
or A\ze; ® e ® eg. Both two-orthogonal decompositions have the same orthogonality
pattern between summands, up to permutation. If we repeat this analysis for the other
two components of Wo we also get equivalent tensors. Hence W3\ Wy is irreducible
and consists of tensors of the form

)\160@60@604‘)\260@61@61 +)\3€1 ®60®61.

The variety W3 \ W is defined by two polynomials. One is Cayley’s hyperdetermi-
nant:
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TABLE 2
Description of the two-orthogonal variety in (R2)®3.

Variety Codimension Degree #components Generators per component
Wi=X 4 6 1 9 quadrics

odeco 3 8 1 3 quadrics
Wo=Wa \ W1 2 12 3 2 quadrics

W3\ Wa 2 16 1 2 quartics

Wa \ W3 1 4 1 1 quartic

W=Wy \ WsUW> 1 4 4 1 quartic / 2 quadrics

Det(T) = tootiin + thortiio + torotion + tootois

— 2tgootoort110t111 — 2toootor0t101t111 — 2t000t100t011¢111
— 2too1tiootor1t110 — 2too1tor0t101t110 — 2t010t100t011t101
+4toootor1tiortiio + 4tooitorotiootiii-

The other polynomial is a quartic with 40 monomials. This quartic is invariant under
the action of SO(2)*3. In particular, it is invariant under flipping indices 0 <> 1. After
such relabeling, there are 5 distinct monomials. Consider the homogenization of the
polynomial that defines the elliptope [23]:

(5.1) g(21, 20,23, 24) =2 212023 + 2524 + 2324 + 2524 — Z5.
Then, the other quartic that defines W3\ W5 is

(5.2)  f(T)= Z (1) e gt 1,oks Bi ks Bk ik 1 41k 1)
(i,5,k)€{0,1}?

where the sum in the indices is taken modulo 2. Hence, W3 \ Wo = Z(f) N Z(Det).
Finally, the tensors in Wy \ W3 are of the form

Aeg ®eg ®ep + A2eg @ e ®ep + Aze1 @ eg ®ep + Aeg @ e ® e,

and Wy \ W3 is the zero locus of f, from (5.2). The above combines to give the
following.

PRrROPOSITION 5.1. Table 2 describes the stratification of the two-orthogonal va-
riety in (R?)®3. We have the inclusions Wi C odeco C Wy and W3 \ Wo C Wy \ Ws.
Hence, W =Wy \ W3 U Ws.

Given T € (R?)®3, we seek the closest two-orthogonal tensor to 7. To do so, we
compute the critical points of |7 —S||? over S € W and choose the one that minimizes
this quantity. The Fuclidean distance degree (ED degree) of a variety is the number
of critical points of the squared Euclidean distance to a general point outside the
variety [8]. For example, the ED degree of the variety of rank-one tensors X C (R?)®3
is six [12]. Applying the technique in [8], we compute EDdegree(W, \ W5) = 12 and
EDdegree(WQ{l’j }) =4 for all i # j € [3]. Since the ED degree is additive over the
irreducible components, the ED degree of the two-orthgonal variety W = Wy \ W3 U
Wy C (R?)®3 is 24,
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5.2. Generic identifiability of two-orthogonal decompositions. In Exam-
ple 2.15 we saw that two-orthogonal decompositions are not always unique. We show
that they are unique for sufficiently general 2 x 2 x 2 tensors.

Remark 5.2. There exist symmetric two-orthogonal tensors that do not have a
symmetric two-orthogonal decomposition. We will see that the symmetric tensor

T:>\60®€0®60+60®61®61+€1®60®61 +61®€1®60€W4QSB(R2)C(R2)®3

does not admit a two-orthogonal decomposition with fewer terms for a sufficiently
general A\. The real tensors with symmetric two-orthogonal decompositions are odeco
tensors. Hence T does not admit a symmetric odeco decomposition.

THEOREM 1.5. A generic tensor in W C (R*)®® has a unique two-orthogonal
decomposition.

Proof. The two-orthogonal variety in (R?)®3 has 4 irreducible components:

W =W, \ Ws U2 o3y,

We show that a generic tensor from each component has six singular vector tuples
and only those appearing in the two-orthogonal decomposition are orthogonal. This
implies the uniqueness of the two-orthogonal decomposition. First, let 7 be a generic
tensor from Wy \ Ws:

T =Xeg®egReg+ AaegRe; ®er + Aze1 Qeg R er + e ®er R ep.

The singular vector tuples are © ® v ® w such that

A1v0w0+)\201w1 Ug
det
)\3’00’[1)1 +)\4v1w0 U1

AMUgWo+Aszuiwy v\ A1VoUo+Agv1U1 W

e ()\zuo’w1+>\4u1wo 01)_ ¢ <A2u0v1+)\3u1v0 w1>:O'

This gives linear conditions in the monomials {u;vjwy}. Suppose that vy = 0 and
uy = 1. If vg = 0, then w; = 0, which gives solution e; ® e; ® eg. If vg = 1, then
wo = v1 = 0, which gives solution e; ® eg ® e;. The case u; =0 is analogous and we
obtain the other two terms in our decomposition.

Now, fix u3 =v; =w; =1 and let g be the homogenization of the elliptope (5.1).
We get

22208 AT A A A AT A A o g(A1,22,23,0) _
RV W ¢ W LS v v W v AL T WO VIO VIS VY| =0
Yo 221 A2 A3 F AT AL F A AL H AN NS (A 223,0) — 0
- )

TN HAIAS AT F2 A AsaatAasaz PO = V0 T G Re A hs) 0

w? (AT A3 HAZ A3 — AT +2 X1 Ao Aa+ 2327 ) (AT A2 = A3+ A2 A3 +2 A1 Az Aa+A2A]) _
O T (22223 HAF A HAIAHAZ A AT (A=A A2 - A1 A2 —2 X2 dsda—M1AF)
)
)

—w? — g(A1,A2,24,A3)9(A1,A3, 04,2
- %0

g(A1,A2,23,A1)g(A2,A3,M4,A1

So we obtain two solutions:

W=

g(A1,22,A3,24) g(A1,A2,M4,23)
g(A1,A3,A4,22) g(A2,A3,A4,A1)

(%) 1

vy | =+ g(A1,22,23,04) g(A1,A3,M4,A2) ) 2
g(A1,22,24,A3) g(A2,A8,A4, A1

wo %

)
9(A1,22,A4,A3) g(A1,A3,M4,A2)
9(A1,22,23,24) g(A2,A3,24,A1)
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This gives six singular vector tuples, the number of singular vector tuples of a generic
2 x 2 x 2 tensor [12]. For generic \;’s we have u2,v3,w3 # 0,1, which implies that the
two new critical two rank-one approximations are not orthogonal to each other or to
the summands appearing in the decomposition.

Now let T be a generic tensor from Wém}. The argument works analogously for
the other two components of W5. After an orthogonal change of basis and rescaling,

T=eyRey®ey+Aeg Re; @y
with y = (yo,1) € R? and A € R. The singular vector tuples are u ® v ® w such that
dot [ Yowo w0\ _ g wowo o) _ 4. (vouo+ Ayoviur  wo\ _ 0
v {y,w)  uy Aug {y,w) vy Auqvp wy
Suppose that ug =1 and u; = 0. This, implies v; = w; = 0, which gives the solution
ep ® eg ® eg. The cases v1 =0 and w; = 0 are analogous. Now, fix uy =v; =w; = 1.

We get five solutions. One of them is the second summand from the decomposition
given before. The other four are

+ <>\2yg+/\2—/\y0>

[
Nl

(vygumyo)

Uo 1-Ayo Uo 1+Ayo
1 1
vy | = :t<>\2y§+/\2—/\y0>2 ) Vo | = i<x2y§+xz+xyo)2
wo 1-XAyo wo 1+Ayo
A A
1-Xyo 1+Ayo

For generic yp, A € R, the only singular vector tuples orthogonal to each other are the
ones from the decomposition given before. So the two-orthogonal decomposition is
unique. ]

Using an analogous approach, one can verify that a two-orthogonal decomposition
with 8 summands in (R?)®4 is unique. It would be interesting to generalize this result
to bigger tensors. We present the following conjecture.

CONJECTURE 5.3. A generic two-orthogonal tensor in R" ®- - -QR"™ has a unique
two-orthogonal decomposition (up to reordering of the summands). In particular, the
chain

WicWeC---CW,C---

stabilizes exactly at N = ming¢[q) H#k n;. Thatis, Wy_1#Wn=Wny1="--.

Open questions. In this work, we study tensors that can be decomposed via a
sequence of critical rank-one approximations. We focus on the decompositions that
are order-independent, which we show to be characterized by the two-orthogonal
property. In addition to the conjecture above, there are several open directions for
future investigation. We show in Proposition 5.1 that a generic 2 x 2 X 2 tensor
does not have a two-orthogonal decomposition. We believe this is also true for larger
higher-order tensors, since it is a closed property on the singular vector tuples, but
do not know the dimension of the two-orthogonal variety and if it can fill the space of
tensors. We propose to study this problem by introducing the notion of valid graphical
descriptions, which also leaves open directions of future work. For binary tensors of
order d, we conjecture that the dimension of the two-orthogonal variety is 2~ 4 d
(Conjecture 4.13) and connect this to a question about bipartite graphs. Finally, we
conjecture that the notions of rank and two-orthogonal rank coincide generically up
to the generic rank (Conjecture 2.20) and we provide evidence for small tensors.
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