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In this article we show the duality between tensor networks and undirected graphical models with discrete
variables. We study tensor networks on hypergraphs, which we call tensor hypernetworks. We show that
the tensor hypernetwork on a hypergraph exactly corresponds to the graphical model given by the dual
hypergraph. We translate various notions under duality. For example, marginalization in a graphical model
is dual to contraction in the tensor network. Algorithms also translate under duality. We show that belief
propagation corresponds to a known algorithm for tensor network contraction. This article is a reminder
that the research areas of graphical models and tensor networks can benefit from interaction.
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1. Introduction

Graphical models and tensor networks are very popular, but are mostly separate fields of study. Graphical
models are used in artificial intelligence, machine learning and statistical mechanics [20]. Tensor
networks show up in areas such as quantum information theory, quantum many-body physics and partial
differential equations [7,10].

Tensor network states are tensors that factor according to the adjacency structure of the vertices
of a graph. On the other hand, graphical models are probability distributions that factor according to
the clique structure of a graph. The joint probability distribution of several discrete random variables
is naturally organized into a tensor. Hence, both graphical models and tensor networks are ways to
represent families of tensors that factorize according to a graph structure.

The relationship between particular graphical models and particular tensor networks has been
studied in the past. For example, in [6] the authors reparametrize a hidden Markov model to make a
matrix product state tensor network. In [5], a map is constructed, which sends a restricted Boltzmann
machine graphical model to a matrix product state. In [15], an example of a directed graphical model
is given with a related tensor network on the same graph, to highlight computational advantages of the
graphical model in that setting.

From the outset, there are differences in the graphical description. On the graphical model’s side,
the factors in the decomposition correspond to cliques in the graph. On the tensor network’s side, the
factors are associated to the vertices of the graph. For a graphical model we require tensor entries to lie
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274 E. ROBEVA AND A. SEIGAL

in R�0, so that up to normalization they represent probabilities, while for a tensor network the entries
can lie in the field C.

In this article, we show a duality correspondence between graphical models and tensor networks.
This correspondence applies to all graphical models and all tensor networks, and does not require
reparametrization of either. Our mathematical relationship stems from hypergraph duality. We begin
by recalling the definition of a hypergraph.

Definition 1.1 A hypergraph H = (U, C ) consists of a set of vertices U and a set of hyperedges C .
A hyperedge C ∈ C is any subset of the vertices.

There are two ways to construct a hypergraph from a matrix M of size d × c with entries in {0, 1}.
First, we let the rows index the vertices and the columns index the hyperedges. The non-vanishing entries
in each column give the vertices that appear in that hyperedge,

MuC =
{

1 u ∈ C

0 otherwise.
(1.1)

In this case M is the incidence matrix of the hypergraph. We allow nested or repeated hyperedges, as
well as edges containing one or no vertices, so there are no restrictions on M. Alternatively, we can
construct a hypergraph with incidence matrix MT . This is the dual hypergraph to the one with incidence
matrix M, see [3, Section 1.1].

We now add extra data to the matrix. We attach positive integers n1, . . . , nd to each row. We assign
tensors to each column of M whose size is the product of the ni as i ranges over the non-vanishing
entries in the column. For example, the tensor associated to the column (1, 1, 0, 1, 0, . . . , 0)T would have
size n1 × n2 × n4. We explain how this defines the data of both a graphical model and of a tensor
network. Filling in the entries of the tensors gives a distribution in a graphical model (if the entries are
in R�0) or a tensor network state in a tensor network. We see how a graphical model is visualized by
the hypergraph with incidence matrix M, while the tensor network is visualized by the hypergraph of
MT . If, on the other hand, we consider the incidence matrix M as the biadjacency matrix of a bipartite
graph, we obtain the factor graph construction; this perspective is studied in [9, 11].

Before stating our duality correspondence, we define graphical models in terms of hypergraphs and
introduce tensor hypernetworks. We keep in mind how the definitions translate to the incidence matrix
setup from above.

Definition 1.2 Consider a hypergraph H = (U, C ) with U = [d]. An undirected graphical model
with respect to H is the set of probability distributions on the random variables {Xu, u ∈ U} which factor
according to the hyperedges in C :

P(x1, . . . , xd) = 1

Z

∏
C∈C

ψC(xC). (1.2)

Here the random variable Xu takes values xu ∈ Xu, the subset xC equals {xu : u ∈ C} and the function
ψC is a clique potential with domain

∏
u∈C Xu and range R�0. The normalizing constant Z ensures the

probabilities sum to one.

When all random variables are discrete, the joint probabilities form a tensor P of size ×u∈U|Xu|
and the clique potentials are tensors of size ×u∈C|Xu|, all with entries in R�0. The graphical model
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DUALITY OF GRAPHICAL MODELS AND TENSOR NETWORKS 275

is depicted as the hypergraph whose incidence matrix has rows represented by the random variables
{Xu : 1 � u � d} and columns indexed by the hyperedges.

If we fix the values in the clique potentials, we obtain a particular distribution in the graphical model.
We recover the usual depiction of the graphical model by a graph instead of a hypergraph by connecting
pairs of vertices by an edge if they lie in the same hyperedge.

Remark 1.1 Graphical models are sometimes required to factorize according to the maximal cliques of
a graph. We see later how our setup specializes to this case. Models with cliques that are not necessarily
maximal can be called hierarchical models [19].

We now define tensor hypernetworks: families of tensors that factor according to a hypergraph. They
have been defined this way in the literature, though it is not common [1,2].

Definition 1.3 Consider a hypergraph G = (V , E). To each hyperedge e ∈ E we associate a positive
integer ne, called the size of the hyperedge. To each vertex v ∈ V we assign a tensor Tv ∈ ⊗

e�v K
ne ,

where K is usually R or C. The tensor hypernetwork state is obtained from
⊗

v∈V Tv by contracting
(summing over) the indices of all hyperedges in the graph that contain two or more vertices. We call
hyperedges containing only one vertex dangling edges.

The data of a tensor hypernetwork (up to global scaling constant) is its hypergraph along with the
tensor at each vertex of the hypergraph. This is the tensor network before contracting the hyperedges.
The distinction between the contracted and uncontracted tensor network generalizes the fact that a rank
r matrix M of size n × m can be represented either by its entries, or by two matrices, of sizes n × r and
r × m, whose product is M.

Note that as opposed to graphical models, in tensor hypernetworks we assign tensors to the vertices
of the graph rather than to the hyperedges. Restricting the definition of a tensor hypernetwork to
hyperedges with at most two vertices gives the usual definition of a tensor network. Tensor networks are
sometimes assumed to have exactly one dangling edge per vertex, but we do not make that assumption
here. The following example illustrates a widely used tensor network.

Example 1.1 (Tucker decomposition) Consider the following graph:

We have a core tensor T0 ∈ K
m1 ⊗ · · · ⊗ K

md and matrices Ti ∈ K
ni ⊗ K

mi . The entries of the tensor
T ∈ K

n1 ⊗ · · · ⊗ K
nd are

Ti1,...,id =
∑

j1,...,jd

(T0)j1,...,jd (T1)i1,j1 · · · (Td)id ,jd . (1.3)

For suitable weights mi and orthogonal matrices Tj, this is the Tucker decomposition of T .
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276 E. ROBEVA AND A. SEIGAL

An important reason to extend the definition of tensor networks to tensor hypernetworks, other than
the duality with graphical models explained in the next section, is that significant classes of tensors
naturally arise from tensor hypernetworks.

Example 1.2 (Tensor rank (CP rank)) Consider this hypergraph on vertex set {1, 2, 3} :

There is one dangling edge for each vertex, with sizes n1, n2, n3. There is one more hyperedge of size r,
represented by a shaded triangle, that connects all three vertices. The tensors Tv attached to each of the
three vertices are matrices of size nv ×r. The tensor hypernetwork state has size n1 ×n2 ×n3 with entries

Tijk =
r∑

l=1

(T1)il(T2)jl(T3)kl. (1.4)

The set of tensors given by this tensor hypernetwork equals the set of tensors of rank at most r. The
same structure on d vertices, with weights n1, . . . , nd, r, gives tensors of size n1 × · · · × nd and rank
at most r. Tensor rank is the most direct generalization of matrix rank to the setting of tensors [7]. The
set of tensors of rank at most r is naturally parametrized by this tensor hypernetwork without requiring
special structure (such as diagonal structure) on the tensors at the vertices.

The rest of the paper is organized as follows. We describe the duality correspondence between
graphical models and tensor networks in Section 2. In Section 3 we explain how certain structures
(graphs, trees and homotopy types) and operators (marginalization, conditioning and entropy) translate
under the duality map. In Section 4 we give an algorithmic application of our duality correspondence.

2. Duality

In this section we give the duality between graphical models and tensor networks.

Theorem 2.1 A distribution in a discrete graphical model associated to a hypergraph H = (U, C ) with
clique potentials ψC :

∏
u∈C Xu → K is the same as the data of a tensor hypernetwork associated to its

dual hypergraph H∗ with tensors TC = ψC at each vertex of H∗.

Proof . Consider a joint distribution (or tensor) P in the graphical model defined by the hypergraph H.
As described above, the incidence matrix M of H has rows corresponding to the variables u ∈ U and
columns corresponding to the cliques C ∈ C . The data of the distribution P also contains a potential
function ψC :

∏
u∈C Xu → K for each clique C ∈ C , which is equivalently a tensor of size ×u∈C|Xu|.

The dual hypergraph H∗ has incidence matrix MT . It is a hypergraph with vertices {vC : C ∈ C }
and hyperedges {eu : u ∈ U}. By definition of the dual hypergraph, u ∈ C is equivalent to vC ∈ eu.
Associating the tensors TC = ψC ∈ ⊗

eu�vC
K

|Xu| to each vertex vC of H∗ gives a tensor hypernetwork
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DUALITY OF GRAPHICAL MODELS AND TENSOR NETWORKS 277

for H∗. Moreover, up to scaling by the normalization constant Z, the joint probability tensor P is
given by

P(xu : u ∈ U) · Z =
∏

C∈C

ψC(xC) =
∏

C∈C

(TC)xC
. (2.1)

The last expression is the tensor hypernetwork state before contracting the hyperedges. �
Since (MT)T = M, the dual of the dual (H∗)∗ is equal to H. This implies the following one-to-one

correspondence. Before we state it, let us denote the set of distributions on X = ∏
u∈U Xu that are in

the graphical model defined by the hypergraph H = (U, F) by G (H, X ). These are the distributions
that factor according to the hypergraph H, whose factor has sizes determined by {|Xu| : u ∈ U}, and
for which the entries of the factors can vary. Analogously, we denote the set of non-contracted tensor
hypernetwork states from a hypergraph G = (V , E) with weights n = {ne : e ∈ E} by T (G, n).

Note that while clique potentials are required to take values in R≥0 for probabilistic reasons, the
definition and factorization structure of graphical models carries over to the case where the entries of
these tensors belong to a general field K, and the statement of the following Corollary refers to this
generalized setting.

Corollary 2.1 There is a one-to-one correspondence between the graphical models G (H, X ) and the
tensor hypernetwork states T (H∗, {|Xu| : u ∈ U}) up to global scaling constant.

Imposing that the entries of the tensors in both the graphical model and the tensor hypernetwork
states be non-negative specializes the Corollary to the probabilistic setting. In the rest of this section
we illustrate our results by showing the duals to some familiar examples of tensor network states and
graphical models.We consider those tensor networks, or graphical models, which factor according to the
hypergraphs shown. We do not fix the sizes of the factors or the entries of the tensors.

Example 2.1 (Matrix Product States (MPS)/Tensor Trains) These are a popular family of tensor
networks in quantum physics [14] and numerical applications [7] (where the two names come from).
We return to them in detail in Section 4. The MPS network on the left is dual to the graphical model on
the right.

The top row of edges in the tensor network is contracted. We see later that this corresponds to the
top row of variables in the graphical model being hidden.

Example 2.2 (No three-way interaction model) This graphical model consists of all probability
distributions that factor as pijk = AijBikCjk, for clique potential matrices A, B, C. It is represented by
a hypergraph in which all hyperedges have two vertices. The incidence matrix of the hypergraph is as
follows:

A B C
i
j
k

⎛
⎝ 1 1 0

1 0 1
0 1 1

⎞
⎠ (2.2)
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278 E. ROBEVA AND A. SEIGAL

This matrix is symmetric. Hence, the tensor network corresponding to this graphical model is given by
the same triangle graph. We note that, up to dangling edges, this is also the shape of the tensor network
of the tensor that represents the matrix multiplication operator [10].

Example 2.3 (The Ising Model) This graphical model is defined by cliques, which are the edges of a
two-dimensional lattice such as the grid on the right. Its dual is the hypergraph on the left.

Example 2.4 (Projected Entangled Pair States (PEPS)) This tensor network is a two-dimensional
analogue of MPS. It depicts two-dimensional quantum spin systems. Its hypergraph is depicted on the
left, with its dual graphical model on the right. Note the structural similarity with Example 2.3.

Example 2.5 (The Multi-scale Entanglement Renormalization Ansatz) This tensor network is popular
in the quantum community, due to its favorable abilities to represent relevant tensors and compute
efficiently with them. It is on the left, with its dual graphical model on the right.

Finally, we point out the following fun fact.

Remark 2.1 (Duality of Tucker and CP decomposition) Consider the hypergraphs in Examples 1.1
and 1.2 that give the graph structure of Tucker decomposition and CP decomposition respectively. Up
to removal of dangling edges, the hypergraph corresponding to CP decomposition is dual to the one for
Tucker decomposition.
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DUALITY OF GRAPHICAL MODELS AND TENSOR NETWORKS 279

3. Properties

Tensor networks and graphical models are often given special structure. For example, one can restrict to
tensor networks that use a graph rather than a hypergraph. In this section we show how properties and
operations for graphical models and tensor hypernetworks behave under the duality map.

3.1 Restricting to graphs

Graphs are special hypergraphs in which every hyperedge contains two vertices. They are also known as
2-uniform hypergraphs. Each column of the incidence matrix of such a hypergraph sums to two. Taking
the dual of a graph gives a hypergraph in which every vertex has degree two, also known as a 2-regular
hypergraph [3]. We call a hypergraph at-most-2-regular if every vertex has degree at most 2.

Proposition 3.1 Tensor networks are dual to at-most-2-regular graphical models. Graph models
(graphical models whose cliques are the edges of a graph) are dual to 2-regular tensor hypernetworks.

Graphical models defined by the maximal cliques of a graph correspond to hypergraphs in which
we introduce a hyperedge for each maximal clique. Their dual tensor hypernetworks have the following
property.

Proposition 3.2 Graphical models defined by the maximal cliques of a graph correspond to tensor
hypernetworks whose hypergraphs have the property that, whenever a set of hyperedges meet pairwise,
the intersection of all of them is non-empty.

Proof . Let E′ ⊆ E be a set of hyperedges of the hypergraph of the tensor hypernetwork that meet
pairwise. Then, for all e1, e2 ∈ E′, the corresponding vertices ue1

, ue2
in the dual hypergraph (i.e. in the

graphical model) are connected by an edge. Thus, the vertices {ue : e ∈ E′} form a clique in the graphical
model, so there exists a maximal clique C in which this clique is contained. Thus, all hyperedges in E′
contain the vertex corresponding to C. �

3.2 Trees on each side

The homotopy type of a hypergraph is the homotopy type of the simplicial complex whose maximal
simplices are the maximal hyperedges. For topological purposes, we associate hypergraphs with their
simplicial complexes. We show that the homotopy type of a hypergraph and its dual agree.

Definition 3.1 (see [8]) Consider an open cover V = {Vi : i ∈ I} of a topological space X. The nerve
N(V ) of the cover is a simplicial complex with one vertex for each open set. A subset {Vj : j ∈ J} spans
a simplex in the nerve whenever ∩j∈JVj �= ∅.

Theorem 3.1 (The Nerve Lemma [4]) The homotopy type of a space X equals the homotopy type
of the nerve of an open cover of X, provided that all intersections ∩j∈JVj of sets in the open cover are
contractible.

We consider the open cover of the simplicial complex corresponding to a hypergraph in which open
sets of the complex are ε-neighborhoods of the maximal simplices. For ε sufficiently small, such an open
cover has contractible intersections, since they are homotopy equivalent to intersections of simplices.
Hence, the homotopy type of the hypergraph is equal to that of its nerve. The following proposition
relates the nerve to the dual hypergraph.

Proposition 3.3 The nerve of the above open cover of the simplicial complex of a hypergraph is the
simplicial complex of its dual hypergraph.
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280 E. ROBEVA AND A. SEIGAL

Proof . Consider a hypergraph H with vertex set U and hyperedge set C . We now construct the
dual hypergraph. The edges are represented by rows in the original incidence matrix. A subset
{Cj : j ∈ J} ⊆ C is contained in a hyperedge if there exists a vertex u ∈ U that is in all hyperedges
Cj in the subset. Hence, the simplices that arise in the dual simplicial complex are given by subsets
of hyperedges for which the intersection ∩j∈JCj is non-empty. This is exactly the definition of the
nerve. �

From this, the Nerve Lemma implies the following.

Theorem 3.2 The hypergraph of a tensor hypernetwork and the hypergraph of its dual graphical model
have the same homotopy type.

A hypergraph cycle (see [3, Chapter 5]) is a sequence (x1, E1, x2, E2, x3, . . . , xk, Ek, x1), where
the Ei are distinct hyperedges and the xj are distinct vertices, such that {xi, xi+1} ⊆ Ei for all
i = 1, . . . , k − 1, and {x1, xk} ⊆ Ek. A tree is a hypergraph with no cycles. The simplicial complexes
corresponding to trees are contractible. Theorem 3.2 implies that trees are preserved under the duality
correspondence.

3.3 Marginalization and contraction

Let H = (U, C ) be a hypergraph and H∗ its dual. Let P be a distribution in the graphical model on H
with clique potentials ψC :

∏
u∈C[nu] → K. The dual tensor hypernetwork has tensors TC = ψC ∈⊗

u∈C K
nu at the vertices of H∗.

Proposition 3.4 (Marginalization Equals Contraction) Let W ⊆ U be a subset of the vertices of the
graph H. Then, the marginal distribution of {Xu}u∈W equals

P(xW) =
∑

xu∈[nu]:
u�∈W

∏
C∈C

(TC){xC:u∈C}, (3.1)

which is the contracted tensor hypernetwork along the hyperedges corresponding to Wc.

Proof . The proof follows from the chain of equalities:

P(xW) =
∑

xu∈[nu]:
u�∈W

P(x) =
∑

xu∈[nu]:
u�∈W

∏
C∈C

ψC(xC) =
∑

xu∈[nu]:
u�∈W

∏
C∈C

(TC){xC:u∈C}. (3.2)

In other words, summing over the values of all variables in Wc is the same as contracting the tensor
hypernetwork along all hyperedges in Wc. �

The interpretations of marginalization and contraction are also very similar in nature. The variables
of a graphical model that are marginalized are often considered to be hidden, and the contracted edges
of a tensor network represent entanglement (‘unseen interaction’).

The correspondence described in Proposition 3.4 allows us to translate algorithms for marginaliza-
tion in graphical models to algorithms for contraction in tensor networks, see Section 4. Without care
to order indices, marginalization and contraction involve summing exponentially many terms. In many
cases more efficient methods are possible.
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DUALITY OF GRAPHICAL MODELS AND TENSOR NETWORKS 281

3.4 Conditional distributions

Consider a probability distribution given by a fully observed graphical model. Conditioning a variable
Xu to only take values in a given set Yu ⊆ Xu means restricting the probability tensor P to the slice
Yu × ∏

b∈U\{u} Xb which contains only the values Yu for the variable Xu. This in turn corresponds
to restricting each of the potentials for hyperedges C containing u to the given subset of elements
Yu × ∏

b∈C\{u} Xb. On the tensor network’s side, we restrict the tensor corresponding to the given
clique potential to the slice Yu × ∏

b∈C\{u} Xb.
We wish to remark that the equivalence of conditioning and restriction to a slice of the probability

tensor is due to the fact that the basis in which we view the probability tensor is fixed. The basis is given
by the states of the random variables: graphical models are not basis invariant. On the other hand, basis
invariance is a key property of tensor networks that crops up in many applications, e.g. often a gauge
(basis) is selected to make the computations efficient [14].

3.5 Entanglement entropy and Shannon entropy

Given a tensor network state represented by a tensor T , the entanglement entropy [14] equals

− trace(T log T), (3.3)

where T log T is a tensor, the same size as T , whose entry indexed by i is Ti log Ti. On the other hand, if
T represents the corresponding marginal distribution of the graphical model, the Shannon entropy [20]
of T is defined as

H(T) = −
∑
i∈I

Ti log Ti, (3.4)

where I indexes all entries of T . Expanding out the formula −trace(T log T) shows that these two
notions of entropy are the same.

4. Algorithms for marginalization and contraction

The belief propagation (or sum–product) algorithm is a dynamic programming method for computing
marginals of a distribution [20]. The junction tree algorithm [20] extends it to graphs with cycles.
The equivalence between marginalization in graphical models and contraction in tensor hypernetworks
was given in Proposition 3.4. It means that we can use methods for marginalization to contract tensor
hypernetworks and vice versa. For example, we can compute expectation values of tensor hypernetwork
states (obtained by contracting a tensor hypernetwork along all edges) [14] as well as contracted tensor
hypernetwork states. In this section, we apply the junction tree algorithm to these tasks for the MPS
tensor networks from Example 2.1. We first recall the algorithm.

4.1 The junction tree algorithm

The input and output data of the junction tree algorithm are as follows.
Input: A graphical model defined by a hypergraph H with clique potentials ψC(xC).
Output: The marginals at each hyperedge, P(xC) = ∑

xu:u/∈C P(x).
We now recall how this algorithm works. First, we construct the graph G associated to the

hypergraph H by adding edge (i, j) whenever vertices i and j belong to the same hyperedge. If G is
not chordal (or triangulated) we add edges until all cycles of length four or more have a chord, i.e. G
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282 E. ROBEVA AND A. SEIGAL

becomes chordal. Then we can form a junction tree. This is a tree whose nodes are the maximal cliques
of the graph. It has the running intersection property: the subset of cliques of G containing a given
vertex forms a connected subtree. Note that there are often multiple ways to construct a junction tree of
a given graph G.

To each maximal clique C in G we associate a clique potential which equals the product of the
potentials of the hyperedges contained in C. If a hyperedge is contained in more than one maximal
clique, its clique potential is assigned to one of them. Each edge of the junction tree connects two
cliques C1, C2 ∈ C in G. We associate to such an edge the separator set S = C1 ∩ C2. We also
assign a separator potential ψS(xS) to each S. It is initialized to the constant value 1. A basic message
passing operation from C1 to a neighboring C2 updates the potential functions at clique C2 and separator
S = C1 ∩ C2:

ψ̃S(xS) ←
∑
xC1\S

ψC1
(xC1

), (4.1)

ψ̃C2
(xC2

) ← ψ̃S(xS)

ψS(xS)
ψC2

(xC2
). (4.2)

The algorithm chooses a root of the junction tree and orients all edges to point from the root outwards. It
then applies basic message passing operations step-by-step from the root to the leaves until every node
has received a message. Then we reverse the orientation of all edges and update the clique and separator
potentials from the leaves back to the root obeying the partial order given by the new orientations of the
edges. After all messages have been passed, the final clique potentials equal the marginals, ψ̃C(xC) =∑

xu /∈C
∏

B∈C ψB(xB), and likewise for the final separator potentials.

Remark 4.1 When the junction tree algorithm is used for probability distributions the clique potential
functions are positive, but it works just as well for complex valued functions.

The complexity of the junction tree algorithm depends on the triangulation that has been computed.
It is exponential in the size of the largest clique of the chosen triangulation. Thus, at best, it is exponential
in the treewidth of the graph, which is one less than the smallest size of the largest clique over all possible
triangulations [20, Chapter 2].

4.2 Contracting tensor networks via duality

To compute a contracted tensor network state, we contract all edges in its tensor network that are not
dangling. Our framework allows us to do this via duality and to provably show the hardness of this
computation since computing marginals on the graphical model’s side is widely studied [20]. The recipe
is as follows. We consider the dual graphical model to the tensor hypernetwork. We make a new clique
in the graphical model consisting of all vertices corresponding to the dangling edges of the tensor
hypernetwork. The tensor hypernetwork state is the marginal distribution of that clique. We can then
use, e.g., the junction tree algorithm to compute it. The following example illustrates how to use the
junction tree algorithm to contract a tensor network.

Example 4.1 Consider a PEPS tensor network on 4 vertices (see left of Fig. 1, cf. Example 2.4).
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DUALITY OF GRAPHICAL MODELS AND TENSOR NETWORKS 283

Fig. 1. The PEPS tensor network on four states, its transformation via duality and the addition of the 5678 clique.

Fig. 2. A triangulation of the graph and its junction tree.

The tensor network consists of four arrays

Ta ∈ C
n1×n2×n5 , Tb ∈ C

n2×n3×n6 , Tc ∈ C
n3×n4×n7 , Td ∈ C

n1×n4×n8 ,

where n1, n2, . . . , n8 are the dimensions of the vector spaces at the eight edges. Contracting the tensor
network gives T ∈ C

n5×n6×n7×n8 with entries:

Ti5,i6,i7,i8 =
∑

i1,i2,i3,i4

(Ta)i1,i2,i5(Tb)i2,i3,i6(Tc)i3,i4,i7(Td)i4,i1,i8 . (4.3)

The junction tree algorithm gives a fast way to compute this sum. If the entanglement edge dimensions
are n1 = n2 = n3 = n4 = r and the dangling edge dimensions are n5 = n6 = n7 = n8 = n, we can
compute the contracted tensor in time and space O(n3r2 + n2r4), whereas summing term-by-term is
O(n4r4).

First, we find the dual hypergraph to the original graph (see middle of Fig. 1). We consider its graph
skeleton and add a clique corresponding to the vertices 5, 6, 7 and 8, whose marginal T we seek (right
of Fig. 1). We triangulate the new graph (left of Fig. 2) and form its junction tree (right of Fig. 2). We

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/8/2/273/5041985 by H
arvard C

ollege Library, C
abot Science Library user on 19 O

ctober 2022
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assign clique potentials to each of the cliques and separators of the junction tree as follows:

ψ12458(i1, i2, i4, i5, i8) = (Ta)i1,i2,i5(Td)i4,i1,i8 , ψ2458 = ψ245678 = ψ2467 = 1,

ψ23467(i2, i3, i4, i6, i7) = (Tb)i2,i3,i6(Tc)i3,i4,i7 .

We now perform the junction tree algorithm. We choose the left vertex of the junction tree, i.e. 12458,
as the root and proceed from left to right:

ψ̃2458(i2, i4, i5, i8) =
∑

i1

ψ12458(i1, i2, i4, i5, i8),

ψ̃245678(i2, i4, i5, i6, i7, i8) = ψ̃2458(i2, i4, i5, i8)

ψ2458(i2, i4, i5, i8)
ψ245678(i2, i4, i5, i6, i7, i8),

ψ̃2467(i2, i4, i6, i7) =
∑
i5,i8

ψ̃245678(i2, i4, i5, i6, i7, i8),

ψ̃23467(i2, i3, i4, i6, i7) = ψ̃2467(i2, i4, i6, i7)

ψ2467(i2, i4, i6, i7)
ψ23467(i2, i3, i4, i6, i7).

Then, we repeat the process going back to the root 12458. The first two steps of the updates, returning
to the root, are as follows:

˜̃
ψ2467(i2, i4, i6, i7) =

∑
i3

ψ̃23467(i2, i3, i4, i6, i7),

˜̃
ψ245678(i2, i4, i5, i6, i7, i8) =

˜̃
ψ2467(i2, i4, i6, i7)

ψ̃2467(i2, i4, i6, i7)
ψ̃245678(i2, i4, i5, i6, i7, i8).

The desired marginal over 5, 6, 7, 8 equals
∑

i2,i4
˜̃
ψ245678(i2, i4, i5, i6, i7, i8).

Note that for this particular graph, the complexity O(n3r2 + n2r4) of the junction tree algorithm can
also be achieved by factorizing T as

Ti5,i6,i7,i8 =
∑
i2,i4

⎛
⎝∑

i1

(Ta)i1,i2,i5(Td)i4,i1,i8

⎞
⎠

⎛
⎝∑

i3

(Tb)i2,i3,i6(Tc)i3,i4,i7

⎞
⎠ .

For more general graphs, finding a way to factor the contracted tensor network in order to match the
performance of the junction tree algorithm is more difficult.
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Fig. 3. The MPS tensor network on four states contracted with itself (left). Its dual graphical model (right).

Fig. 4. A triangulation of the dual of a matrix product state.

Fig. 5. The junction tree of the chordal graph in Fig. 4. The cliques are in ovals; the separators are boxed.

4.3 Computing expectation values for matrix product states

We now explain how to compute expectation values of MPS tensor networks (see Fig. 3) using
the junction tree algorithm for tensor hypernetworks. Using Theorem 2.1 we compute the family of
graphical models that is dual to matrix product states. In the figures below, we draw the MPS with
four observable indices, but repeating the pattern gives the results in the general case. We show that the
junction tree algorithm used to compute marginalizations of the dual graphical model corresponds to the
bubbling algorithms that are used to compute expectation values of an MPS [14].

In quantum applications a tensor network state is denoted |ψ〉. Its expectation value is the inner
product 〈ψ |A|ψ〉 for some operator A. We consider the case that A is block diagonal, which means A
transforms a tensor network state |ψ〉 by a linear transformation in each of its vector spaces of observable
indices. The method we describe can be extended to operators of interest which are not block diagonal.

Computing the expectation value of an MPS means contracting the tensor network on the left
in Fig. 3, where the middle row of vertices correspond to the blocks of A. Equivalently, it means
marginalizing all variables of the graphical model on the right (or, computing the normalization constant
of this graphical model). We contract the tensor network by applying the junction tree algorithm to the
graphical model.

The first step of the algorithm is to triangulate the graph of the graphical model, by adding edges
until it is chordal (or triangulated), see Fig. 4. Next, we form a junction tree for the triangulated graph,
see Fig. 5.
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Fig. 6. Order of contraction in the MPS tensor network to compute its expectation value.

We choose the root of the tree to be the left-most vertex in Fig. 5. We first orient all edges to point
away from the root, i.e. in this case from left to right, and then we perform basic message passing
operations along the directed edges until every vertex has received a message from its parent. We arrive
at the right-most clique {12, 13, 14}. At this point, the function recorded at the clique {12, 13, 14} in fact
equals the marginal at that clique. Thus, in order to compute the total sum, we can simply sum over
the three vertices 12, 13 and 14. Therefore, in this case, we do not need to run the second step of the
junction tree algorithm in which we have to reverse the orientations of all edges and pass messages all
the way back to the root.

We now translate the junction tree algorithm to the language of tensor networks. The junction tree
determines the order in which to contract the indices of the tensor network, see Fig. 6. We contract edges
in the tensor network until it is completely contracted.

At each step we sum over just one vertex of the dual graphical model (due to the structure of the
junction tree in this case). This means we contract one edge at a time from the tensor network. In the
first message passing operation we have C1 = {1, 2, 3}, C2 = {2, 3, 4}, S = {2, 3}. We sum over the
values of vertex 1, since it is the only variable in C1\S. This corresponds to contracting the tensor along
the edge corresponding to vertex 1 of the graphical model (see step one of Fig. 6 for the corresponding
tensor network operation). In the second message passing operation we sum over the values of vertex
2 of the graphical model. This corresponds to contracting the tensor network along the left edge (see
the second step of Fig. 4). The subsequent steps of the junction tree algorithm correspond to the steps
shown in Fig. 4.

The triangulated graph of the dual graph of MPS has a treewidth of size four, since we can continue
the triangulation given in Fig. 4. We can compute the complexity of the junction tree algorithm to be
O(|V|(nr3 + n2r2)), where |V| is the number of vertices in the MPS, n is the size of the dangling edges
and r is the size of the entanglement edges. It turns out that contracting the tensor in this way is what
is usually done by the tensor network’s community as well, a method sometimes called bubbling [14].
Similar algorithms are used in the case of MPS with periodic boundary conditions, e.g. the algorithm
in [16] which runs in O(|V|nr5). A numerical algorithm for an infinitely long MPS chain which runs in
O(nr3) is given in [18].

Our duality results, together with the junction tree algorithm, provide a method for computing
expectation values for any tensor network. In contrast, existing methods for computing expectation
values are usually addressed on a case-by-case basis depending on the structure of the tensor
network. We conclude the paper with a brief discussion of another main example, the two-dimensional
generalization of MPS.

4.4 Extending to larger dimensions

The higher-dimensional analogue of matrix product states/tensor trains is called the PEPS, see
Example 2.4. They are based on a two-dimensional lattice of entanglement interactions. Computing
expectation values for the PEPS network takes exponential time in the number of states of the network
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[14]. On the graphical model’s side, it is possible in principle to find expectation values of a PEPS state
using the junction tree algorithm. Since the triangulated graph of the dual hypergraph of PEPS has a tree
width that grows in the size of the network, the junction tree algorithm is exponential time.

In [12], the authors show that algorithms for computing expectation values are exponential in the
treewidth of the tensor network. On the other hand, we have seen that the junction tree algorithm is
exponential time in the treewidth of the dual graphical model. This indicates a similarity between the
treewidth of a hypergraph and of its dual. A comparison of the treewidths of planar graphs and of their
graph duals can be found in [17].

To avoid exponential running times, numerical approximations are used [13,14,21]. For graphical
models, these are termed loopy belief propagation (see [20, Chapter 4] and references therein). A natural
question is whether the algorithms for loopy belief propagation translate to known algorithms in the
tensor network’s community, e.g. for computing expectation values of PEPS, or whether they provide a
new family of algorithms. In our opinion both answers to this question would be interesting.
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