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ABSTRACT

V. I. Arnold proved in 1993 that the intersection multiplicity between two

germs of analytic subvarieties at a fixed point of a holomorphic invertible

self-map remains bounded when one of the germs is dragged by iterations

of the self-map. The proof is based on the Skolem–Mahler–Lech theorem

on zeros in recurrent sequences.

We give a different proof, based on the Noetherianity of certain alge-

bras, which allows one to generalize Arnold’s theorem for local actions of

arbitrary finitely generated commutative groups, with both discrete and

infinitesimal generators. Simple examples show that for non-commutative

groups the analogous assertion fails.

1. Complexity of iterated intersections

1.1. Complexity growth by iterations. Let F : M → M be a smooth

self-map of a differentiable manifold M into itself. For a pair X,Y ⊆ M of

two subvarieties of complimentary dimensions dimX + dimY = dimM , one

can consider the intersection Fn(X) ∩ Y between the image of X by the nth

iteration Fn = F ◦ · · · ◦ F and Y . If this intersection consists of finitely many
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points, then the growth rate of the integer sequence mn = mn(F,X, Y ) =

#{Fn(X) ∩ Y } ∈ N for n = 0, 1, 2, . . . is an important indicator of the mixing

properties of the dynamical system. In particular, this construction allows to

measure the growth of the number of n-periodic points (the fixed points of Fn).

To that end, one has to replace M by its square M ×M and F by the product

F × id, choosing X and Y to be the same subvariety, the diagonal M ⊆ M×M .

Then the intersection after n iterations will coincide with the set of n-periodic

points.

The problem of estimating the possible growth rate of the sequence mn for

various classes of dynamical systems was discussed by V. I. Arnold in a series of

papers at the beginning of 1990’s. IfM is an algebraic variety and F an algebraic

map, then the sequence mn grows no faster than exponentially by the Bézout

theorem. In [A2],[A3] it was shown that the same exponential growth rate is

characteristic also for a generic smooth map F , with the genericity conditions

explicitly spelled out. The parallel exponential upper bound for the growth of

the number of periodic points is given by the Artin–Mazur theorem [KH]. The

results remain true if in the definition of the numbers mn the intersection points

are counted with their multiplicity; see below.

However, if we replace the global problem with a local one, the situation

changes radically. Let F : (Rd, 0) → (Rd, 0) be the germ of an invertible C1-

smooth self-map and the origin 0 is an isolated fixed point for all iterations

Fn : (Rd, 0) → (Rd, 0). Then the multiplicity of Fn at the origin, defined as the

topological index of the vector field vn(x) = Fn(x) − x, is uniformly bounded

as n → ∞, as was discovered by M. Shub and D. Sullivan [SS].

V. Arnold in [A1] generalized this result for the local complexity of holo-

morphic iterations in the general setting. Let X,Y ⊆ (Cd, 0) be two germs of

analytic submanifolds of complimentary dimensions. Since F (0) = 0, the origin

is always a common point of the iterates Fn(X) and Y for any n and one may

compute the intersection multiplicity μn = μn(F,X, Y ) > 0 between Fn(X)

and Y (the precise definition is given below in §2). If the intersection Fn(X)∩Y
consists of the single (isolated) point at the origin, the corresponding multiplic-

ity is a well defined finite natural number, 0 < μn = μn(F,X, Y ) < +∞.

Arnold’s theorem [A1, Theorem 1] claims that if F : (Cd, 0) → (Cd, 0) is

the germ of a holomorphic invertible self-map and X,Y ⊂ (Cd, 0) a pair of

analytic subvarieties of complimentary dimensions, such that the origin is an
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isolated intersection of Fn(X) and Y for all n = 1, 2, . . . , then the multiplicity

of this intersection μn(F,X, Y ) stays bounded as n → ∞.

The assumption of invertibility is crucial: the germ F : (C2, 0) → (C2, 0),

F (x, y) = (x, y2), after n iterations maps the diagonal X = {y = x} into the

curve Fn(X) = {y = x2n} which intersects the axis Y = {y = 0} with the

multiplicity 2n which grows exponentially as n → ∞ [A1]. Very recently W.

Gignac constructed in [G] an example of a non-invertible (strongly contracting)

polynomial self-map, for which the multiplicity of contact between two analytic

curves Fn(X) and Y grows faster than any prescribed sequence.

In contrast with rather transparent arguments of Shub and Sullivan, the proof

by Arnold rests heavily on the Skolem–Mahler–Lech theorem, a very deep fact

from the number theory [Eea], which gives an explicit description of integer

roots of quasipolynomials in one variable (see below for the precise definition;

usually it is formulated for zero terms in recurrent sequences).

1.2. Nonisolated intersections, flows and other general group

actions. There is a number of natural questions which are motivated by the

above results of Shub–Sullivan and Arnold.

Both theorems fail to address the case where some of the intersections

Fn(X) ∩ Y are non-isolated (resp., where some of the iterates Fn have a non-

isolated fixed point at the origin). This seemingly technical restriction is known

to cause serious problems in certain situations; cf. with [BN] and references

therein. In this case the multiplicity of intersection becomes infinite, μn = ∞
for some values of n, but one may still ask whether the sequence of finite inter-

section multiplicities remains bounded.

Besides, from the dynamical point of view it is natural in parallel with the

discrete time dynamical system of iterates Fn, n ∈ N, to consider also the

continuous time one-parametric groups {F t} of holomorphic germs with real

(t ∈ R) or complex (t ∈ C) time. Such groups arise as collections of the

flow maps (in short, the flow) of holomorphic vector fields on (Cd, 0) with a

singular point at the origin. By definition of the flow, it satisfies the ordinary

differential equation d
dtF

t
∣
∣
t=0

= v, where v is the germ of the vector field, called

the infinitesimal generator of the group {F t}.
Given a one-parametric group and any two germs of analytic manifolds

X,Y ⊆ (Cn, 0) of complementary dimensions, one can define the (extended)-

integer-valued function μt = μt(v,X, Y ) as the intersection multiplicity between
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the image F t(X) and Y (as before, we set μt = +∞ if the intersection is non-

isolated). One could expect that the finite values of this function should remain

bounded. Note that in this case the nondegeneracy assumption follows auto-

matically from the reversibility of the flow. On the other hand, unlike in the

discrete time case, there is no Skolem theorem for the real or complex roots of

quasipolynomials, thus the study should be based on different ideas.

Next, one can easily reformulate the question in different regularity assump-

tions, e.g., for C∞-smooth maps (resp., flows), or for formal self-maps (formal

flows). In all cases the notion of multiplicity of intersection (eventually, infinite)

is well defined, making the questions meaningful.

One can also reformulate the question for “generalized dynamical systems”.

Instead of just one invertible map, which induces a holomorphic action of the

group Z (or one flow which induces a holomorphic action of the groups R or C)

we may ask the question about actions of more general groups. For instance, one

can consider several holomorphic invertible self-maps Fi : (C
d, 0) → (Cd, 0), i =

1, . . . , p and the group G generated by them using compositions and inversions.

Then for any element g ∈ G one can consider the image g(X) and its intersection

multiplicity μ(g) = μ(g−1(X), Y ). It is interesting to study the distribution of

finite values of the function μ = μXY : G → N
∗ = N ∪ {+∞}, g 
→ μ(g). The

answer obviously depends on the algebraic nature of the group G.

Very often, instead of just one local self-map (flow, finitely generated group)

one has to deal with parametric families of such objects, depending on additional

parameters in a way that is regular enough (smooth, analytic, etc.). In this case

the main question is how the intersection multiplicity bounds depend on these

parameters, in particular, whether they are locally uniformly bounded. If only

finite multiplicity is allowed (as in the initial version of Arnold’s theorem), then

such uniformity would follow from simple semicontinuity arguments; however, in

the presence of nonisolated intersections the affirmative answer is not automatic

anymore.

We were able to answer all these questions in the affirmative sense for the

widest class of formal groups, assuming only the commutativity of the group

G, provided that it is finitely generated.

1.3. Definitions and terminology. We shall formulate and prove the main

results for actions of commutative groups on the ring of formal series. All

other (analytic, smooth etc.) versions will follow as easy corollaries. For the
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sake of simplicity, we deal first with the non-parametric case; the parametric

case requires some extra technical work which will be outlined in the Appendix

below.

Recall some basic terminology and facts. Denote by C[[x]] = C[[x1, . . . , xd]]

the algebra of formal Taylor series in d variables with complex coefficients.

This is a local algebra with the unique maximal ideal of germs without the

free term, denoted by m. A formal self-map F is a d-tuple of formal series

without the free term; under this assumption one can define the composition

operator F ∗ : C[[x]] → C[[x]], f 
→ f ◦ F which is an algebra homomorphism

(in particular, it is C-linear). By definition, F ∗m = m. This homomorphism

is an isomorphism if F is formally invertible (the matrix of linear terms has

nonzero determinant). Invertible formal self-maps can be composed with each

other, forming the group which we will denote by Diff[[Cd, 0]] = AutC[[x]]. In

a similar way a formal vector field v is a d-tuple of formal series v = (v1, . . . , vd)

without the free terms, vi ∈ m ⊂ C[[x]], which acts on the algebra C[[x]] as a

derivation, V : C[[x]] → C[[x]], Vf =
∑d

j=1
∂f
∂xj

· vj(x). The formal flow of a

formal vector field is a one-parametric subgroup {F t : t ∈ C} ⊂ Diff[[Cd, 0]]

which satisfies the differential equation d
dtF

t
∣
∣
t=0

= v. One can show that such

a subgroup always exists and the corresponding automorphism is given by the

formal exponential series

(1) F t∗ = etV = id+ tV + 1
2! t

2V 2 + · · ·+ 1
k! t

kV k + · · ·
The series on right-hand side converges termwise to an automorphism of C[[x]]

for all complex values of t ∈ C, associated with the corresponding one-para-

metric subgroup of formal self-maps {F t} [IY]. The corresponding formal self-

maps will be denoted by F t = etv.

All these constructions remain valid if we replace the algebra C[[x1, . . . , xd]]

by the algebra O(Cd, 0) of holomorphic germs or the algebra E (Rd, 0) of germs

of C∞-smooth real functions, and are naturally interrelated by associating with

each germ (holomorphic or smooth) its formal Taylor series.

A formal subvarietyX will be identified with a radical ideal I = IX ⊂ C[[x]]

in the same way the germ of an analytic subvariety X can be identified with

the (radical) ideal IX ⊆ O(Cd, 0) of holomorphic germs vanishing on it. Since

both rings are Noetherian, each ideal I ⊆ C[[x]] or I ⊆ O(Cd, 0) is always

finitely generated: I = 〈f1, . . . , fs〉. The algebra of C∞-smooth germs is not

Noetherian, but we will only consider finitely generated ideals in E (Rd, 0). The
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(germ of the) zero locus X = V (I) of a finitely generated ideal I is called a

finitely presented local subvariety in (Rd, 0). For a formal self-map F and

a formal variety X associated with an ideal I, the formal variety associated

with the ideal F ∗I is called the preimage F−1(X) (in full agreement with the

local analytic case, where the system of equations {(fi ◦F )(x) = 0} means that

F (x) = y ∈ X = {fi(x) = 0}).
For any two (formal, analytic or finitely presented) subvarietiesX,Y we define

the multiplicity of their intersection as the codimension of the ideal 〈IX , IY 〉
generated jointly by IX and IY :

∀ X,Y μ(X,Y ) = codimC 〈IX , IY 〉 ∈ N
∗ = N ∪ {+∞}.

This codimension may be a finite natural number or infinity. In an obvious way

this definition can be generalized for the multiplicity of a multiple intersection

X1, . . . , Xs of several (finitely presented in the C∞-smooth case) varieties.

A subgroup G ⊂ Diff[[Cd, 0]] is finitely generated, if there exist finitely

many invertible formal self-maps F1, . . . , Fp ∈ Diff[[Cd, 0]] and formal vector

fields v1, . . . , vq such that every element of G can be represented as a finite

composition of the maps F±1
i and flows etjvk . We will be mainly interested in

the commutative case, where such composition can be described by a r-tuple of

numbers, r = p+ q, part of them integer, the rest complex (the cases p = 0 or

q = 0 are not excluded).

A finitely generated group G ⊂ Diff[[Cd, 0]] is commutative if and only if

the generators commute between themselves, that is,

(1) Fi ◦ Fj = Fj ◦ Fi for all i, j = 1, . . . , p,

(2) [vi, vj ] = 0 for all i, j = 1, . . . , q (the formal Lie bracket),

(3) each map Fi preserves each of the vector fields vj , (Fi)∗vj = vj for all

i = 1, . . . , p, j = 1, . . . , q.

Each element of a commutative finitely generated group G can be represented

as

g = F t1
1 ◦ · · · ◦ F tp

p ◦ etp+1v1 ◦ · · · ◦ etp+qvq ,(2)

t1, . . . , tp ∈ Z, tp+1, . . . , tp+q ∈ C.(3)

In the group theoretic sense every commutative finitely generated subgroup of

resp., Diff[[Cd, 0]] is isomorphic to a quotient of the “free” group Z
p × C

q by

any identities that may occur (e.g., one of the generators Fi may be periodic,

F s = id for a finite value of s ∈ N). Conversely, the image of any group
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homomorphism (representation) G : Zp × C
q → Diff[[Cd, 0]] � AutC[[x]] is an

Abelian finitely generated subgroup of self-maps. We will identify the group G

with its image by the map (2,3) and write g = G(t) for a generic element of G.

For any given pair of formal subvarieties X,Y the intersection multiplicity

function μXY (g) = μ(g−1(X), Y ) pulls back as the function

(4) G∗μX,Y : Zp × C
q → N

∗, t 
→ μ
(

G(t)−1(X), Y
)

.

1.4. Principal results.

Theorem 1: Let G ⊂ Diff[[Cd, 0]] be a commutative finitely generated sub-

group of formal self-maps.

Then for any two formal subvarieties X,Y the multiplicity intersection

function μ = μXY : G → N
∗, μ(g) = μ(g−1(X), Y ) � +∞, has bounded fi-

nite values: there exists a finite constant m ∈ N depending on G and the two

varieties X,Y , such that

(5) ∀g ∈ G μ(g) < +∞ =⇒ μ(g) � m.

Corollary 1: For a commutative finitely generated subgroup G ⊂ Diff(Cd, 0)

of germs of holomorphic self-maps and any two germs of analytic subvarieties

X,Y ⊂ (Cd, 0), the multiplicity of all isolated intersections between g−1(X)

and Y is uniformly bounded.

Proof. The intersection of two holomorphic germs is (complex) isolated if and

only if the intersection multiplicity is finite.

Corollary 2: The assertion of Theorem 1 remains true for any finitely

generated subgroup G ⊂ Diff(Rd, 0) of germs of C∞-smooth self-maps and

any pair of finitely presented C∞-smooth subvarieties X,Y ⊆ (Rd, 0).

Proof. By taking the Taylor series (possibly diverging) of the generators of the

group and the equations defining the subvarietiesX,Y , one reduces the situation

to the purely formal case.

Note that the assertion of the theorem is much less informative in the C∞-

smooth category. For instance, any germ of a closed set can be defined by a

single C∞-smooth equation f = 0, and hence very pathological intersection

patterns can be designed. However, such an equation is (in the really bad

cases) necessarily flat (having identically zero Taylor series), so all intersection

multiplicities will be identically infinite for all elements of the group.
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The parametric case of commutative groups generated by self-maps and fields

analytically depending on finitely many parameters is discussed in the Appen-

dix.
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2. Intersection multiplicity and its algebraic computability

In this section we recall (and give a complete proof for the readers’ convenience)

of the well-known (folklore) fact that the codimension of a finitely generated

ideal in C[[x]] is an “algebraically computable” function of its generators. This

fact is one of the ingredients of Arnold’s original proof [A1]*Lemma 1.

2.1. Algebraic decidability of the multiplicity. Let n ∈ N be a fixed

natural number. Consider all ideals in C[[x]] generated by n elements f1, . . . , fn.

Expanding each generator as a formal series,

fi(x) =
∑

i,α

aiαx
α, x = (x1, . . . , xd), α ∈ Z

d
+, aiα ∈ C,

we see that the (infinitely many) Taylor coefficients

{aiα ∈ C : i = 1, . . . , n, α ∈ Z
d
+}

form “coordinates” on the set of all ideals with � n generators. We will show

that for any natural m the condition that the ideal I = 〈f1, . . . , fn〉 has codi-

mension � m is equivalent to a finite number of polynomial identities involving

the Taylor coeffiients aiα.

Example 1: The condition that the codimension of I is positive, is equivalent

to the algebraic conditions ai0 = 0, i = 1, . . . , n (no free terms). The condition

that codim I � 2 also can be expressed as the algebraic rank condition on the
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Jacobian matrix J of the first order coefficients aiα with |α| = 1 (vanishing of

all minors of size d). In particular, when n = d, we have a single polynomial

condition of vanishing the determinant,

codim I � 1 ⇐⇒ detJ = 0, J = ‖aiα‖i=1,...,n, |α|=1.

Lemma 3: For any finite m the condition that codim I � m is equivalent to a

finite number of algebraic conditions imposed on the Taylor coefficients {aiα}
of orders not exceeding m.

Proof. Consider the quotient algebra Cm[x] = C[[x]]/mm+1 of truncated poly-

nomials of degree � m, which is finite-dimensional over C, and the ideal Im =

I mod mm+1 which is the quotient image of I in Cm[x]. The ideal Im is gener-

ated by truncation of the series f1, . . . , fn to order m. The codimension of Im

in Cm is the codimension of the image of the C-linear map

(u1, . . . , un) 
→ u1f1 + · · ·+ unfn, ui, fi ∈ Cm[x].

The matrix of this map (in the monomial bases in the source and the target

spaces) consists of suitably placed coefficients aiα with |α| � m. The condition

that the image has codimension � k for any natural k, is equivalent to vanish-

ing of all minors of size k + 1 and larger, which translates into finitely many

polynomial conditions on the parameters aiα with rational coefficients which

define a radical ideal in the ring Q[aiα : |α| � m].

It remains to mention the general fact: if I is an ideal of codimension less

than m, then the m-th power of the maximal ideal mm automatically belongs

to I [Aea, §5.5, Ch. I]. This means that truncating the generators fi to their

Taylor polynomials of order � m cannot affect the ideal, i.e., the conditions

characterizing ideals of codimension < m (and hence the complement, the ideals

of codimension � m) cannot involve high order coefficients, being thus the same

algebraic conditions as for the ring of the truncated polynomials.

Using the terminology suggested by Arnold in [A4] and further elaborated in

[IY, §10], one can say that computation of the codimension of an ideal in the

local ring C[[x]] is an algebraically decidable problem.

2.2. Infinite ascending chain of ideals. Denote by A = Q[. . . , aiα, . . . ] the

ring of polynomials in the infinitely many variables {aiα : i = 1, . . . , n, |α| � 0}
(each element ofAmay depend only on finitely many variables). The polynomial
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conditions described in Lemma 3 define an increasing chain of radical ideals Im

in this ring, generated by the corresponding polynomials:

(6) I1 � I2 � · · · � Im � · · · � A.

The “universal” (depending only on the number of generators n and the number

of independent variables d) ideal Im is generated by the polynomial conditions

guaranteeing that the codimension of the ideal with n “general” generators

(7) I =
〈∑

α a1αx
α, . . . ,

∑

α anαx
α
〉 ⊂ C[[x]]

is � m. The codimension of the ideal I as in (7) is m or higher, if and only if

the coefficients aiα of the formal series generating I belong to the zero locus of

Im. Since the ring A is not Noetherian (the number of “independent variables”

aiα is infinite), the chain (6) does not have to stabilize (and indeed does not,

since there are ideals of arbitrarily high but finite codimension).

3. Quasipolynomials

In this section we study how the elements G(t), t ∈ Z
p × C

q of a commutative

subgroup G ⊂ Diff[[Cd, 0]] depend on t. This result is also of the folklore nature,

at least in the one-dimensional case.

3.1. Quasipolynomials in several variables. Let Λ ⊂ C be a subset

(eventually infinite) of the complex vector space C
r.

Definition 2: A (complex) quasipolynomial in r variables with the spectrum in

Λ is a finite sum of the form

(8) q(z) =
∑

λ∈Λ

e〈λ,z〉pi(z), pλ ∈ C[z] = C[z1, . . . , zr], z ∈ C
r,

where 〈λ, z〉 = ∑r
1 λizi.

If Λ is a lattice (in the Minkowski sense), that is, Λ + Λ ⊆ Λ, then all

quasipolynomials with the given spectrum Λ form a commutative algebra over

C. We will denote this algebra by C[ezΛ, z], z = (z1, . . . , zr).

By this definition, quasipolynomials are entire functions on C
r. A quasipoly-

nomial on Z
p ×C

q is by definition the restriction of a complex quasipolynomial

on C
r, r = p+ q, on the the subset Zp ×C

q. Note that in the discrete case each

exponential can be changed by an integer multiple of 2πi, thus it is convenient

to add ±2πi to the generators of the corresponding lattice.
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Quasipolynomials in one variable naturally arise as solutions of linear ordinary

differential equations with constant coefficients. The values of a quasipolyno-

mial at all integer points z ∈ Z solve a linear recurrence with constant coeffi-

cients and vice versa.

3.2. Noetherianity of the algebra of quasipolynomials. We prove an

obvious sufficient condition on the lattice Λ ⊂ C
r guaranteeing that the cor-

responding algebra of quasipolynomials C[ezΛ, z] is Noetherian, that is, every

ascending chain of ideals in this algebra stabilizes after finitely many steps.

Lemma 4: If the lattice Λ ⊆ C
r is finitely generated, then the algebra C[ezΛ, z]

is Noetherian.

Proof. Assume that the vectors λ1, . . . ,λs ∈ C
r span the lattice Λ so that Λ ⊆

∑s
i=1 Z+λi. Consider the algebra of polynomials in s + w variables C[w, z] =

C[w1, . . . , ws, z1, . . . , zr] and the map C[w, z] → C[ezΛ, z] which is obtained by

extending the correspondence

z 
→ z, wi 
→ e〈λi,z〉

as a ring homomorphism. By definition, each monomial of the form e〈λ,z〉zα

with λ =
∑s

1 βiλi ∈ C
r is the image of the monomial wβzα, so that the above

homomorphism is surjective. Since the ring C[w, z] is Noetherian, by the well-

known theorem [ZS] the ring C[ezΛ, z] is also Noetherian as its quotient.

3.3. Quasipolynomiality of action of commutative finitely gener-

ated groups.

Lemma 5: If G : Zp × C
q → Diff[[Cd, 0]] is a finitely generated commutative

subgroup, then each Taylor coefficient of any orbit G(t)∗f , f ∈ C[[x]], is a

quasipolynomial in the variables t = (t1, . . . , tr) with the spectrum Λ ∈ C
r

which is a finitely generated lattice depending only on the linearizations of

generators of the group G.

Arranging the monomials xα ∈ C[[x]] in any special order, say, deg-lex (see

below), we can identify each element of the group G(t) with a bi-infinite matrix

whose entries (matrix elements) depend on t. The lemma asserts that all matrix

elements of G(t) depend on t quasipolynomially.
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Remark 3: The proof of the Lemma gives an explicit description of the spectrum

Λ as follows. For each i = 1, . . . , r = p + q we define the subset Λi ⊂ C (the

“partial lattice” associated with the variable zi) as follows:

(1) if i � p and the corresponding self-map Fi has the form Fi(x) =

Mix + · · · (the dots stand for the higher order terms and Mi as an

invertible matrix with the eigenvalues μ1, . . . , μd), then Λi is the lattice

in C generated by 2πi and the logarithms λj = lnμj ;

(2) if p < i < q and the corresponding vector field vi has the form vi(x) =

Hix+ · · · , then Λi is the lattice generated by the eigenvalues λ1, . . . , λd

of the linearization matrix Hi.

Then the spectrum Λ ⊆ C
r of the quasipolynomial algebra associated with the

group generated as in Lemma 5 is the Cartesian product

(9) Λ = Λ1 × · · · × Λr.

A special case of this lemma for t ∈ Z
1 is proved in [A1]. We give a different

proof which adapts easily to the case of flows and general commutative groups.

Proof of the Lemma. Since the assertion concerns only finite order Taylor coef-

ficients, one can replace the algebra C[[x]] by that of truncated polynomials of

sufficiently high degree: the matrix element of the algebra automorphism G(t)∗

at the (α, β)-position, which is the coefficient before xβ in the formal series

G(t)∗xα, can be determined by looking at the truncated action of G(t)∗ on any

Cm[x] with m � max(|α|, |β|).
The algebra Cm[x] is finite-dimensional over C, and the action of the group

is by powers of the discrete generators and exponentials of the derivations. We

have to describe the dependence of the matrix elements of the product (2) when

F ∗
i are automorphisms and Vj derivations of the finite-dimensional algebra of

the truncated polynomials.

We start first with the cyclic (one-parametric) case. The mere fact that

matrix elements of a one-parametric subgroup of finite-dimensional linear

automorphisms, either discrete {Lt}t∈Z or continuous {Lt = exp tV }t∈C, are

quasipolynomials, is well known.

Consider first a discrete one-parametric subgroup generated by an invertible

linear operator L. Let L = D +N be the decomposition of L as the sum of its

commuting diagonal and nilpotent parts, D = diag(μ1, . . . , μs), N
k+1 = 0 for

some k � dimL. Then for any t ∈ Z the binomial series for (D +N)t becomes
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a finite sum,

Lt = Dt + tDt−1N + 1
2 t(t− 1)Dt−2N2 + · · ·+ 1

k! t(t− 1) · · · (t− k+1)Dt−kNk.

All matrix elements of the powers Dt−1, . . . , Dt−k as functions of t are linear

combinations of powers μt
1, . . . , μ

t
s, where {μ1, . . . , μs} are the eigenvalues of

L = L1: indeed, μt−s
j = csjμ

t
j , csj = μ−s

j for all s = 1, . . . , k (the constants csj

do not depend on t). Therefore all matrix element of the powers Lt, t ∈ Z, are

quasipolynomials in one variable t with the spectrum Λ = {λ1, . . . , λs} ⊂ C
1,

λi = lnμi. The above division and logarithms are well defined, since by the

invertibility of L, μi �= 0.

Consider now a continuous time subgroup with an infinitesimal generator V

which we decompose as V = D + N , D = diag(λ1, . . . , λs). Substituting this

(commuting) decomposition into the exponential series (1), we get

etV = etD · etN = etD · (matrix polynomial of t), ∀t ∈ C,

since the exponential series for etN is a finite (matrix) polynomial of degree � k.

Thus all matrix elements of the exponential etV are quasipolynomials with the

spectrum Λ = {λ1, . . . , λs}.
To apply these arguments to the infinite-dimensional algebra C[[x]], we con-

sider its finite-dimensional truncations. Let Lm be the automorphism of the

truncated polynomial algebra Cm[x] (resp., Vm is a derivation of this algebra),

obtained by the truncation of the formal automorphism L ∈ AutC[[x]], resp.,

the derivation V : C[[x]] → C[[x]]. We claim that the matrix elements of Lt
m,

resp., etVm , are quasipolynomials with the spectra generated (as lattices) by the

eigenvalues of the matrix L1, resp., V1, as explained above.

Without loss of generality we may assume that the local coordinates are

chosen in such a way that the linear part of the map (field) is lower-triangular,

and use the corresponding order for the deg-lex ordering of the monomials.

This means that:

(1) monomials xα are ordered in the increasing order of their degrees |α| =
α1 + · · ·+ αd;

(2) monomials of the same degree are ordered lexicographically, superior

terms coming first;

(3) the lexicographical order of the variables x1, . . . , xd is such that L1xi =

μixi + · · · , resp., V1xi = λixi + · · · , where the dots denote lex-inferior

linear terms.



826 A. L. SEIGAL AND S. YAKOVENKO Isr. J. Math.

By this choice we have

(10)
Lxi = μixi + (lex-inferior linear terms) + (monomials of higher deg),

V xi = λixi + (lex-inferior linear terms) + (monomials of higher deg).

For any monomial xα we have, using the homomorphy of L (resp., the Leibnitz

rule for V ), the identities

(11)
Lxα = μαxα + (monomials of higher deg-lex order),

V xα = 〈λ, α〉 xα + (monomials of higher deg-lex order).

Here μα = μα1
1 · · ·μαd

d = e〈λ,α〉, 〈λ, α〉 = λ1α1 + · · · + λdαd and λi = lnμi,

i = 1, . . . , d, as explained earlier.

Thus in the lexicographically ordered monomial basis each truncation Lm,

resp., Vm, is a triangular finite-dimensional operator with the spectrum formed

by multiplicative (resp., additive) combinations of the eigenvalues of L1 (resp.,

V1) of total degree (resp., total multiplicity) � m.

This observation shows that all matrix elements of Lt
m (resp., etVm) are

quasipolynomials in t with the spectrum in the lattice Λ ⊂ C generated by

lnμi (resp., λi).

In the group having several commuting generators, the scalar “time variable”

t = (t1, . . . , tr) ∈ Z
p × C

q ⊆ C
r becomes multidimensional. By the above

arguments, the matrix elements for the automorphismG∗(t) depend on t in such

a way that dependence on each variable ti separately is quasipolynomial with

a finitely generated spectrum Λi ⊂ C. One can easily see (e.g., by induction)

that a function of several complex variables, quasipolynomial in each variable

separately, is quasipolynomial in all variables. The corresponding spectrum Λ

is the Cartesian product of finitely generated lattices (9), which obviously is

itself a finitely generated lattice in C
r.

4. Demonstration and discussion

4.1. Demonstration of Theorem 1. Consider a commutative finitely gen-

erated group G : Zp × C
q → Diff[[Cd, 0]] � Aut(C[[x1, . . . , xd]]), p + q = r,

and two finitely generated radical ideals I = 〈f1, . . . , fs〉, J = 〈fs+1, . . . , fn〉 in
C[[x1, . . . , xd]], associated with the formal subvarieties X and Y . From these
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data one can construct a family of ideals with marked (explicitly selected) gen-

erators

It = 〈G(t)∗f1, . . . , G(t)∗fs, fs+1, . . . , fn〉 ⊂ C[[x]], t ∈ Z
p × C

q.

The ideal It corresponds to the intersection of the formal varieties g−1(X) and

Y for g = G(t). Our goal is to prove that the finite values of the codimension

μ(t) = codimC It, t ∈ Z
p × C

q,

are bounded.

By Lemma 5, each coefficient aiα = aiα(t) of each generator G(t)∗fi of It is
a quasipolynomial in t with the common spectrum Λ defined only by the linear

terms of the generators of G: aiα(t) ∈ C[etΛ, t].

Consider the increasing chain of polynomial ideals (6). Each ideal Im de-

fines polynomial conditions imposed on the coefficients aiα equivalent to the

inequality codim I � m. Substituting the explicit form of the generators, we

obtain the quasipolynomial conditions imposed on It equivalent to the in-

equality μ(t) � m. These quasipolynomial conditions together form the ideal

Im ⊂ C[etΛ, t], which depends on the group G and the initial subvarieties X,Y ,

but in any case they form an increasing chain of ideals

(12) I1 ⊆ I2 ⊂ · · · ⊆ Im ⊆ · · · ⊆ C[etΛ, t], t ∈ C
r.

Note that strict inclusions between Im may become non-strict for the ideals

Im.

By Lemma 4, the chain (12) stabilizes after some finite number m:

Im+1 = Im+2 = · · · = Im+k = · · · ⊆ C[etΛ, t].

The values of t which satisfy these (stable) quasipolynomial conditions corre-

spond to the ideals It of infinite codimension, μ(t) = +∞. This means that any

finite value of the codimension μ(t) cannot be bigger than m.

4.2. Generalizations. The construction proving the main result can be

obviously modified to deal with multiple intersections between independently

evolving subvarieties. For the sake of diversity we formulate this result for the

holomorphic rather than formal dynamics (the C
∞-smooth version is also true

for exactly the same reasons as before).

Let G1, . . . , Gk ⊆ Diff(Cd, 0) be a tuple of commutative finitely generated

subgroups of holomorphic self-maps, not necessarily disjoint, and X1, . . . , Xk a
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tuple of germs of analytic subvarieties of arbitrary dimensions. For any choice of

elements gi ∈ Gi consider the multiplicity of the intersection between g−1
i (Xi)

at the origin, defined as the codimension of the corresponding ideal in O(Cd, 0).

This is a function μ = μ(g1, . . . , gs) from G1 × · · · ×Gk to N
∗ = N ∪ {∞}.

Theorem 2: The finite values of the function μ are bounded.

Theorem 1 is a particular case of Theorem 2 for s = 2, G1 = G and G2 = {id}.
The proof remains literally the same.

4.3. Non-commutative groups on (C1, 0). The most interesting of all as-

sumptions of Theorem 1 is that of the commutativity of the group G: clearly,

dropping the assumptions on finite generation immediately destroys the dis-

cussed phenomenon (consider, e.g., the action of the full group Diff(Cd, 0) on

linear subspaces of appropriate dimensions). One can easily find examples of

non-commutative groups for which the finite multiplicity intersections are un-

bounded.

Example 4: Let G ⊆ Diff(C1, 0) be the subgroup generated by two non-identical

holomorphic germs tangent to the identity:

G = 〈g1, g2〉 , gi(x) = x+ cix
νi+1 + · · · , ci �= 0, νi ∈ N, i = 1, 2.

One can immediately verify by the direct computation that the commutator

g3 = [g1, g2] has a higher order of tangency to the identity, provided that ν1 �=
ν2:

g3(x) = x+ (c1c2)(ν1 − ν2)x
ν1+ν2+1 + · · · = x+ c3x

ν3+1 + · · · , ν3 = ν1 + ν2;

see [IY, Proposition 6.11]. This implies that the group G is non-solvable: to-

gether with the germ of order ν3 = ν1+ν2 > max{ν1, ν2} the commutator [G,G]

contains infinitely many germs of increasing finite orders, and this construction

can be applied to all higher commutators as well.

Clearly, the multiplicity of the fixed point at the origin is unbounded, in

contrast with the Shub–Sullivan theorem: if G were cyclic generated by g1,

then all non-identical elements will be of the form gn1 (x) = x + nc1x
ν1+1 + · · ·

with the same multiplicity ν1 +1 of the fixed point at the origin, hence G � Z.

Based on this example, one can construct (as described in the introduction)

a non-solvable subgroup of Diff(C2, 0) with the unbounded multiplicity of in-

tersections.
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For subgroups of Diff(C1, 0) the question of maximal multiplicity of a periodic

point at the origin in fact admits a complete solution, based on the known formal

classification of such subgroups [IY, §6].
Theorem 3: Let G = 〈g1, . . . , gn〉 ⊆ Diff[[C1, 0]] be a finitely generated sub-

group of the group of formal 1-dimensional self-maps. Then the finite values of

the multiplicity of the periodic point at the origin are uniformly bounded from

above if and only if the group G is metabelian, i.e., its commutator [G,G] is

commutative.

Proof. The assertion of Theorem 3 follows immediately from the following ver-

sion of the Tits alternative for one-dimensional self-maps, see [IY]*Theorem

6.10: any finitely generated subgroup of Diff[[C1, 0]] is either metabelian or

non-solvable (and contains a subgroup isomorphic to that described in Exam-

ple 4). Thus in the non-metabelian case the intersection is unbounded.

A metabelian group is formally equivalent to a subgroup

Gν = {cetV : c ∈ C
∗, t ∈ C}

generated by the linear self-maps x 
→ cx and the flow etV of a single formal

vector field V (x) = axν + · · · , a �= 0, that is, a semidirect product of C∗ × C;

see [IY, Theorem 6.22]. Clearly, the multiplicity of the periodic point at the

origin is the same number ν + 1 for all nontrivial elements of the group.

4.4. Some open problems. As follows from Example 4, for non-solvable sub-

groups of Diff[[Cd, 0]] the function μ : G → N
∗ can exhibit unbounded growth

of finite values. It is unclear what can be the growth rate of the function μ

(e.g., how fast can it grow as the length of the words representing elements of

the group grows to infinity). No meaningful examples were considered thus far,

although one could reasonably expect that the growth will be fastest for groups

with free subgroups and slowest for solvable.

It would also be interesting to upgrade the qualitative boundedness theorems

for commutative subgroups to quantitative explicit estimates. For instance, if

the germs Fi : C
d → C

d are polynomial of degree � � and the varieties X,Y are

algebraic of degree not exceeding the same (for simplicity) number �, then it is

natural to look for an upper bound for multiplicities of the isolated intersections

Fn(X) ∩ Y at the origin in terms of � and d (note that F−1
i need not be

polynomial).
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Appendix. The parametric case

To address the parametric case, we assume that the generators F1, . . . , Fp and

v1, . . . , vq of a group G ⊂ Diff[[Cd, 0]] to depend analytically on finitely many

parameters ε = (ε1, . . . , ε�) varying in an arbitrarily small neighborhood of

the origin in the parameter space, ε ∈ (C�, 0), so that each Taylor coefficient

of each corresponding formal series depends analytically on ε. In the same

way we allow the initial subvarieties X = X(ε) and Y = Y (ε) to depend

analytically on ε in the sense that they are defined by functional equations

fi = 0 analytically depending on ε, fi ∈ O(C�, 0)[[x]]. Then (under some

technical assumptions) the multiplicity of intersection becomes a function of

t ∈ Z
p × C

q which additionally depends on the parameter ε ∈ (C�, 0) with

values in N
∗ = N∪{+∞}. The conclusion is the same as in the non-parametric

case: the finite values of the function μ are locally uniformly bounded: there

exists a constant m ∈ N independent of ε, such that whenever μ(t, ε) < +∞,

then μ(t, ε) � m for any t, ε.

In order to be able to talk about ideals of infinite codimension for ε �= 0, we

have to assume explicitly that the coefficients of the generators (initially defined

as the germs from O(C�, 0)) admit representatives defined in some common

neighborhood of the origin. The corresponding ring is smaller than O(C�, 0)[[x]]

but slightly larger than O(C�, 0)⊗CC[[x]]. In order to avoid technical difficulties,

we will consider only the analytic case, so that the principal ring will be that

of the germs O(C�+d, 0) of functions analytical in both x and ε.

Very roughly, the idea of the proof is to replace the field of constants C by the

field of meromorphic germs, the field of fractions of the ring O(C�, 0), properly

extended by finitely many “algebraic germs”. The principal difficulty lies in the

fact that the Jordan normal form is ill-depending on the parameters, thus the

notion of a quasipolynomial has to be generalized. We briefly outline below the

main changes required for this.

Assume, as before, that

(13) Fi(ε, x) = Mi(ε)x+· · · , i = 1, . . . , p, vi(x) = Hi(ε)x+· · · , i = 1, . . . , q,

where the d × d-matrices Mi(ε), Hi(ε) depend analytically on ε ∈ (C�, 0) and

the dots stand for nonlinear terms.

Consider the C-algebra of germs O(C�, 0) and its field of fractions M (C�, 0),

the field of meromorphic germs. Consider the characteristic polynomials for
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the matrices M1(ε), . . . ,Mp(ε), H1(ε), . . . , Hq(ε), the monic polynomials with

coefficients in O(C�, 0). Let OG(C
�, 0) be the ring obtained by adjoining the

roots of all these polynomials to the ring O(C�, 0), and denote by kG or simply

k the corresponding finite algebraic extension of the field M (C�, 0). Elements

of kG can be considered as germs of algebraic functions of ε.

By the Jordan–Chevalley theorem [H, §4.2], any matrix with entries in the

ring O(C�, 0) can be uniquely represented as a sum of two commuting terms

(also with holomorphic entries), one semisimple and the other nilpotent. The

semisimple part by definition is diagonalizable over the field kG of algebraic

germs. This forces one to consider quasipolynomials over this larger field.

Definition 5: A quasipolynomial over the field k = kG as above is a finite sum

of the form

(14) q(z) =
∑

e〈λi,z〉pi(z), z ∈ C
r, ε ∈ (C�, 0),

where:

(1) λi ∈ k
r are r-tuples of elements from the field k,

(2) pi ∈ k[z] are polynomials in z = (z1, . . . , zr) with coefficients in k,

(3) the finite set Λ ⊆ k
r of all exponentials λi is called the spectrum of the

quasipolynomial.

Quasipolynomials can be considered as germs of (multivalued) functions on

(C�, 0)×C
r. If Λ ⊆ k

r is a lattice, the set of all quasipolynomials over kG with

the spectrum in Λ is a C-algebra k[ezΛ, z].

After all these modifications the following generalization of Lemma 5 is proved

by the same arguments as before, mutatis mutandis (cf. with Remark 3).

Lemma 6: If G : Zp × C
q → Diff(Cd+�, 0) is a finitely generated commutative

subgroup of germs analytically depending on parameters and k = kG the corre-

sponding finite algebraic extension of the field of meromorphic germs, then each

Taylor coefficient of any orbit G(t)∗f , f ∈ O(Cd+�, 0), is a quasipolynomial over

k in the variables t = (t1, . . . , tr) with the spectrum Λ ∈ k
r which is a finitely

generated lattice.

By this lemma, one can in the same way as before construct from the univer-

sal chain of ideals (6) the chain of ideals Im in the corresponding quasipoly-

nomial ring k[etΛ, t], determining the condition that the corresponding multi-

plicity μ(t, ε) is greater than or equal to m. Replacing rational expressions
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by polynomials, we finally obtain an ascending chain of ideals Jm in the ring

OG(C
�, 0)[etΛ, t], whose length until full stabilization is an upper bound for the

multiplicity of intersection.

But since the ring O(C�, 0) is Noetherian, so is its finite extension OG(C
�, 0),

and by the same token as before, the chain of quasipolynomial ideals Jm must

stabilize. This proves the following parametric form of Theorem 1.

Theorem 4: If G is a finitely generated commutative subgroup of Diff(Cd, 0)

with generators analytically depending on finitely many parameters ε ∈ (C�, 0),

and X(ε), Y (ε) two germs of analytic subvarieties in (Cd, 0) also depending

analytically on these parameters, then the finite values of the multiplicity of

intersection between G(t, ε)X(ε) and Y (ε) are bounded locally uniformly in

ε ∈ (Cd, 0).

References

[A1] V. I. Arnol′d, Bounds for Milnor numbers of intersections in holomorphic dynamical

systems, in Topological Methods in Modern Mathematics (Stony Brook, NY, 1991),

Publish or Perish, Houston, TX, 1993, pp. 379–390. MR1215971 (94i:32039)

[A2] V. I. Arnol′d, Dynamics of complexity of intersections, Boletim da Sociedade Brasileira
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