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Abstract Nosocomial outbreaks of bacteria are well documented. Based on these
incidents, and the heavy usage of antibiotics in hospitals, it has been assumed that
antibiotic resistance evolves in hospital environments. To test this assumption, we
studied resistance phenotypes of bacteria collected from patient isolates at a commu-
nity hospital over a 2.5-year period. A graphical model analysis shows no association
between resistance and patient information other than time of arrival. This allows us
to focus on time-course data. We introduce a hospital transmission model, based on
negative binomial delay. Our main contribution is a statistical hypothesis test called
the Nosocomial Evolution of Resistance Detector (NERD). It calculates the signifi-
cance of resistance trends occurring in a hospital. It can inform hospital staff about the
effects of various practices and interventions, can help detect clonal outbreaks, and is
available as an R package. We applied the NERD method to each of the 16 antibiotics
in the study via 16 hypothesis tests. For 13 of the antibiotics, we found that the hospital
environment had no significant effect on the evolution of resistance; the hospital is
merely a piece of the larger picture. The p-values obtained for the other three antibi-
otics (cefepime, ceftazidime, and gentamicin) indicate that particular care should be
taken in hospital practices with these antibiotics. One of the three, ceftazidime, was
significant after accounting for multiple hypotheses, indicating a trend of decreased
resistance for this drug.
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1 Introduction

Antibiotic resistance is a global problem that results from selective pressures imposed
by antibiotic consumption on an industrial scale (Rodriguez-Rojas et al. 2013). Most
antibiotic consumption occurs in agricultural, clinical, and outpatient settings. Immi-
gration of resistant strains throughout the world has made the emergence of resistance
to antibiotics a global problem (Goossens 2009; Forslund et al. 2013). However,
regional differences in the first appearance of resistant genotypes and their subse-
quent frequencies indicate the importance of local factors (Kahlmeter et al. 2015). It is
unclear whether global population dynamics, regional factors, or immediate proximity
to antibiotics determines the frequencies of specific resistance phenotypes in a defined
location, such as a hospital. Any insight into this problem could have major effects on
public health policy.

The success of a hospital-centered effort to reduce antibiotic resistance depends
on whether antibiotic resistance is actually evolving in hospitals. Anecdotal evidence
supports this assumption. For example, in 2011 the US National Institutes of Health
Clinical Center experienced an outbreak of carbapenem-resistant K. pneumonia that
affected 18 patients, 11 ofwhomdied (Snitkin et al. 2012). This scenario illustrates that
a specific bacterial strain from a single patient can become endemic within hospitals
and likely evolve within the hospital environment.

Typically when evolution of antibiotic resistance is studied within a hospital, it is
with respect either to clonal outbreaks (Lopez-Camacho et al. 2014), or to evolution
in individual patients with long-term infections (Zhao et al. 2012). While important,
these studies do not address the majority of transmission events in hospitals. For less
virulent strains, the associated transmission of antibiotic resistance goes undetected.
Such transmission is harder to track and deserves attention.

Many hospitals have attempted to reduce the frequencies of resistant isolates, with
mixed success. Cycling antibiotics in individual spinal cord patients has shownpromis-
ing results for preventing the emergence ofmulti-drug-resistant urinary tract infections
(Poirier et al. 2015). In a review article (Brown and Nathwani 2005) analyzing the
efficacy of cycling, the results showed that decreasing consumption of aminoglyco-
sides in hospitals tends to reduce resistance to them. However, for β-lactam antibiotics
there is no clear trend of reduced resistance in response to reduced consumption. This
may be due to many factors, including the choice of antibiotics, the duration of ther-
apies, and outside factors such as immigration into the hospital from the surrounding
community.

There have also been attempts to ameliorate the resistance problem at larger scales
than a single hospital. These too have delivered mixed results. Despite a nation-
wide effort to reduce β-lactam prescriptions in Turkey, β-lactam resistance increased,
except for carbapenem resistance in Pseudomonas and Acinetobacter. The frequency
ofmethicillin-resistant Staphylococcus aureus (MRSA) also decreased (Altunsoy et al.
2011). Efforts in agricultural settings have seemed promising. In Denmark, an agri-
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cultural ban of growth-promoting antibiotics resulted in a significant decrease in the
frequency of ampicillin-, nalidixic acid-, sulfonamide-, tetracycline-, erythromycin-,
and streptomycin-resistant bacteria in food animals (WorldHealthOrganization 2002).
The ban also resulted in a decrease in vancomycin-resistant enterococci (VRE) in both
animal and human populations (Casewell et al. 2003).

We seek to answer the question of whether evolution of antibiotic resistance occurs
in a hospital. By “evolution,” wemean that the historical resistance phenotypes present
in the hospital have a causative effect on the resistance phenotypes that are subse-
quently present in the hospital. The alternative is that antibiotic resistance is due
to immigration into the hospital from the surrounding area. If resistance is due to
immigration, then the distribution of resistance phenotypes in the hospital will be the
proportions present in the wider population. On the other hand, if resistance evolves in
the hospital, the distributionwill deviate from such proportions. The relevant dynamics
are discussed in Sect. 4.

Transmission of resistance in the hospital can occur via horizontal gene transfer
between strains of bacteria that are either infectious or commensal (Machado et al.
2013; Hamidian and Hall 2014). It can also occur via transfer of bacteria between indi-
viduals, both patients and healthcare workers, through either direct or indirect contact.

Various mathematical models have been created to test the influences of different
elements in the hospital (Austin and Anderson 1999; Lipsitch et al. 2000; Gandon
et al. 2016). Testing resistance trends using such models requires a hospital to gather
extra data. We develop a simpler model, based on data that hospitals typically gather,
for determining whether transmission of resistance occurs in the hospital.

We conducted a case study with the Dignity Health Mercy Medical Center, a small
community hospital in the Central Valley of California. Collaboration with a hospital
was critical for this studybecauseHIPAApatient privacy lawsprevent patient data from
becoming publicly available. We had access to de-identified patient data associated
with ESBL strains for a 2.5-year interval. We developed a mathematical model and
hypothesis test for the emergence of resistance. This is available as a statistical software
package in R (R Core Team 2013). We analyzed temporal data of the resistance
phenotypes of patient isolates. The unit of analysis in this study is the resistance
phenotypes of patient isolates. Although there may be multiple resistance genes that
confer each phenotype, aggregating based on phenotype allows us to see that one of the
resistance genes was present (Redgrave et al. 2014; Woodford et al. 2004; Appelbaum
2006; Bush 2013, 2010). While it would be ideal to have genomic sequence data
to accompany resistance data, those data are not currently available to us, nor are
they commonly available to most hospitals, particularly those in developing nations.
Additionally, despite the widespread use of sequencing, it has not replaced resistance
phenotype assays because the presence of a gene does not ensure its expression.
Therefore, we use resistance phenotype as a less exact way of detecting transmission
of resistance within a hospital.

This article is organized as follows. In Sect. 2,we describe the data for our study: 592
ESBL-resistant isolates along with patient records from the community hospital. In
Sect. 3, we examine the dependence of antibiotic resistance on factors other than time,
by estimating a graphical model (Lauritzen 2004). We found no association between
resistance and other patient factors (age, gender, infectious species, and sample type).
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This reduces each patient record to a pair consisting of the date of isolation and
resistance phenotype. In Sect. 4, we introduce a mathematical model of transmission
that assignsweights to pairs of such pairs. It uses the negative binomial distribution and
is inspired by existing infection models. Parameters are learned from the medical liter-
ature. Section 5 is the heart of this paper. We introduce the NERDmethod, which tests
whether the time-course data are random or not, relative to our transmission model.

The p-values of this hypothesis test are computed for 16 antibiotics. For 13 antibi-
otics we found no significance, but for three antibiotics (cefepime, ceftazidime and
gentamicin) we did find significance. These findings are interpreted and analyzed
further in Sect. 6.

Sect. 7 offers a broader discussion of the meaning of our results and whether it can
say something about bacterial evolution in hospitals under drug pressure.

2 Patient Data and Resistance Phenotypes

A total of 592 extended spectrum β-lactamases (ESBLs) samples were collected from
patients seen at Dignity Health Mercy Medical Center in Merced, California, between
June 24, 2013, and January 23, 2016. ESBL strains are particularly interesting because
they usually contain Class A β-lactamases that evolve very quickly and very specif-
ically in response to clinical consumption of β-lactam antibiotics (Bush 2013). In a
previous study (Mira et al. 2015), we identified β-lactam treatment plans that could
reverse the evolution of ESBL-resistant bacteria to penicillin and narrow-spectrum
β-lactam antibiotic. In this study, we wanted to determine whether such a treatment
planmakes sense in a hospital environment, or whether treatment plans should be used
at a larger scale to manage antibiotic resistance.

The samples were identified as ESBLs using Vitek 2 version 06.01, an automated
rapid detection system for pathogen identification and antibiotic sensitivity (Bobenchik
et al. 2015). Following ESBL identification, the sensitivity to 16 antibiotics was also
tested using broth microdilution minimum inhibitory concentration testing, and the
samples were categorized according to their susceptibility: resistant (R), intermediate
(I), or susceptible (S) based on the MIC Interpretation Guideline: CLSI M100-S26
(2015).

For each sample, we recorded 1) the date of sample isolation, 2) the age
and the gender of the patient, 3) the species of the bacteria, 4) the tissue/source
of the isolate, and 5) the susceptibility (R/I/S) to the following 16 antibiotics:
ampicillin, ampicillin/sulbactam, piperacillin/tazobactam, cefazolin, ceftazidime,
ceftriaxone, cefepime, ertapenem, imipenem, amikacin, gentamicin, tobramycin,
ciprofloxacin, levofloxacin, nitrofurantoin, and sulfamethoxazole/trimethoprim. The
isolate responses to each of the 16 antibiotics were organized into three possible cat-
egories: susceptible (S), intermediate (I), or resistant (R). Table 1 shows the counts of
these categories for each of the antibiotics.

Of the 592 records, 77 were incomplete or unreliable. We excluded these in our
study. Among the 515 remaining records, most contained susceptibility testing for all
16 antibiotics. Some did not. This explains why the row sums in Table 1 are less than
515.
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Table 1 Summary of susceptibility testing results

Susceptible Intermediate Resistant

Ampicillin 0 0 470

Ampicillin/sulbactam 85 113 284

Piperacillin/tazobactam 429 46 30

Cefazolin 2 3 509

Ceftazidime 6 3 505

Ceftriaxone 6 0 508

Cefepime 7 2 505

Ertapenem 511 0 3

Imipenem 510 0 3

Amikacin 506 2 6

Gentamicin 343 2 169

Tobramycin 280 58 176

Ciprofloxacin 51 4 458

Levofloxacin 55 5 453

Nitrofurantoin 412 59 42

Trimethoprim/sulfamethoxazole 174 0 339

We end this section with a brief summary, aimed at a mathematician who is new to
this subject. Our team worked with a hospital in Merced to obtain data. That data are
a collection of about 500 de-identified patient records. A typical patient record looks
like this:

(05/17/2015, age 65, female, E. coli, urine, S,R,I,S,S,S,R,S,S,R,S,I,I,S,R,S)
The string of letters “S,” “I,” or “R” is the resistance phenotype with respect to the
antibiotics. Here is the problem we are studying. For each of the 16 drugs separately,
the title of this paper asks a question. Our goal is to find some answers, from these
data alone.

3 Graphical Model

Our first step is to examine the dependence structure among the six discrete random
variables: gender (male or female), age (by decades), tissue source of the sample (urine,
blood, wound, or sputum), species of bacteria (E. coli or K. pneumonia), resistance
phenotype (S, I, or R), and antibiotic. Graphical modeling is a statistical tool for
studying dependence structures among several randomvariables (Lauritzen 2004).The
question we seek to answer is whether any of the four variables gender, age, tissue,
and species correlates with the resistance phenotype for a given antibiotic.

To this end, we organize the hospital data from Sect. 2 in a contingency table
of format 2 × 10 × 4 × 2 × 3 × 16. We fit a graphical model to that table using
the methods in the book Graphical Models in R (Højsgaard et al. 2012). We use the
algorithm described in Sect. 2.4 of this book. The algorithm searches through the space
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Fig. 1 Best fitting graphical model. Each node is a discrete random variable. An edge between two nodes
indicates statistical dependence. The first four nodes (age, gender, tissues, and species) have no edges to
the last two nodes (antibiotics, R/I/S). The disconnectedness indicates statistical independence

of all graphs and terminates when it has locally maximized the Akaike information
criterion (AIC). It does not assign p-values to edges in the resulting graph.

The algorithm proceeds as follows. Starting from the full independence model (the
graph with no edges), we compute the AIC at each stage of edge insertion. This was
done using the function forward in the “gRim” package for the statistics software “R”
(R Core Team 2013). This aims to ascertain the correct balance between numbers of
edges (parameters) and fit to the data.We also ran the algorithm that starts from the sat-
urated model (the graph with all edges) and uses the backward function to compute the
AIC of successive edge deletions. Both the forward algorithm and the backward algo-
rithm terminated with the graph with six nodes and seven edges that is shown in Fig. 1.

This preliminary analysis with graphical models suggests that age, tissue, species,
and gender are not correlated with the emergence of resistance. We therefore dis-
regarded those variables in the subsequent analysis. For our study of the evolution
of resistance, we used only the date of isolation, the antibiotic, and the resistance
information.

4 Hospital Transmission Model

Our study and hypothesis test rest on a probabilistic model we introduce for hospital-
based transmission of antibiotic resistance between patients. We seek a model for
patient interactions at the hospital, either direct or indirect, that have a causal effect
on the resistance phenotype of the latter patient. In what follows, “transmission” is
taken to mean “hospital-based transmission of antibiotic resistance from one patient
to another.”
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The image we have in mind for our model is the following. There is a relationship
between the resistance mechanisms carried by individual patient isolates and those
carried by endemic bacteria at the hospital. When patients arrive, they are exposed to
the endemic hospital bacteria. Resistance genes and/or the bacteria may then be trans-
mitted to the patients, possibly after undergoing some evolution. When the resistance
information of an individual patient isolate is measured, it gives an indication as to the
resistance phenotype of the surrounding hospital bacteria. Our study uses the pheno-
types of patient isolates as a proxy for understanding the resistance mechanisms of the
hospital bacteria. There are many complicated patterns of causality at play here. The
model identifies those that are consistent with a change that takes place in the hospital.

Single outbreak:
Our model is based on the distribution of subsequent patient infections following a

single bacterial clonal outbreak in a hospital. In such cases, whether the initial outbreak
strain affects a patient depends on the time that has elapsed since the introduction of
that strain. If the infectious strain of a latter patient is checked just hours after the
outbreak strain’s arrival, it is unlikely that there has been transmission. Likewise,
transmission is unlikely if the latter patient visits the hospital several years after the
original outbreak. Between these extreme time points, likelihood of contamination is
higher.We discretize the temporal information in units of “days.” The random variable
X is the number of days before a subsequent infection. We assume that X follows the
negative binomial distribution. We do not restrict to patients affected directly by the
original patient, but rather all subsequently affected patients. Note that often the nega-
tive binomial distribution is used to model the number of secondary patient infections,
as in Lloyd-Smith (2007). The justification for the use of the distribution in the present
context is given below.

The negative binomial distribution is a discrete probability distribution on the set of
nonnegative integers k. It has two parameters p and r . The probability mass function
is

P(X = k) =
(
k + r − 1

k

)
pk(1 − p)r

Each trial can be either a success (with probability p) or a failure (with probability 1−
p). The distribution models the number of successes before r failures. The parameter
r is known as the over-dispersion parameter. The mean of the distribution is m =
pr/(1 − p).

The negative binomial distribution is applied to the random variable X , the number
of days before a subsequent infection, according to the following rationale. Each day
is a trial. Failure in a trial represents contact between a patient and endemic sources of
resistance that day. The success probability p is the probability there is no contact. On
the r ’th instance of contact with a patient, transmission of endemic resistance occurs.

Transmission of antibiotic resistance:
We extend the scope of applicability of the negative binomial model to the setup of

our study. Starting at an initial patient isolate, the random variable X is the number of
days before a transmission causes a latter isolate to have resistance phenotype caused
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Table 2 Information from clonal outbreaks and mean/variance computations

Outbreak strain Size of hospital
(beds)

Number of
patients in
outbreak

Average time
from patient 0
(days)

Variance Reference

K. pneumoniae 880 127 439 37,856 Arena et al. (2013)

K. pneumoniae 1492 93 1027 49,449 Giani et al. (2015)

E. coli NA-community
clinical lab

69 340.6 30,336 Pitout et al. (2005)

K. pneumoniae 243 17 108.6 2002 Snitkin et al.
(2012)

K. pneumoniae 81 7 122 4852 Kassis-Chikhani
et al. (2006)

K. pneumoniae 301 36 147 7886 Carrer et al.
(2009)

E. coli 66 (NICU) 21 103 4036 Garcia-Fernandez
et al. (2012)

by the first patient isolate. Transmission of antibiotic resistance may also involve a
change in phenotype. General transmission cases are harder to detect than single out-
breaks; our assumption is that the distribution is the same. The “single outbreak” case
above is the specialization to where the first patient possesses a deadly bacterial strain,
and we model the number of days until transmission of the strain to a latter patient
occurs.

The two parameters in the negative binomial distribution affect the probabilities of
the states of the randomvariable. The scale at which the process is being studied affects
these probabilities. Transmission over larger scales than the hospital can occur after a
larger number of days. At a global scale, transmission can sometimes be detected years
later in another location (Medeiros 1997). The choice of parameters in our distribution
specializes the setup to hospital-based transmission.

We collected information from the medical literature to estimate the values of
the parameters for our study. Table 2 shows observed statistical parameters for the
occurrence of antibiotic resistance following a hospital outbreak. This is likely to
depend on many factors about a hospital, some of which are included in the table. We
also note that the variance far exceeds themean, and as such the data are over-dispersed.

We used the studies in Table 2 to estimate our parameters. The table indicates
the importance of the size of the hospital in the mean and variance of the outbreak
distribution. Dignity Health Mercy Medical Center has 186 beds. We fit our negative
binomial parameters to the outbreak distribution of the hospital that was most similar
in size, with 243 beds. This parameter fitting was done using the function fitdistr in
the R package “MASS” (Venables and Ripley 2002). The parameters obtained were:

Mean: m = 115

Over-dispersion: r = 8.8

Success probability: p = m/(r + m) = 0.9289.
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Our parameters say that with probability nearly 93%, there is no transmission on a
given day. It could be that no patient arrived at the hospital that day, or that a patient
did arrive but did not come into contact with the bacteria. The mean parameter of
115 days indicates that this is the mean length of time for a subsequent patient to be
affected by an original patient. The effect may be indirect and can proceed via other
intermediate patient interactions. The parameter r = 8.8 indicates that, on average,
on the 8.8’th instance of patient contact, there is transmission of antibiotic resistance.

5 Hypothesis Testing with the NERD Method

In this section, we present the Nosocomial Evolution of Resistance Detector (NERD)
method. This is a statistical hypothesis test, based on the model in Sect. 4. We apply
it to the data described in Sects. 2 and 3. In the context investigated here, the null
hypothesis (H0) and the alternative hypothesis (H1) can be formulated as follows:

H0: There is no evolution of antibiotic resistance at the hospital.
H1: There is evolution of antibiotic resistance at the hospital, according to our

model.
The NERD method works as follows. As described in Sect. 3, the data consist

of antibiotic resistance information and temporal information, for each of our 16
antibiotics.

The test is conducted for each antibiotic individually. For example, according to
the second row of Table 1, the data for ampicillin/sulbactam are a sequence of 482 =
85 + 113 + 284 patient records. Each record is a pair. Concretely, the sequence looks
like this:

(0, R), (21, R), (21, R), (24, R), …. , (67, S), (67, I), (67, R), … , (963, R), (963, I)
The second and third pairs are patient records on day 21with resistance phenotype “R.”

We wish to assess the extent of non-randomness of this sequence, where depar-
ture from randomness is measured according to our model for hospital transmission.
Detecting evolution according to that model minimizes the interference of antibiotic
resistance evolution in the wider community. We perform this computation as fol-
lows.

For each of the nine combinations (SS, SI, SR, IS, II, IR, RS, RI, RR), we con-
sider the pairs of records with these states. For example, the SR combinations are
all pairs consisting of an earlier patient who is susceptible (S) to a particular antibi-
otic, and a later patient record with resistance (R) to that antibiotic. These include
all possible causal transmissions from S to R in the data, but not all such pairs
represent a causal transmission. Some are simply pairs SR that occur in the data
by chance, or are due to evolution outside of the hospital. We assess the chance
that a given SR pair was due to a true causal transmission, by assigning a weight
to the occurrence of this pair. The weight is the probability mass function of the
negative binomial distribution, with our estimated parameter values, evaluated at
the elapsed time between the two records. The same is done for all nine combina-
tions.

In summary, we compute a 3× 3 table of transmission weights. Each weight is the
sum of the probabilities P(X = l − e) over relevant pairs of patient records where e
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Table 3 Empirical probabilities
for ampicillin/sulbactam

Susceptible Intermediate Resistant

Susceptible 0.17782 0.23778 0.58439

Intermediate 0.16256 0.23457 0.60287

Resistant 0.17117 0.22806 0.60077

Table 4 Expected probabilities
for ampicillin/sulbactam under
the null hypothesis

Susceptible Intermediate Resistant

Susceptible 0.17635 0.23444 0.58921

Intermediate 0.17635 0.23444 0.58921

Resistant 0.17635 0.23444 0.58921

is the date of the earlier record and l is the date of the later record. Here, “relevant”
means: for a fixed pair of states. In the example of the previous paragraph, these are
pairs (e,S) and (l,R).

We next normalize the 3 × 3 table of transmission weights by dividing each row
by a constant so that it sums to one. The result is a table whose rows are probability
distributions on the set (Alfredson and Korolik 2007). We refer to this as the table
of empirical transmission probabilities. Its entries are the empirical probabilities of
seeing an earlier patientwith one resistance phenotype, and a latter patientwith another
resistance phenotype, with a change caused by the hospital environment, according to
the model in Sect. 4.

This normalization in the previous step means that differences are concentrated on
the final state of a pair, the state of the latter patient, rather than the state of the earlier
patient. We use it to focus our study on significance findings that pertain to the latter
state, since these are an indication of changes occurring at the hospital.

At this stage of the NERD method, we have a table of empirical transmission
probabilities. As an example, we show these probabilities for ampicillin/sulbactam in
Table 3. The rows refer to the earlier patient and the columns to the latter patient.

The null hypothesis assumption is that there is no departure from randomness
in the data. This represents a lack of antibiotic resistance trend in the hospital,
with time delays that could be indicative of a hospital-based transmission. Under
this assumption, we expect the three rows of the matrix to be identical. This is the
mathematical meaning of the null hypothesis (H0). The biological interpretation of
(H0) is that that future antibiotic resistance phenotype is not affected by the his-
torical resistance phenotype, except via the average proportions of each resistance
phenotype.

For the expected probabilities under (H0), each row of the matrix is the proportion
of patients of the corresponding resistance phenotype. This is obtained by dividing
the number of counts S, I, or R in the sequence by the length of the sequence. For
ampicillin/sulbactam, this length is 482, and we obtain the expected probabilities in
Table 4.

The observed values in Table 3 differ from the expected values in Table 4. To
quantify this difference between the two 3 × 3 tables, we use the χ2 test statistic
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∑ (observed − expected)2

expected

Here, the sum is taken over all nine entries. For every 3 × 3 table whose rows are
probability distributions on three states, the value of this test statistic is a nonnegative
real number that measures the distance to the distribution expected under (H0).

Our goal is to associate p-values to our data with respect to the χ2 test statistic. To
do this, we use a permutation test to compare our test statistic with that of randomly
generated data. The p-value is the proportion of permutations whose χ2 test statistic
is larger than the value computed in the data. In theory, the p-value could be obtained
by considering all possible permutations of the observed resistance information, and
finding the proportion of permutations that have largerχ2 value than our observed data.

For example, for the ampicillin/sulbactam data described above, the total number
of possible permutations of the data sequence is given by the multinomial coefficient

(
482

85, 113, 284

)
= 482!

85!113!284! = 6 × 10197

This extremely large discrete problem can be approximated to good accuracy by gen-
erating 10,000 random permutations. We permuted the data accordingly, computed
the χ2 test statistic, and compared it with the χ2 value for Table 3. The proportion
of outliers was found to be 0.141. This is the p-value for the ampicillin/sulbactam
data according to the NERDmethod. The analogous p-values for all 16 antibiotics are
given in Table 5.

In Table 5, we see that only three of the p-values are less than the commonly used
threshold of 0.05, thus indicating significance for these three among the 16 antibiotics.

6 Interpretation

We used the NERD method to study each of the 16 antibiotics separately. For each
antibiotic, we investigated the non-randomness of the data according to our hospi-
tal transmission model. For temporal information, we used the patient record date
(assumed to be approximately three days after the patient arrived at the hospital). The
antibiotic resistance phenotype was measured on a three-point scale (R, I, S).

The results given in Table 5 indicate that the hospital environment did not
have a significant effect on the evolution of over 3/4 of the antibiotics. How-
ever, the antibiotics ceftazidime, cefepime, and gentamicin have p-values below
0.05. They are the bold entries in Table 5. The star by the value for cef-
tazidime indicates that this p-value remains significant after applying the Bon-
ferroni correction to account for the 16 antibiotics tested. While the p-values
of cefepime and gentamicin are not significant after this correction factor, their
small p-values are still a point of interest in examining differences among our 16
antibiotics.

Since our study involved the two species of bacteria (E. coli and K. pneumonia)
to determine whether the two species yielded different results, we ran the method
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Table 5 Hypothesis test p-value
results

Antibiotic p-value

Ampicillin All samples resistant

Ampicillin/sulbactam 0.141

Piperacillin/tazobactam 0.426

Cefazolin 0.317

Ceftazidime 0.003*

Ceftriaxone 0.659

Cefepime 0.032

Ertapenem 0.395

Imipenem 0.403

Amikacin 0.565

Gentamicin 0.020

Tobramycin 0.116

Ciprofloxacin 0.096

Levofloxacin 0.123

Nitrofurantoin 0.192

Trimethoprim/sulfamethoxazole 0.224

separately for each. We found that this had no effect on the significance of the
p-values.

Having assessed the extent of departure from non-randomness under our model, we
return to the data to examine the implications of this conclusion. The NERD method
does not preferentially look for antibiotic resistance transmission of a particular kind. It
does not preferentially detect changes from susceptible to resistant. Therefore, if there
is a trend in antibiotic resistance over time, it remains to determine the directionality
of this trend. We do so by introducing the notion of relative cumulative resistance.

The cumulative resistance at a given time point t is the number of resistant isolates
plus half the number of intermediate isolates recorded up to time t . We computed the
actual curve from the data. The expected curve would be a straight line between zero
resistance in June 2013 and the total cumulative resistance score in January 2016.
The relative cumulative resistance is obtained by subtracting the expected cumulative
resistance from the observed cumulative resistance.

If there aremore susceptible patients near the start of the timeframe, andmore resis-
tant patients near the end, then the cumulative resistance curve is below the expected
line, having a positive second derivative. Conversely, more resistant patients at the
start of the time window result in the cumulative resistance increasing more sharply at
the start, before flattening off at the end of the timeframe. It will sit above the expected
line and have a negative second derivative.

This analysis rests only on our data and does not depend upon any parameter
choices. Since we consider all antibiotics across the same time frame, and we study
qualitative comparisons between the trends, we do not worry about normalization of
the y-axis: We do not wish to interpret particular values on the y-axis.
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Fig. 2 (Color figure online) Change in relative cumulative resistance of three antibiotics over time. The
graph plots the difference between the actual cumulative resistance, from our data, and the expected cumu-
lative resistance. A value below 0 indicates an antibiotic with a trend from susceptibility to resistance over
time; a value above 0 indicates a trend from resistance to susceptibility. Cefepime and ceftazidime have a
trend away from resistance. The trend for gentamicin is neither positive nor negative overall. It follows an
annual cycle, indicating seasonal variations in resistance phenotype

Figure 2 shows trend information for the three antibiotics with p-values less than
0.05. It demonstrates that the directionality of the resistance change does not match
that of global trends.

From Fig. 2, we conclude that trends in the frequencies of antibiotic-resistant iso-
lates in hospitals are not always increasing; they can indeed decrease as a result of
evolution over time. The robust departure from randomness in our results indicates that
the hospital environment can influence the frequencies of antibiotic-resistant bacteria.
The prescription of specific antibiotics may be relevant.

7 Discussion

It is standard practice within hospitals to isolate infectious strains from patients and
to determine their susceptibility to a panel of antibiotics relevant for treatment. This
informshospital staff of the best therapies available to individual patients.Additionally,
the data enable hospitals to observe antibiotic resistance trends over time. Analysis
of resistance trends is usually manual and consists of basic summary statistics of the
bacterial populations aggregated over time. From such summaries, it is difficult to
asses whether an antibiotic resistance trend is significant or not, and whether it is
caused by immigration of bacteria into hospitals from the surrounding community.

We developed an automated quantitative method that produces a p-value to assess
the significance of hospital transmission trends while minimizing the effect of day-to-
day variation in infectious strains brought in by patients. The method is based on the
data that are often gathered by hospitals, and as such does not require them to expend
resources gathering new data. The method incorporates a model of hospital transmis-
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sion to determine whether resistance rates are a function of the hospital environment.
We called this method the Nosocomial Evolution of Resistance Detector (NERD).
It is available in the open-source R package “NERD,” at https://github.com/seigal/
NERD/.

We applied NERD to all 16 antibiotics in our study, and we drew conclusions
independently for each of them. Sincewe did not specifically focus on those antibiotics
that have low p-values, our p-values have not been adjusted to correct for multiple
hypothesis testing. However, we note that one antibiotic remains significant after this
correction factor, with significance implications. Future users of NERD who apply
the method to search for antibiotics with evolving resistance will want to correct for
multiple hypotheses using the Bonferroni correction.

For 13 of the 16 antibiotics, resistance phenotypes did not differ significantly from
the antibiotic resistance phenotypes generated under the null hypothesis. This means
that the hospital environment did not contribute to the evolution of antibiotic resistance
more than outside factors. The histories of these antibiotics provide some context.

β-lactams (penicillins, cephalosporins, penicillin/inhibitors, carbapenems)were the
most heavily used class of antibiotics for ∼60 years, and they continue to be popular.
Penicillins similar to amoxicillin are heavily used by the agricultural industry (Bailar
and Travers 2002), and cephalosporin (Cefazolin and Ceftriaxone) consumption is far
greater outside of the hospital than inside. Penicillin/inhibitor combinations are widely
used in outpatient and hospital settings, but some such as piperacillin/tazobactam are
mainly administered within hospitals. Consumption of carbapenems is more restricted
than other β-lactams and mainly occurs within hospitals.

Fluoroquinolones (ciprofloxacin and levofloxacin) became the most heavily used
antibiotics in the USA after the 2001 anthrax attacks (Navas 2002). Ciprofloxacin
was the only antibiotic that had FDA approval for the treatment of anthrax. Their
popularity has persisted, and their resistance has increased. They all share resistance
mechanisms. Outpatient use of ciprofloxacin is at a much larger scale than hospital
consumption.

Aminoglycosides (tobramycin) received FDA approval in the 1970s, and some
have been used heavily in agriculture. Nitrofurantoin received FDA approval in 1953.
Trimethoprim/sulfamethoxazole received FDA approval in 1973. It can be used as an
outpatient drug.

For the above antibiotics, large-scale consumption outside of the hospital probably
limits the effect of hospital consumption. Resistance rates appear to be driven by bac-
terial populations outside the hospital. This accounts for their insignificant p-values.

Three of the antibiotics in our study were affected by the hospital environment.
The evolution of cefepime and ceftazidime resistance is particularly striking. The
similarities in relative cumulative resistance of cefepime and ceftazidime suggest that
a single resistance gene is responsible for their resistance trends. There are not many
resistance genes that simultaneously confer these two resistance phenotypes.

Cefepime is a cephalosporin type antibiotic thatwas introduced in 1994 for the treat-
ment of moderate to severe infections such as pneumonia and urinary tract infections.
It is only administered through injection and has no outpatient applications. Since
cefepime became widely used, resistant organisms have appeared. One of the first
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resistance genes found to hydrolyze cefepime efficiently was CTX-M (Tzouvelekis
et al. 2000).

Numerous clinical strains of E. coli (Doi et al. 2009; Mansouri et al. 2011) and
K. pneumonia (Ambrose et al. 2003; Wang et al 2011) are resistant to cefepime
as a result of CTX-M expression. Additionally CTX-M has increased in frequency in
clinical populations of bacteria and is now replacing other genes as themost commonly
encountered. At the time of its first discovery, CTX-M did not confer ceftazidime
resistance, but subsequent mutations conferred this effect. In particular, the CTX-
M-15 variant confers resistance to both cefepime and ceftazidime and is commonly
detected in hospitals.

In a study for future publication (Doscher et al. 2016), we confirmed that pres-
ence of the CTX-M-15 gene is correlated with phenotype resistance to cefepime and
ceftazidime. This demonstrates the strength of the NERDmethod in monitoring resis-
tance genotypes. We performed whole-genome sequencing for 48 isolates. For 39 of
isolates (81.3%), resistance phenotype for ceftazidime and cefepime aligns with the
status of CTX-M-15:

Twenty-six isolates had the CTX-M-15 gene and were resistant or intermediate to
both antibiotics, while 13 isolates had neither CTX-M-15 nor phenotype resistance.
For 42 of isolates (87.5%), resistance aligns with status of any CTX-M variant: 32
isolates had a CTX-M gene and resistance to ceftazidime and cefepime, while 10 had
neither. The correlation demonstrates that the NERD method can be used as a proxy
for monitoring resistance genes.

Gentamicin is an aminoglycoside that has been available since the 1970s. Despite
heavy use in agriculture, resistance rates for this antibiotic are moderate. It is also used
in the treatment of urinary tract infections. Since the emergence of CTX-M resistance
genes and carbapenem-resistant Enterobacteriaceae in urinary tract infections, non-
β-lactam antibiotics have become necessary as primary treatment options for UTIs,
and this may explain the significant gentamicin resistance trend we observed.

Our results highlight that an individual hospital is an important but small piece
of the overall resistance problem. Factors such as agricultural consumption of antibi-
otics, outpatient prescriptions and a high frequency of resistance genes in bacterial
populations throughout the world also have a strong effect. Our results highlight the
necessity of addressing antibiotic resistance at a larger scale. This may be at a com-
munity, regional, national, or global scale. Efforts at all levels are likely to help. For
detection of trends within hospitals, from data that are routinely collected, the NERD
method can be helpful.
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