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The real rank two locus of an algebraic variety is the closure of 
the union of all secant lines spanned by real points. We seek a 
semi-algebraic description of this set. Its algebraic boundary 
consists of the tangential variety and the edge variety. Our 
study of Segre and Veronese varieties yields a characterization 
of tensors of real rank two.
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1. Introduction

Low-rank approximation of tensors is a fundamental problem in applied mathematics 
[3,5]. We here approach this problem from the perspective of real algebraic geometry. 
Our goal is to give an exact semi-algebraic description of the set of tensors of real 
rank two and to characterize its boundary. This complements the results on tensors of 
non-negative rank two presented in [1], and it offers a generalization to the setting of 
arbitrary varieties, following [2].

A familiar example is that of 2 × 2 × 2-tensors (xijk) with real entries. Such a tensor 
lies in the closure of the real rank two tensors if and only if the hyperdeterminant is 
non-negative:
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100 + 4x000x011x101x110 + 4x001x010x100x111

− 2x000x001x110x111 − 2x000x010x101x111 − 2x000x011x100x111

− 2x001x010x101x110 − 2x001x011x100x110 − 2x010x011x100x101 ≥ 0.

(1)

If this inequality does not hold then the tensor has rank two over C but rank three 
over R.

To understand this example geometrically, consider the Segre variety X = Seg(P1 ×
P1 × P1), i.e. the set of rank one tensors, regarded as points in the projective space 
P7 = P(C2⊗C2⊗C2). The hyperdeterminant defines a quartic hypersurface τ(X) in P7. 
The real projective space P7

R
is divided into two connected components by its real points 

τ(X)R. One of the two connected components is the locus ρ(X) that comprises the real 
rank two tensors.

This paper views real rank in a general geometric framework, studied recently by 
Blekherman and Sinn [2]. Let X be an irreducible variety in a complex projective space 
PN that is defined over R and whose set XR = X ∩ PN

R
of real points is Zariski dense 

in X. The secant variety σ(X) is the closure of the set of points in PN that lie on a line 
spanned by two points in X. The tangential variety τ(X) is a subvariety of the secant 
variety. Namely, τ(X) is the closure of the set of points in PN that lie on a tangent line 
to X at a smooth point. In this paper closure is taken with respect to the Euclidean 
topology, unless otherwise specified. For the secant and tangential varieties above, the 
Euclidean closure and Zariski closure coincide.

Our object of interest is the real rank two locus ρ(X). This is a semi-algebraic set 
in the real projective space PN

R
. We define ρ(X) as the (Euclidean) closure of the set 

of points that lie on a line spanned by two points in XR. Our hypotheses ensure that 
ρ(X) is Zariski dense in σ(X). The inclusion of the closed set ρ(X) in the real secant 
variety σ(X)R is usually strict. The difference consists of points of X-rank two whose 
real X-rank exceeds two.

Two varieties most relevant for applications are the Segre variety X = Seg(Pn1−1 ×
· · · × Pnd−1) and the Veronese variety X = νd(Pn−1). The ambient dimensions are 
N = n1 · · ·nd − 1 and N =

(
n+d−1

d

)
− 1, and X consists of (symmetric) tensors of rank 

one. The secant variety σ(X) is the closure of the set of tensors of complex rank two, 
and σ(X)R is the set of real points of that complex projective variety. The real rank two 
locus ρ(X) is the closure of the tensors of real rank two. This is a subset of σ(X)R. The 
containment is strict when d ≥ 3.

It is instructive to examine the case of 3 × 2 × 2-tensors. The secant variety σ(X)
has dimension 9 in P11. By [13], it consists of all tensors whose 3 × 4 matrix flattening 
satisfies

rank

⎛
⎝x000 x001 x010 x011
x100 x101 x110 x111
x200 x201 x210 x211

⎞
⎠ ≤ 2. (2)
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The tangential variety τ(X) has codimension one in σ(X). The ideal of τ(X) is generated 
by the 3×3-minors of (2) and six hyperdeterminantal quartics [10]. The set difference 
σ(X)R\τ(X)R is disconnected. The closure of one of its connected components is the 
real rank two locus ρ(X). Theorem 4.4 says that ρ(X) is defined by three inequalities 
like (1).

This article makes the following contributions. In Section 2 we determine the algebraic 
boundary of the real rank two locus ρ(X), and we characterize boundary points that can 
be selected by Euclidean distance optimization. These results (Theorems 2.1 and 2.3) 
are for general varieties X. Section 3 offers a detailed study of the case when X is a 
space curve. Section 4 is devoted to the usual setting of tensors, when X is a Segre or 
Veronese variety. The real rank two locus for tensors is characterized by hyperdetermi-
nantal inequalities (Theorem 4.4) and its algebraic boundary is given by the tangential 
variety (Theorem 4.3). In Section 5 we apply [12] to derive explicit equations (in Corol-
lary 5.4) for that boundary when X is the Veronese. We also characterize symmetric 
2×2× · · ·×2-tensors of real rank two.

Our results here lay the geometric foundations for the development of certified 
numerical algorithms for finding best real border rank two approximations of a given 
tensor.

2. Projective varieties

We fix an irreducible real projective variety X ⊂ PN whose set of real points XR is 
Zariski dense in X. The tangential variety τ(X) is contained in the secant variety σ(X). 
If the inclusion τ(X) ⊂ σ(X) is strict then both varieties have the expected dimensions:

dim(σ(X)) = 2 · dim(X) + 1 and dim(τ(X)) = 2 · dim(X). (3)

This is Theorem 1.4 in Zak’s book [18]. If τ(X) = σ(X) then the variety X is called 
defective. Otherwise, the equalities in (3) hold, and we say that X is non-defective.

We write X̂ ⊂ CN+1 for the affine cone over X. The X-rank of a vector x in CN+1 is 
the smallest r such that x = x1+· · ·+xr with x1, . . . , xr in X̂, and analogously for points 
x in PN . If x is real then its real X-rank is the smallest r such that x = x1 + · · · + xr

with x1, . . . , xr in X̂R. The loci of X-rank ≤ r and real X-rank ≤ r are typically not 
closed. We define the X-border rank and real X-border rank by passing to the closure 
of these loci. The secant variety σ(X) consists of points of X-border rank ≤ 2. The real 
rank two locus ρ(X) consists of points of real X-border rank ≤ 2. The latter is Zariski 
dense in the former.

The real rank two boundary ∂(ρ(X)) is the set ρ(X) minus its relative interior. Here 
the term “relative” refers to σ(X)R being the ambient topological space. Note that 
∂(ρ(X)) and σ(X)R are semi-algebraic subsets in PN

R
. We also note that ∂(ρ(X)) equals 

the topological boundary of ρ(X), as discussed for similar settings in [7, §4] and [8, §5]. 
The Zariski closure of the set ∂(ρ(X)) in PN is denoted ∂alg(ρ(X)) and is called the 
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algebraic real rank two boundary of X. This projective variety has codimension one in 
σ(X). Our aim is to describe it.

We need the following definitions. Let p and q be distinct smooth points on X whose 
corresponding tangent spaces Tp(X) and Tq(X) intersect in PN . The secant line spanned 
by such p and q is called an edge of X. The Euclidean closure of the union of all edges 
of X is a Zariski closed subset in the complex projective space PN . This subset is the 
edge variety ε(X). If dim(X) = (N − 1)/2 then the edge variety ε(X) is usually a 
hypersurface in σ(X) = PN . That hypersurface is the variety (X [2])∗ in [14], where it 
plays an important role in convex algebraic geometry. For curves X in P3, this is the 
edge surface studied in [15].

Theorem 2.1. Let X be a non-defective variety in PN whose real points are Zariski dense. 
If the algebraic real rank two boundary of X is non-empty then it is a variety of pure 
codimension one inside the secant variety σ(X). Its irreducible components arise from 
the tangential variety and the edge variety. In symbols, we have the equi-dimensional 
inclusion

∂alg(ρ(X)) ⊆ τ(X) ∪ ε(X). (4)

The hypothesis that X is non-defective is essential for this theorem. For instance, 
if X is a plane curve in P2 then X is defective. Blekherman and Sinn [2, §3] showed 
that ∂alg(ρ(X)) is a union of flex lines, provided it is non-empty. Such flex lines are not 
covered by (4).

Remark 2.2. The tangential variety τ(X) is always irreducible when X is irreducible. 
However, the edge variety ε(X) may be reducible even when X is irreducible. For in-
stance, this happens when X is the elliptic curve obtained by intersecting two quadratic 
surfaces in P3; see [15, Example 2.3]. Therefore, it is possible that ∂alg(ρ(X)) has more 
than two irreducible components. By the definition of ε(X), any point on any irreducible 
component of ε(X) is a limit of points lying on at least two secant lines through smooth 
points of X.

Proof of Theorem 2.1. The fact that ∂alg(ρ(X)) is pure of dimension one will be derived 
from the general result in [16, Lemma 4.2]: if a semialgebraic set S ⊂ Rk is nonempty 
and contained in the closure of its interior and the same is true for Rk\S, then the 
algebraic boundary of S is a variety of pure codimension one. Since the property is local, 
we can here replace Rk by XR. The argument below will show that these hypotheses are 
satisfied here.

Recall from (3) that dim(σ(X)) = 2 ·dim(X) +1. Hence, for a general real point u on 
the secant variety σ(X), there are only finitely many pairs {v1, w1}, {v2, w2}, . . . , {vk, wk}
of points on X such that the line spanned by vi and wi contains u. The 2k non-singular 
points of X can be expressed locally as algebraic functions of u, by the Implicit Function 
Theorem. The point u ∈ σ(X)R lies in ρ(X) if at least one of these pairs {vi, wi} consists 
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of two real points, and it lies outside ρ(X) if none of the pairs {vi, wi} are real. By our 
assumption that the left hand side of (4) is non-empty, both cases are possible for X.

Consider a general real curve that passes through the boundary ∂(ρ(X)) at a point 
u∗, and follow the k point pairs along that curve. This uses the Curve Selection Lemma 
in Real Algebraic Geometry. Precisely one of two scenarios will happen at the transition 
point:

Case 1 : A pair {vi, wi} of real points merges into a single point on X and then 
transitions to a pair of conjugate complex points. As that transition occurs, the secant 
line degenerates to a tangent line. Hence the corresponding point u∗ lies in the tangential 
variety τ(X).

Case 2 : Two real pairs {vi, wi} and {vj , wj} come together, in the sense that vi and 
vj converge to a point v ∈ X while wi and wj converge to another point w ∈ X. If 
this happens then the tangent spaces Tv(X) and Tw(X) meet non-transversally, by the 
following argument. The secant lines through u arising from the two pairs {vi, wi} and 
{vj , wj} span a plane that contains the line from vi to vj and the line from wi to wj . 
In the limit as vi, vj → v, wi, wj → w and u → u∗, a line in Tv(X) will be co-planar to 
a line in Tw(X). The meeting point of the two lines is their non-transverse intersection. 
Hence the secant line spanned by v and w must be an edge. We conclude that u∗ lies in 
the edge variety ε(X).

Our argument above shows that a generic path through ∂(ρ(X)) meets the boundary 
at either τ(X) or ε(X). Since the set ρ(X) does not have lower-dimensional components, 
the Zariski closure of such boundary points is the algebraic real rank two boundary 
∂alg(ρ(X)). Since the two sets τ(X) and ε(X) are Zariski-closed in PN , it follows that 
∂alg(ρ(X)) is contained in their union τ(X) ∪ ε(X). �

The present article was motivated by the following optimization problem:

Given data u ∈ RN+1, find the point u∗ in the real rank two locus ρ(X) that is closest 
to u.

Here and in what follows we identify real points on projective varieties, in PN
R

, and their 
affine cones in RN+1. The term “closest” refers to either the Euclidean norm or a weighted 
Euclidean norm as in [4,7]. The algebraic complexity of this problem is measured by the 
Euclidean distance degree (ED degree). A priori, five scenarios govern the location of the 
closest approximation u∗ to a random data point u:

(a) u∗ is the point in σ(X)R that is closest to u, and it is a smooth point of σ(X).
(b) u∗ is the point in XR that is closest to u; in particular, it is a singular point of σ(X).
(c) u∗ is the point in the singular locus of σ(X)R that is closest to u, but it is not in X.
(d) u∗ is the point in τ(X)R that is closest to u.
(e) u∗ is the point in ε(X)R that is closest to u.
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The solutions u∗ in cases (d) and (e) are not critical for the distance function on σ(X). 
The following theorem shows that case (b) cannot happen. This was proven for tensors 
by Stegeman and Friedland [17, Lemma 3.4]. We generalize their result to arbitrary 
varieties.

Theorem 2.3. Suppose that X̂ does not lie on a hyperplane in RN+1. Let u ∈ RN+1 be 
a data point of real X̂-border rank bigger than r and u∗ ∈ RN+1 its best approximation 
of real X̂-border rank at most r. Then the real X̂-border rank of u∗ is exactly r, not 
smaller.

The best approximation is taken with respect to a weighted Euclidean distance on 
RN+1 where all weights are strictly positive. The impossibility of case (b) is Theorem 2.3
for r = 2.

Proof. We begin with the case r = 1. Then u /∈ X̂ and we wish to show that its 
best border rank one approximation u∗ is non-zero. By our assumption, there exists a 
non-zero vector x in the affine cone X̂ that is not in the hyperplane perpendicular to 
u. This means that 〈u, x〉 = 0, where the inner product comes from our choice of norm. 
The point 〈u,x〉〈x,x〉x lies in X̂, and its squared distance to the given data point u is

∣∣∣∣
∣∣∣∣ 〈u, x〉〈x, x〉x− u

∣∣∣∣
∣∣∣∣
2

=
〈
〈u, x〉
〈x, x〉x− u,

〈u, x〉
〈x, x〉x− u

〉

=
(
〈u, x〉
〈x, x〉

)2

〈x, x〉 − 2 〈u, x〉〈x, x〉 〈u, x〉 + 〈u, u〉 = 〈u, u〉 − 〈u, x〉2
〈x, x〉 .

This is strictly smaller than ||u −0||2 = 〈u, u〉, so the closest point to u on X̂ is non-zero.
We now suppose that r ≥ 2 and let u∗ be the best approximation to u among points 

of real X-border rank at most r. We first suppose for contradiction that u∗ has real 
X̂-border rank at most r− 1. We then construct a strictly better border rank r approx-
imation of u by combining u∗ with a best rank one approximation for u − u∗.

The point v = u − u∗ is non-zero. Its best real X-rank one approximation v∗ is also 
non-zero. When v /∈ X̂, we use the first paragraph of the proof to see this; otherwise 
v∗ = v = 0. The point u∗ + v∗ still has real X̂-border rank at most r, and it is closer to 
u than u∗, since

||u− (u∗ + v∗)|| = ||v − v∗|| < ||v − 0|| = ||v|| = ||u− u∗||.

Hence the best approximation to u cannot have real X̂-border rank strictly less 
than r. �

We have shown that case (b) cannot happen for best approximation by ρ(X). All of 
the other four cases (a), (c), (d) and (e) are possible. Case (a) is the usual best real rank 
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two approximation and it occurs frequently. Cases (d) and (e) occur for the curve in 
Example 3.4. We close this section by showing that case (c) occurs for rank two tensor 
approximation.

Example 2.4. Let N = 26 and fix X = Seg(P2×P2×P2). According to [9, Cor. 7.17], the 
singular locus of σ(X) has three irreducible components, given by the three permutations 
of P2 × σ(Seg(P2 × P2)). These parametrize tensors v ⊗ M , where v ∈ R3 and M is a 
3 × 3-matrix of rank two. Consider a data point U = v ⊗M ′ where M ′ is a general real 
3 ×3-matrix. Let M be the best rank two approximation of M ′. The entries of v⊗M are 
three copies of M , multiplied by coefficients v1, v2 and v3. The tensor U∗ = v⊗M gives 
the unique best approximation to U in all three slices, hence U∗ is the best approximation 
to U in ρ(X).

3. Space curves

Blekherman and Sinn [2, §3] characterized the real rank two locus ρ(X) for a curve X
in the plane P2. In this section we examine the case when X is a curve in P3. We assume 
that X does not lie in a plane and that XR is Zariski dense in X. The real X-rank of 
a general point u ∈ P3

R
is either two or more, depending on whether the plane curve 

obtained by projecting X from u has real singularities or not. Specifically, any node on 
the projected curve corresponds to a line spanned by two real points on X that passes 
through u.

Remark 3.1. The locus P3
R
\ρ(X) of real X-border rank ≥ 3 consists of viewpoints u

of crossing-free linear projections of XR. In particular, if XR is a knot or link, in the 
usual sense of knot theory, then every planar projection of XR has a crossing, and hence 
ρ(X) = P3

R
.

We use classical geometry to describe the transition between real ranks two and three. 
Let u ∈ P3

R
and consider the plane curve in P2 obtained by projecting X from the center 

u. If u has real X-rank two then that plane curve has a crunode (ordinary real double 
point). As u moves through space and transitions from real X-rank two to real X-rank 
three then that last crunode disappears. If the transition occurs via τ(X) then the 
intermediate singularity of the projected curve is a cusp. If it occurs via ε(X) then that 
singularity is a tacnode. The terms “crunode” and “tacnode” are classical for the relevant 
real curve singularities.

Fig. 1 shows the transitions as the viewpoint u crosses the tangential surface τ(X)
and the edge surface ε(X) respectively. The arrows indicate the direction of change in 
viewpoint of the fixed curve. These are two of the three classical Reidemeister moves
from knot theory. Transitions via the third Reidemeister move do not cause a change in 
real X-rank.
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Fig. 1. The viewpoint u crosses the tangential surface (left) or the edge surface (right). Note that the curve 
is fixed. The arrows indicate the direction of change in viewpoint u.

The edge surface ε(X) plays a prominent role in convex algebraic geometry. As shown 
in [15], it represents the non-linear part in the boundary of the convex hull of XR. See 
[15, Figures 1 and 2]. In this section we focus on rational curves. This allows us to use 
the methods in [15, Section 3]. We have the following result about the real rank two 
boundary.

Proposition 3.2. There exist rational curves X1, X2, X3 and X4 in P3 such that

∂alg(X1) = τ(X1), ∂alg(X2) = ε(X2) ∪ τ(X2), ∂alg(X3) = ∅, and ∂alg(X4) = ε(X4).

Proof. By Theorem 4.3, the twisted cubic curve in Example 4.9 can serve as the curve 
X1. The quartic curve in Example 3.4 serves as X2. For X3 we take the Morton curve 
discussed in [15, Example 4.4]. This is rational of degree six and forms a trefoil knot [15, 
Figure 3].

Rational curves X4 in P3
R

with ∂alg(X4) = ε(X4) are a bit harder to find. A piecewise-
linear connected example, resembling a 3D Peano curve, can be constructed in two steps. 
First, we make a curve from six edges of the unit cube. Starting from (0, 0, 0), the curve 
travels to (1, 1, 1) via intermediate vertices (1, 0, 0) and (1, 1, 0), and then loops back 
to (0, 0, 0) via intermediate vertices (0, 1, 1) and (0, 0, 1). In the middle third of each 
line segment we insert a piecewise linear detour of height 1

2 in the direction of the next 
segment. Four views of this space curve are shown in Fig. 2. There are relatively few 
viewpoints from which the curve has no crossings. From such positions, crossings are 
always gained in pairs, via transitions along edges, as shown on the right in Fig. 1.

The existence of a rational algebraic curve X4 with the same property can be con-
cluded from the Weierstrass Approximation Theorem. To exclude the possibility that the 
algebraic boundary is strictly contained in the edge variety, it suffices to show the exis-
tence of an approximating curve whose edge variety is irreducible. This can be ensured 
using [14, equation (3.6)], as the rational curve X4 can be parametrized by sufficiently 
generic polynomials. �
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Fig. 2. The space curve X4 from Proposition 3.2, as seen from four different angles.

In what follows we review the techniques in [15, pages 7-9], and we show how they 
can be adapted for computing rank two decompositions. Suppose that X is a rational 
curve of degree d that spans P3. Note that σ(X) = P3. The curve X has a rational 
parametrization

P1 → P3, (s : t) �→
(
F0(s, t) : F1(s, t) : F2(s, t) : F3(s, t)

)
.

Here, F0, F1, F2, F3 are binary forms of degree d. Two points (s1 : t1) and (s2 : t2) in P1

parametrize two distinct points on the curve X, namely

(
F0(s1, t1) : F1(s1, t1) : F2(s1, t1) : F3(s1, t1)

)
and

(
F0(s2, t2) : F1(s2, t2) : F2(s2, t2) : F3(s2, t2)

)
.

The secant line spanned by these two points in P3 is characterized by its vector of Plücker 
coordinates (p01 : p02 : p03 : p12 : p13 : p23) ∈ P5. These coordinates are

pij = Fi(s1, t1)Fj(s2, t2) − Fi(s2, t2)Fj(s1, t1)
s1t2 − s2t1

for 0 ≤ i < j ≤ 3. (5)

Each Plücker coordinate pij is invariant under swapping (s1 : t1) and (s2 : t2). We wish 
to express pij as a function of the unordered pair {(s1 : t1), (s2 : t2)}. The two points in 
P1 are represented by the two linear factors of a binary quadric

ax2 + bxy + cy2 = (s1x + t1y)(s2x + t2y). (6)

We can use equation (6) to write pij as a homogeneous polynomial of degree d − 1 in 
(a, b, c). The resulting formulas define a rational map from P2 = Sym2(P1) into the 
Grassmannian of lines Gr(1, P3). This parametrizes the secant lines. Standard properties 
of the Plücker coordinates imply that the points (w : x : y : z) ∈ P3 on a particular 
secant line are the solutions of the linear system of equations

⎛
⎜⎝

0 p23 −p13 p12
−p23 0 p03 −p02
p13 −p03 0 p01

⎞
⎟⎠ ·

⎛
⎜⎝
w
x
y

⎞
⎟⎠ =

⎛
⎜⎝

0
0
0

⎞
⎟⎠ . (7)
−p12 p02 −p01 0 z 0
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As seen from our parametrization in (5) and (6), this is a system of equations of bidegree 
(d −1, 1) in the pair 

(
(a, b, c), (w, x, y, z)

)
. They define a threefold in P2×P3. The X-rank 

two decompositions of a data vector (w, x, y, z) in R4 are its fiber under the map that 
projects the threefold onto the second factor P3. To be concrete, given real numbers 
w, x, y, z, we plug them into the system (7). This yields four homogeneous equations of 
degree d −1 in three unknowns a, b, c, of which two are linearly independent. The X-rank 
two decomposition defined by a triple (a, b, c) is then obtained from equation (6). The 
reality of the X-rank two decomposition is determined as follows.

Proposition 3.3. The point u = (w : x : y : z) has real X-rank ≤ 2 if and only if the 
system (7) has a real solution (a : b : c) such that the matrix in (7) is non-zero and the 
discriminant b2 − 4ac of the quadric (6) is positive. Such points (a : b : c) ∈ P2

R
are in 

bijection with lines in P3
R

that pass through u and meet the curve X in two real points.

The boundary ∂(ρ(X)) marks the transition between systems (7) that admit solutions 
as described in Proposition 3.3 and those that do not. The discriminantal surface in P3

that separates real X-rank ≤ 2 from real X-rank ≥ 3 can have components contributed 
by both the tangential variety τ(X) and the edge surface ε(X). These are ruled surfaces. 
The lines in the rulings are represented by curves in the plane P2 with coordinates 
(a : b : c). To obtain the surface from each curve, we compute its image under the 
correspondence (7).

The first relevant curve is the conic b2 − 4ac. This encodes binary quadrics (6) with a 
double root, so its image in P3 is the tangential surface τ(X). The second relevant curve 
has degree 2(d − 3). Its defining polynomial Φ(a, b, c) was constructed in [15, equation 
(3.6)]. The image of the curve Φ = 0 under the correspondence (7) is the edge surface 
ε(X) in P3.

Example 3.4. Let d = 4 and fix the smooth monomial curve X in P3 with parametrization

F0 = s4, F1 = s3t, F2 = st3, F3 = t4. (8)

The parametrization (5) of the secant lines of X in terms of Plücker coordinates is

p01 = a3, p02 = a(b2 − ac), p03 = b(b2 − 2ac),
p12 = abc, p13 = c(b2 − ac), p23 = c3.

The secant correspondence in P2 × P3 is obtained by substituting these expressions into 
(7), and saturating with respect to the pij. Its map onto P3 has degree three. A general 
point u = (w : x : y : z) in P3 lies on three secants, each represented by a point (a : b : c). 
The semi-algebraic set ρ(X) consists of points where at least one of the three secants 
is real and meets X in two real points. Algebraically, we desire that a, b, c are real and 
satisfy b2 ≥ 4ac.
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The tangential surface τ(X) has degree 6. We compute its defining equation as follows. 
First add b2 −4ac to the ideal in (7), then saturate by the entries of the skew-symmetric 
4 × 4-matrix, and finally eliminate the unknowns a, b, c. The result is the polynomial

16x3y3 − 27w2y4 + 6wx2y2z − 27x4z2 + 48w2xyz2 − 16w3z3. (9)

The edge surface ε(X) has degree 6 as well. Following [15, equation (3.6)], it is encoded 
by the plane quadric Φ(a, b, c) = b2 + 2ac. The same elimination process yields the 
polynomial

32x3y3 − 27w2y4 − 6wx2y2z − 27x4z2 + 24w2xyz2 + 4w3z3. (10)

The ruled sextic surfaces (9) and (10) divide P3
R

into various connected components. The 
real rank two locus ρ(X) is the union of the components whose points obey Proposi-
tion 3.3.

We claim that ρ(X) is a proper subset of P3
R

and that both the edge surface ε(X) and 
the tangential surface τ(X) contribute to the real rank boundary ∂(ρ(X)). To prove this 
claim, we consider the line segment in P3

R
whose points u(t) are given by the parametriza-

tion

w = 84 − 74t, x = 13 + 59t, y = 62 − 19t, z = −38 − 10t.

Here t is a real parameter that runs from 0 to 1. By substituting into (9) and (10)
respectively, we find that the line segment crosses the tangential surface τ(X) twice, 
namely when

t1 = 0.41616468475415957221 and t3 = 0.64786245578375696533.

It also crosses the edge surface ε(X) twice, namely at the points u(t2) and u(t4) given 
by

t2 = 0.50734775284175190900 and t4 = 0.81105706603104911043.

The above expressions are numerical approximations to the ti. The true values have 
algebraic degree six, which is the degree of the surfaces τ(X) and ε(X). The ti cannot be 
expressed in terms of radicals over Q because the Galois group is the symmetric group 
on six letters.

The value of the parameter t divides the line segment into five smaller segments on 
which the corresponding secant lines of X have constant real behavior. Computations 
reveal:

• For 0 < t < t1, the real X-rank of u(t) is 3. One of the three complex secant lines is 
real but it does not meet the curve X in real points.
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• For t1 < t < t2, the real X-rank of u(t) is 2. One of the three complex secant lines 
is real and it meets the curve X in two real points.

• For t2 < t < t3, the real X-rank of u(t) is 2. All the three complex secant lines are 
real and they all meet the curve X in two real points.

• For t3 < t < t4, the real X-rank of u(t) is 2. All the three complex secant lines are 
real but only two of them meet the curve X in two real points.

• For t4 < t < 1 the real X-rank of u(t) is 3. One of the three complex secant lines is 
real but it does not meet the curve X in real points.

This verifies that both of the transitions depicted in Fig. 1 do occur along this line 
segment. At t = t1 the real X-rank changes by crossing the tangential surface, and at 
t = t4 it changes by crossing the edge surface. Additional crossings of the two boundary 
surfaces take place at t = t3 and at t = t2, but these do not change the real X-rank of 
u(t).

We finally note that both of the two scenarios (d) and (e) for rank two approximation, 
discussed prior to Theorem 2.3, are realized for X along this line segment. Namely, for 
sufficiently small ε > 0, we obtain (d) for u = u(t1−ε), and we obtain (e) for u = u(t4+ε).

4. Tensors and their hyperdeterminants

The varieties X whose ranks are most relevant for applications are the Segre variety 
and the Veronese variety. When studying tensors of format n1 × n2 × · · · × nd, we set 
N = n1n2 · · ·nd − 1 and X ⊂ PN is the Segre variety whose points are tensors of rank 
one. When studying symmetric tensors of format n × n × · · · × n with d factors, we 
set N =

(
n+d−1

d

)
− 1 and X ⊂ PN is the Veronese variety whose points are symmetric 

tensors of rank one. These two classical varieties X are non-defective provided d ≥ 3. 
We exclude the case d = 2 because the corresponding varieties of rank one matrices are 
defective.

For any variety X as before, the degree of the natural parametrization of its secant 
variety σ(X) gives the number of rank two decompositions of a generic point. It is the 
integer k in the proof of Theorem 2.1. If the parametrization is birational (k = 1) then 
σ(X) is said to be identifiable. If the secant variety σ(X) is identifiable then there is no 
edge variety ε(X).

Remark 4.1. It is natural to wonder whether τ(X)R is always contained in the real 
rank two locus ρ(X). Furthermore, if σ(X) is identifiable, then τ(X)R ⊆ ∂(ρ(X)) seems 
plausible. This would be true if every transition through τ(X)R were as in Case 1 of 
Theorem 2.1. However, this may be false. For instance, consider a smooth space curve X
as in Section 3. The tangential surface τ(X)R can look locally like a Whitney umbrella. 
It might have lower-dimensional real pieces that protrude into the interior of ρ(X) or its 
complement. If σ(X) is not identifiable then the interior of ρ(X) can contain a region of 
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τ(X)R that is Zariski dense in τ(X). The point u(t3) in Example 3.4 lies inside such a 
region of the tangential surface.

We now focus on the case of tensors, where X is a Segre of Veronese variety. Here, 
the secant variety is usually identifiable, and Remark 4.1 can be strengthened as follows.

Lemma 4.2. Let X be a Segre variety or Veronese variety with d ≥ 3. Then the real 
tangential variety is contained in the real rank two locus; in symbols, τ(X)R ⊆ ∂(ρ(X)).

Proof. Let T be a real point in τ(X). It is expressible as a sum of d rank one tensors,

T = y1 ⊗ x2 ⊗ · · · ⊗ xd + x1 ⊗ y2 ⊗ x3 ⊗ · · · ⊗ xd + · · · + x1 ⊗ · · · ⊗ xd−2 ⊗ yd−1 ⊗ xd

+ x1 ⊗ · · · ⊗ xd−1 ⊗ yd,

where we omit the subscripts for the Veronese case. This representation is derived in 
[6]. Direct computations shows that there exists a sequence of tensors an → T where 
each an lies on the secant line spanned by (x1 + 1

dy1) ⊗ (x2 + 1
dy2) ⊗ · · · ⊗ (xd + 1

dyd)
and x1 ⊗ x2 ⊗ · · · ⊗ xd. There also exists a sequence of tensors bn → T where each bn
lies on the secant line spanned by (x1 + 1

diy1) ⊗ (x2 + 1
diy2) ⊗ · · · ⊗ (xd + 1

diyd) and 
(x1 − 1

diy1) ⊗ (x2 − 1
diy2) ⊗ · · · ⊗ (xd − 1

diyd). Here i =
√
−1. See Example 5.10 for 

the case when X is a rational normal curve. By Kruskal’s Theorem [5, §3.2], these real 
(resp. complex) expressions for an (resp. bn) are unique, whenever three or more yi are 
non-zero. Therefore, T is both a limit of real rank two tensors, and a limit of tensors 
that are not in ρ(X), hence it lies in the boundary ∂(ρ(X)).

It remains to consider the case when at most two yi are non-zero. Then T = M ⊗ x

with M a matrix and x a rank one tensor. One can construct sequences of rank one 
tensors, αn, βn → x, with αn real and βn complex by perturbing x by arbitrarily small 
real (resp. complex) rank one tensors. Then an = M ⊗ αn → T and bn = M ⊗ βn → T

are real and complex sequences respectively, and we conclude as above. �
We have the following characterization of the algebraic real rank two boundary for 

tensors.

Theorem 4.3. Let X be the Segre variety (resp. the Veronese variety) whose points are 
d-dimensional tensors (resp. symmetric tensors) of rank one. If d ≥ 3 then the algebraic 
real rank two boundary of X is non-empty and equals the tangential variety of X. In 
symbols,

∂alg(ρ(X)) = τ(X).

Proof. The secant variety σ(X) is identifiable, since Kruskal’s Theorem holds generically 
for rank two tensors. Therefore ε(X) does not exist, since points on ε(X) are limits of 
tensors lying on at least two distinct secant lines; see Remark 2.2. To prove the theorem, 
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we must exclude the possibility ∂alg(ρ(X)) = ∅. By taking sums of complex conjugate 
pairs of points on the affine cone X̂, one creates many tensors that lie in σ(X)R but not in 
ρ(X). Hence the rank two locus ρ(X) has a non-empty boundary inside σ(X)R, and the 
algebraic boundary ∂alg(ρ(X)) is a non-empty hypersurface in σ(X). That hypersurface 
is contained in the irreducible hypersurface τ(X), by Theorem 2.1. This implies that 
they are equal. �

We next derive the following general result concerning tensors T of arbitrary format 
n1×n2×· · ·×nd where d ≥ 3. A 2 ×2 ×2 sub-tensor of T has coordinates in which d −3
of the indices are fixed, and the remaining three can take one of two different values. 
We are interested in the hyperdeterminants of these sub-tensors. These are the 2 × 2 × 2
sub-hyperdeterminants of T . Their number is found to be

1
8 · n1n2n3 · · ·nd ·

∑
1≤i<j<k≤d

(ni − 1)(nj − 1)(nk − 1). (11)

Theorem 4.4. A real tensor T has real border rank ≤ 2 if and only if all of its flattenings 
have rank ≤ 2 and all of its 2 × 2 × 2 sub-hyperdeterminants are non-negative. If this 
holds then the real rank of T is exactly two if at least one of the flattenings of T has rank 
two and at least one of the 2 × 2 × 2 sub-hyperdeterminants of T is strictly positive.

Proof. We begin with the only-if direction of the first statement. Let T have real border 
rank ≤ 2. Then every 2 ×2 ×2 sub-tensor T ′ has real border rank ≤ 2. We can approximate 
T ′ by a sequence of tensors T ′′ that have real rank two. The entries t′′ijk of any tensor 
in the approximating sequence can be written as t′′ijk = aibjck + diejfk, where the 
parameters are real. With a computation one checks that the hyperdeterminant of T ′′

evaluates to

(a1d2 − a2d1)2(b1e2 − b2e1)2(c1f2 − c2f1)2.

This quantity is non-negative since all parameters are real. By continuity, we conclude 
that all 2 × 2 × 2 sub-hyperdeterminants of the original tensor T are non-negative.

For the if direction, suppose that T is a tensor in σ(X)R whose 2 × 2 × 2 sub-
hyperdeterminants are all non-negative. The complex rank of T is either 1, 2 or ≥ 3. If 
it is 1 then T is in the real Segre variety XR and hence in ρ(X). If T has complex rank 
≥ 3 then it is in τ(X)R\X, and we deduce that T ∈ ρ(X) from Lemma 4.2.

It remains to examine the case when T has complex rank two and real rank ≥ 3. The 
tensor T lies on a real secant line, spanned by a pair of complex conjugate points in X. 
Consider any 2 × 2 × 2 sub-tensor T ′ of T . We can write the entries t′ijk of T ′ as

t′ijk = (ai + Ai

√
−1)(bj + Bj

√
−1)(ck + Ck

√
−1)

+ (ai −Ai

√
−1)(bj −Bj

√
−1)(ck − Ck

√
−1),
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where the parameters a, b, c, A, B, C are real. One checks that the hyperdeterminant of 
T ′ is

−(a1A2 − a2A1)2 · (b1B2 − b2B1)2 · (c1C2 − c2C1)2 · 43. (12)

This expression is non-positive since all parameters are real. Our hypothesis that all 
2 × 2 × 2 sub-hyperdeterminants are non-negative means they must all be zero.

The rank two representation of T involves pairs of vectors {a, A} ⊂ Rn1 , {b, B} ⊂
Rn2 , {c, C} ⊂ Rn3 , . . . Every 2 × 2 × 2 sub-hyperdeterminant of T has the form in 
(12) and equates to zero. From this we conclude that, for all but two of the pairs 
{a, A}, {b, B}, {c, C}, . . ., the vectors in the pair are linearly dependent. If not, we could 
choose indices (i, j) from each vector pair for which the expression aiAj − ajAi does not 
vanish, yielding a non-vanishing sub-hyperdeterminant. Hence T is the tensor product 
of a matrix with d − 2 vectors. This contradicts the hypothesis that T has real rank 
exceeding two.

If T is rank one, all flattenings have rank one and all 2 ×2 ×2 sub-hyperdeterminants 
vanish. So if one flattening has rank two, or one sub-hyperdeterminant is strictly positive, 
the real rank of T must be at least two. To conclude the proof, it remains to consider 
tensors in ρ(X) whose real rank exceeds two but are nonetheless there due to taking the 
closure.

Such tensors lie in ∂(ρ(X)), and hence in the tangential variety τ(X). We claim that all 
sub-hyperdeterminants vanish on τ(X). This is immediate in the base case X = Seg(P1×
P1×P1) in P7, since τ(X) equals the vanishing locus of the hyperdeterminant. For larger 
tensor formats, the projection of the tangential variety to any 2 × 2 × 2 sub-tensor is 
precisely that same tangential variety. Hence each 2 ×2 ×2 sub-hyperderminant vanishes 
on τ(X), for Segre varieties X of arbitrary size. Thus, if a tensor has at least one flattening 
of rank two, and at least one sub-hyperdeterminant strictly positive, it has real rank 
exactly two. �
Example 4.5. It is instructive to work through this proof for 2 × 2 × 2 × 2-tensors T . 
If T has complex rank two and real rank ≥ 3 then its entries tijkl have the parametric 
representation

tijkl = (ai + Ai

√
−1)(bj + Bj

√
−1)(ck + Ck

√
−1)(dl + Dl

√
−1)

+ (ai −Ai

√
−1)(bj −Bj

√
−1)(ck − Ck

√
−1)(dl −Dl

√
−1).

Suppose the eight 2 × 2 × 2 sub-hyperdeterminants of T are all non-negative. They are

−(a2
0 + A2

0)2(b0B1 − b1B0)2(c0C1 − c1C0)2(d0D1 − d1D0)243,

−(a2
1 + A2

1)2(b0B1 − b1B0)2(c0C1 − c1C0)2(d0D1 − d1D0)243,

−(b20 + B2
0)2(a0A1 − a1A0)2(c0C1 − c1C0)2(d0D1 − d1D0)243,
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−(b21 + B2
1)2(a0A1 − a1A0)2(c0C1 − c1C0)2(d0D1 − d1D0)243,

−(c20 + C2
0 )2(a0A1 − a1A0)2(b0B1 − b1B0)2(d0D1 − d1D0)243, (13)

−(c21 + C2
1 )2(a0A1 − a1A0)2(b0B1 − b1B0)2(d0D1 − d1D0)243,

−(d2
0 + D2

0)2(a0A1 − a1A0)2(b0B1 − b1B0)2(c0C1 − c1C0)243,

−(d2
1 + D2

1)2(a0A1 − a1A0)2(b0B1 − b1B0)2(c0C1 − c1C0)243.

We note that the first factor does not appear in equation (12) because the fixed indices 
were subsumed into the expressions for one of the parameter pairs {a, A}, {b, B}, {c, C}.

It cannot be that a0, A0, a1, A1 are all zero, and similarly for the other letters. Hence

(a0A1 − a1A0)(b0B1 − b1B0)(c0C1 − c1C0)

= (a0A1 − a1A0)(b0B1 − b1B0)(d0D1 − d1D0)

= (a0A1 − a1A0)(c0C1 − c1C0)(d0D1 − d1D0)

= (b0B1 − b1B0)(c0C1 − c1C0)(d0D1 − d1D0) = 0.

Two of the four factors are zero. There are six cases. Up to relabeling, a0A1 − a1A0 =
b0B1− b1B0 = 0. This implies that T = (a0, a1) ⊗ (b0, b1) ⊗U , where U is a 2 ×2-matrix. 
Clearly U has real rank ≤ 2. This shows that T has real rank ≤ 2, the necessary 
contradiction.

We briefly discuss the implications of our inequality description of the real rank two 
locus ρ(X) for its boundary ∂(ρ(X)). Here X is the Segre variety of rank one tensors. 
Let Hyp denote the variety consisting of tensors whose 2 × 2 × 2 sub-hyperdeterminants 
are all zero.

Proposition 4.6. The real rank two boundary ∂(ρ(X)) is a subset of the semi-algebraic 
set Hyp∩ ρ(X). This containment is an equality for tensors of order d = 3 but strict for 
d ≥ 4. That is, when d ≥ 4 there exist tensors on Hyp which lie in the interior of ρ(X).

Proof. We saw in Theorem 4.3 that ∂(ρ(X)) is contained in the tangential variety τ(X). 
So for the first claim, it suffices to show that each 2 ×2 ×2 sub-hyperdeterminant vanishes 
on τ(X). This was shown in end of the proof of Theorem 4.4; see also [10, Theorem 1.3].

Suppose that d = 3 and T = (tijk) is an n1 × n2 × n3-tensor in Hyp ∩ ρ(X). If T lies 
in τ(X) then it is in the boundary ∂(ρ(X)), by Lemma 4.2. We may therefore assume 
that T has real rank ≤ 2. So, its entries can be written as tijk = aibjck + diejfk. Since 
T ∈ Hyp, for all indices 1 ≤ i1 < i2 ≤ n1, 1 ≤ j1 < j2 ≤ n2 and 1 ≤ k1 < k2 ≤ n3, we 
have

(ai1di2 − ai2di1) · (bj1ej2 − bj2ej1) · (ck1fk2 − ck2fk1) = 0.
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This condition implies that either {a, d} or {b, e} or {c, f} are linearly dependent. After 
relabeling and rescaling we may assume a = d. This implies T = a ⊗

(
(b ⊗ c) + (e ⊗ f)

)
. 

This tensor lies in the tangential variety τ(X) of the Segre variety X = Seg(Pn1−1 ×
Pn2−1 × Pn3−1).

It remains to show that ∂(ρ(X)) is strictly contained in Hyp∩ρ(X) for d ≥ 4. Consider 
d = 4 and X = Seg((P1)4). Let {e1, e2} be the standard basis of R2. The rank two tensor

T = e1 ⊗ e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 ⊗ e2 (14)

is in the relative interior of the real rank two locus ρ(X). All eight 2 × 2 × 2
sub-tensors have rank one, so the eight hyperdeterminants vanish. Hence T lies in 
Hyp ∩ ρ(X)\∂(ρ(X)). This tensor can now be embedded into all larger formats, and 
we get the conclusion for d ≥ 4. �
Remark 4.7. The tensor (14) lies on the interior of ρ(X). All of its 2 × 2 × 2 hyperdeter-
minants vanish, so it lies on the variety Hyp. This demonstrates that the only-if direction 
in the second sentence of Theorem 4.4 does not hold.

Remark 4.8. The number (11) of 2 × 2 × 2 sub-hyperdeterminants for a tensor of format 
n × n × · · · × n equals 1

8
(
d
3
)
nd(n − 1)3. If the tensor is symmetric then this number 

reduces to
(
n + d− 4
n− 1

)((n
2
)

+ 2
3

)
. (15)

Among these we only need hyperdeterminants whose expansion as in (13) is a sixth 
power like (a0A1 − a1A0)6 times an extraneous factor 

∏
i(a2

i + A2
i )2. That reduces the 

number to (
n + d− 4
n− 1

)(
n

2

)
. (16)

Each of these symmetric hyperdeterminants looks like the quartic D in the next example.

Example 4.9. Let n = 2, d = 3. Here X is the twisted cubic curve in P3. The tangential 
variety τ(X) is the quartic surface in σ(X) = P3 given by the discriminant of a binary 
cubic:

D = x2
0x

2
3 − 6x0x1x2x3 − 3x2

1x
2
2 + 4x3

1x3 + 4x0x
3
2 = det

⎛
⎜⎝

x0 2x1 x2 0
0 x0 2x1 x2
x1 2x2 x3 0
0 x1 2x2 x3

⎞
⎟⎠ (17)

This is the 2×2×2 hyperdeterminant (1) specialized to symmetric tensors [11, page 2]. 
Both numbers (15) and (16) are one. The real rank two locus ρ(X) is the subset of P3

R
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defined by D ≥ 0. For a study of hyperdeterminants of symmetric tensors we refer to 
Oeding [11].

5. The tangential variety of the Veronese

The variety σ(X) of rank two tensors is defined by the 3 × 3-minors of all flattenings 
[13]. Among the real points on that secant variety, the locus ρ(X) is defined by the 
hyperdeterminantal inequalities in Theorem 4.4. Since the algebraic boundary of ρ(X)
is the tangential variety τ(X), one might think that τ(X) is obtained by setting the 
hyperdeterminants to zero. But this is false, as seen in Proposition 4.6. Oeding and 
Raicu [12,13] showed that τ(X) is often defined by quadrics. In this section we focus on 
Veronese varieties, and we translate the representation-theoretic results from [12] into 
explicit quadrics. We close with examples that illustrate the findings in our paper for 
the rational normal curve X = νd(P1).

The following result is for tensors with d ≥ 3. The variety X comprises rank one 
tensors, so it is the Segre variety X = Seg(Pn1−1 × · · · × Pnd−1) or the Veronese variety 
X = νd(Pn−1).

Theorem 5.1 (Oeding-Raicu [12], Raicu [13]). The ideal of the secant variety σ(X) is 
generated by the 3 × 3-minors of the various flattenings of the tensor. For symmetric 
tensors, it suffices to take the 3 × 3-minors of the most symmetric catalecticant matrix. 
The ideal of the tangential variety τ(X) is generated in degree at most four; the Schur 
modules of minimal generators are known explicitly. If d ≥ 5 then quadrics suffice to 
generate the ideal of τ(X).

The space of minimal generators of the prime ideals in question is a G-module, where 
G = SL(n) if X = νd(Pn−1) and G = SL(n1) × · · · × SL(nd) if X = Seg(Pn1−1 ×
· · ·×Pnd−1). The term Schur module refers to the irreducible representations that occur 
in these G-modules. We shall use basics from the representation theory of G, as in 
Landsberg’s book [6].

Our aim is to extract explicit polynomials from the last two sentences in Theorem 5.1, 
for the case when X = νd(Pn−1) and G = SL(n). The irreducible G-modules of degree d
are indexed by partitions λ of d with at most n parts. The module for λ is denoted Sλ. 
It has a natural basis, labeled by semi-standard Young tableaux of shape λ filled with 
{1, 2, . . . , n}.

We shall present a basis for the space I2(τ(X)) of quadrics that vanish on τ(X). 
Clearly, all such quadrics are minimal ideal generators, since τ(X) does not lie in a 
linear subspace of P

(n+d−1
d

)
−1. Proposition 5.5 says that I2(τ(X)) usually defines τ(X)

as a subvariety of σ(X).
Fix an even positive integer k and consider the irreducible G-module Sλ(Cn) where λ

is the partition (2d −k, k). We draw λ as a shape with two rows, the first of length 2d −k

and the second of length k. A basis of Sλ(Cn) is indexed by the semi-standard Young 
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tableaux (SSYT) of shape λ filled with integers between 1 and n. The SSYT of shape λ
are identified with pairs (μ, ν) of row vectors μ ∈ {1, 2, . . . , n}2d−k and ν ∈ {1, 2, . . . , n}k
that satisfy

μ1 ≤ μ2 ≤ μ3 ≤ · · · ≤ μk ≤ μk+1 ≤ · · · ≤ μ2d−k,

ν1 ≤ ν2 ≤ ν3 ≤ · · · ≤ νk and μi < νi for i = 1, 2, . . . , k.
(18)

By the Hook Length Formula, the number of such SSYT of shape λ equals

dim
(
Sλ(Cn)

)
=

k∏
i=1

n− 1 + i

2d + 2 − k − i
·

2d−k∏
i=k+1

n− 1 + i

2d + 1 − k − i
·

k∏
j=1

n− 2 + j

k + 1 − j
. (19)

We realize Sλ(Cn) as a submodule of (Cn)⊗2d by assigning to (μ, ν) with (18) the basis 
vector

(eμ1 ∧ eν1) ⊗ (eμ2 ∧ eν2) ⊗ · · · ⊗ (eμk
∧ eνk

) ⊗ [ eμk+1eμk+2 · · · eμ2d−k
]. (20)

Here e1, . . . , en is the standard basis of Cn, the symbol ∧ denotes antisymmetrization 
of the tensor product, and the expression [ · · · ] is the symmetrization of that tensor 
product.

We next translate the expression (20) into a quadratic polynomial in the 
(
n+d−1

d

)
homogeneous coordinates xu on P

(n+d−1
d

)
−1. This polynomial is supposed to vanish on 

τ(X). We write (t1 : t2 : · · · : tn) for the homogeneous coordinates on Pn−1. The 
parametrization of σ(X) by pairs of points in the cone over the Veronese variety X can 
be written as follows:

∑
|u|=d

(
|u|
u

)
xut

u = (a1t1 + a2t2 + · · · + antn)d + (b1t1 + b2t2 + · · · + bntn)d. (21)

We translate the expression (20) into the following polynomial in the 2n parameters:

k∏
i=1

(aμi
bνi

− aνi
bμi

) ·
(∑

aμj1
aμj2

· · · aμjd−k
bμjd−k+1

bμjd−k+2
· · · bμj2d−2k

)
, (22)

where the sum is over permutations (j1, j2, . . . , j2d−2k) of {k + 1, k + 2, . . . , 2d − k} such 
that

j1 < j2 < · · · < jd−k and jd−k+1 < jd−k+2 < · · · < j2d−2k.

The sum in (22) has 
(2d−2k

d−k

)
terms. The group G = SL(n) acts on the vectors a and b, 

and hence on the span of the polynomials (22). This is the irreducible representation 
Sλ(Cn).
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Table 1
Dimension of the space of quadrics vanishing on τ(νd(Pn−1)).

n
∖

d 4 5 6 7 8 9 10

2 1 3 6 10 15 21 28
3 15 60 153 315 570 945 1470
4 105 540 1711 4270 9190 17850 32130
5 490 3150 12145 36155 91395 205905 425425

Proposition 5.2. The polynomial (22) is in the coordinate ring of σ(X), i.e. it lies in the 
image of the ring homomorphism C[x] → C[a, b] that is given by the parameterization 
(21). Its preimage in C[x] is unique. That polynomial vanishes on τ(X) if and only if 
k ≥ 4.

Proof. Since the index k introduced prior to (18) is even, the polynomial (22) is un-
changed if we switch the two letters a and b. The polynomial (22) is invariant in that 
sense. The coefficients of the right hand side of (21) span the space of all such invariant 
polynomials of degree d. This follows from the fact that the usual ring of symmetric 
polynomials is generated by the power sums. Hence (22) is in the image of the ring map 
C[x] → C[a, b]. The kernel of that map is the ideal of the secant variety σ(X). That 
ideal contains no quadrics. Hence the preimage of (22) in C[x] is unique. The final state-
ment follows from part (1) in the Corollary in [12, §1]. The next example illustrates that 
statement. �
Example 5.3. Let n = 2 and k = d even, so X is the rational normal curve in Pd. Consider 
the polynomial (a1b2 − a2b1)k. For k = 2, its preimage in C[x] is x0x2 − x2

1. This does 
not vanish on τ(X) = P2. For k = 4, the preimage is x0x4 − 4x1x3 + 3x2

2. This vanishes 
on τ(X).

For any pair (μ, ν) as in (18), we write f(μ,ν) for the unique preimage of (22) under the 
map C[x] → C[a, b]. This is well-defined by Proposition 5.2. The polynomial f(μ,ν) is eas-
ily computable by solving a linear system of equations. For instance, two x-polynomials 
in Example 5.3 are f(11,22) and f(1111,2222). Or, using tableaux, we might write f11

22
and 

f1111
2222

.

Corollary 5.4. A basis for the quadrics that vanish on the tangential variety τ(X) of 
the Veronese variety X consists of the f(μ,ν) that are indexed by the SSYT of shape 
λ = (2d − k, k) where k ∈ {4, 5, . . . , d} is even. Their number is obtained by summing 
(19) over those k.

There are no quadrics that vanish on τ(X) when d ≤ 3. For d ≥ 4 we have constructed 
an explicit basis for that space of quadrics. The dimensions of this space is given in 
Table 1.
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Proposition 5.5. Fix a Veronese variety X = νd(Pn−1) with d ≥ 4. The tangential va-
riety τ(X) is defined, as a subvariety of the secant variety σ(X), by the quadrics in 
Corollary 5.4.

Proof. This is proved in Landsberg’s book on tensors, namely in [6, Theorem 8.1.4.1]. �
Example 5.6. For ternary quartics (n = 3, d = 4), we consider the 6 × 6 Hankel matrix

H =

⎛
⎜⎜⎜⎜⎝
x400 x220 x202 x310 x301 x211
x220 x040 x022 x130 x121 x031
x202 x022 x004 x112 x103 x013
x310 x130 x112 x220 x211 x121
x301 x121 x103 x211 x202 x112
x211 x031 x013 x121 x112 x022

⎞
⎟⎟⎟⎟⎠ .

The Veronese surface X ⊂ P14 is defined by the 2 × 2-minors of H. The 5-dimensional 
secant variety σ(X) is defined by the 3 × 3-minors of H. The tangential variety τ(X)
is the codimension one subvariety of σ(X) defined by the vanishing of the following 
15 quadrics: f(1111,2222), f(1111,2223), f(1111,2233), f(1111,2333), f(1111,3333), f(1112,2223), 
f(1112,2233), f(1112,2333), f(1112,3333), f(1122,2233), f(1122,2333), f(1122,3333), f(1222,2333), 
f(1222,3333), f(2222,3333). Each of these symbols translates into a product of k = 4 factors as 
in (22), and from this we recover the quadric. For instance, f(1111,2222) = (a1b2−a2b1)4 =
x400x040−4x310x130 +3x2

220 and f(1112,2333) = (a1b2−a2b1)(a1b3−a3b1)2(a2b3−a3b2) =
x310x013 − x301x022 − x220x103 − x211x112 + 2x202x121.

Remark 5.7. The quadratic polynomials fμ,ν that cut out τ(X) do not contribute to the 
semi-algebraic description of the real rank two locus ρ(X). Unlike the hyperdeterminants 
in Theorem 4.4, they do not give valid non-trivial inequalities for ρ(X). For instance, 
in Example 5.6, the polynomial f(1111,2222) is non-negative on σ(X)R while f(1112,2333)
changes sign on ρ(X). Here, ρ(X) is defined in σ(X)R by nine quartic inequalities; cf. (16)
and (17).

For the remainder of this paper we set n = 2, so we consider symmetric 
2×2× · · ·×2-tensors. These tensors form a projective space Pd, namely the space of 
binary forms

f =
d∑

i=0
xi

(
d

i

)
sd−iti. (23)

To describe the relevant varieties, we use the following Hankel matrix of format 3 ×(d −1):

H =
(
x0 x1 x2 · · · xd−2
x1 x2 x3 · · · xd−1

)
. (24)
x2 x3 x4 · · · xd
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Our three varieties of interest satisfy the inclusions X ⊂ τ(X) ⊂ σ(X) in Pd. They are

• X = {rank(H) ≤ 1} = the rational normal curve in Pd = {binary forms �d};
• τ(X) = points on tangent lines of the curve X = {binary forms �d−1

1 �2};
• σ(X) = {rank(H) ≤ 2} = points on secant lines of X = {binary forms �d1 + �d2}.

These projective varieties have dimensions 1, 2 and 3. Their defining equations are as 
follows.

Corollary 5.8. The prime ideals of X and σ(X) are respectively generated by the 2 ×
2-minors and the 3 × 3-minors of the Hankel matrix H in (24). The prime ideal of 
the tangential variety τ(X) is minimally generated by the quartic D if d = 3, by the 
cubic det(H) and the quadric Q = x0x4 − 4x1x3 + 3x2

2 if d = 4, and by 
(
d−2
2
)

linearly 
independent quadrics if d ≥ 5.

Proof. The equations for X and σ(X) are classical and found in many sources, such as [6]. 
The ideal of τ(X) is derived from the description in Theorem 5.1 and Corollary 5.4. �

The real rank two locus ρ(X) is a 3-dimensional semi-algebraic set. It consists of 
binary forms �d1 + �d2 where �1, �2 are real. Its algebraic boundary is τ(X). Theorem 4.4
implies:

Corollary 5.9. The real rank two locus ρ(X) is the subset of Pd
R

that is defined by the 
vanishing of the 3 × 3-minors of H in (24) together with the following d − 2 quartic 
inequalities:

x2
ix

2
i+3 − 6xixi+1xi+2xi+3 − 3x2

i+1x
2
i+2 + 4x3

i+1xi+3 + 4xix
3
i+2 ≥ 0

for i = 0, 1, . . . , d− 3.
(25)

Proof. We regard f as a 2 × 2 × · · · × 2-tensor with d factors, and we apply (16) and 
(17). �

We conclude by examining the real rank two loci for binary quartics and binary 
quintics.

Example 5.10. Let d = 4. We examine the geography of the real hypersurface σ(X)R in 
P4
R
. It decomposes into three semi-algebraic strata. Up to closure, these strata are: the set 

σ(X)++0 = {�41+�42} of semi-definite real rank two quartics; the set σ(X)+−0 = {�41−�42}
of indefinite real rank two quartics; the set σ(X)cpx of quartics of real rank three and 
complex rank two. The set σ(X)cpx is parametrized by terms �4+ �̄4, where � is a complex 
linear form and �̄ its complex conjugate. All three strata intersect in the curve XR of 
rank one quartics.
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We examine the points on the boundary ∂(ρ(X)). Limits of points in σ(X)++0 have 
real rank one or two, because cancelation between the two positive summands in l41 + l42
cannot occur. Hence, points in ∂(ρ(X))\X must be in the closure of σ(X)+−0. A typical 
example is

s3t = limε→0
1
4ε
(
(s + εt)4 − s4) = limε→0(s3t− ε2st3).

The first limit approaches s3t from within σ(X)+−0. The second limit approaches from 
within the real rank three locus σ(X)cpx. To see this, we express it in the form �4 + �̄4. 
Setting i =

√
−1 we have

s3t− ε2st3 = 1
8εi

(
(s + εit)4 − (s− εit)4

)
.

Since the above decomposition is unique, the tensor is in σ(X)cpx.
The real rank two locus ρ(X) is defined by the equation det(H) = 0 and two inequali-

ties D0 ≥ 0, D1 ≥ 0. Here D0 is the quartic in (17) and D1 is obtained by replacing xi �→
xi+1 for all unknowns. The variety V

(
det(H), D0, D1

)
has two irreducible components, 

namely the line V (x1, x2, x3) and the surface τ(X) = V
(
det(H), 3x2

2 − 4x1x3 + x0x4
)
. 

Hence, the real rank two boundary is not obtained by setting the inequalities in Corol-
lary 5.9 to zero. Note that the rank two tensor T in (14) is symmetric and lies in 
V (x1, x2, x3).

Example 5.11. Let d = 5. Then ρ(X) is defined by rank(H) ≤ 2 and three inequalities 
D0, D1, D2 ≥ 0. The ideal of the tangential surface τ(X) is generated by three quadrics

Q0 = 3x2
2 − 4x1x3 + x0x4, Q1 = 2x2x3 − 3x1x4 + x0x5,

Q2 = 3x2
3 − 4x2x4 + x1x5.

(26)

It turns out that one inequality suffices to define the real rank two locus inside the 
rank two locus. Namely, ρ(X) is the set of binary quintics given by rank(H) ≤ 2 and 
Q2

1 − 4Q0Q2 ≥ 0.
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