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A binary tensor consists of 2n entries arranged into hypercube 
format 2 × 2 × · · · × 2. There are n ways to flatten such a 
tensor into a matrix of size 2 × 2n−1. For each flattening, M , 
we take the determinant of its Gram matrix, det(MMT ). We 
consider the map that sends a tensor to its n-tuple of Gram 
determinants. We propose a semi-algebraic characterization 
of the image of this map. This offers an answer to a question 
raised by Hackbusch and Uschmajew concerning the higher-
order singular values of tensors.
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1. Introduction

The Gram determinants of a real binary tensor of format 2 × 2 × · · · × 2 (n times) 
are an n-tuple of quadratic invariants of the tensor. We introduce the Gram locus, the 
locus of tuples that arise as the Gram determinants of a real binary tensor. Here, the 
Gram locus is equal to the “set of feasible higher-order singular values”, from [8], under 
change of coordinates. The Gram determinants offer a convenient set of coordinates for 
studying the higher order singular values of a tensor.
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In Theorem 1.3 we find the convex hull of the Gram locus for real binary tensors. It 
is a convex polytope that we describe explicitly. Its facet defining inequalities are that 
each Gram determinant is bounded by the sum of the others. We give a sum-of-squares 
proof. In Theorem 1.4, we express the Gram locus as a semi-algebraic set for the case of 
2 × 2 × 2 tensors. The semi-algebraic description determines whether a tuple lies in the 
Gram locus or its complement, and characterizes tuples on the boundary. The non-linear 
part of the boundary of the Gram locus is Fig. 4, and it is depicted in the highest higher 
order singular value coordinates in Fig. 6.

In Section 1 of [8] it is conjectured that tensors with strictly decreasing and positive 
singular values in each flattening lie in the interior of the feasible set. Example 3.1 is 
a counter-example to this conjecture. It is a tensor on the boundary of the feasible set 
whose higher order singular values in each flattening are distinct and positive. Its singular 
values are located at the black dot in Fig. 6.

Conjecture 1.5 proposes the general form for the Gram locus. It has a concise expres-
sion as the non-negativity of a single polynomial in the Gram determinants.

Finally, Section 4 gives a partial answer to [8, Problem 1.6], characterizing the tensors 
whose higher order singular values coincide. In the case of matrices agreement of singular 
values implies orthogonal equivalence, but this is not true for tensors. Theorem 4.1 shows 
that the hyperdeterminant bridges the gap between orthogonal equivalence of tensors and 
agreement of the higher order singular value decomposition in the 2 × 2 × 2 case. Our 
set-up for the 2 × 2 × 2 tensor format is described in the following example.

Example 1.1. The 2 ×2 ×2 tensor (aijk), 0 ≤ i, j, k ≤ 1, has eight entries which populate 
the vertices of the three-cube. It has three flattenings, each of size 2 × 4:[
a000 a001 a010 a011
a100 a101 a110 a111

] [
a000 a001 a100 a101
a010 a011 a110 a111

] [
a000 a010 a100 a110
a001 a011 a101 a111

]
.

For the ith flattening M we find di := det(MMT ). For instance, the first Gram deter-
minant is

d1 = (a000a101 − a001a100)2 + (a000a110 − a010a100)2 + (a000a111 − a011a100)2+

(a001a110 − a010a101)2 + (a001a111 − a011a101)2 + (a010a111 − a011a110)2.

A computation reveals that the linear combination d2 + d3 − d1 can be written as a sum 
of three squared terms:

2(a000a011 − a010a001)2 + 2(a100a111 − a110a101)2+

(a010a101 + a001a110 − a011a100 − a000a111)2.

The sum-of-squares certificate certifies that the expression is non-negative for all real 
values of the variables.



352 A. Seigal / Linear Algebra and its Applications 544 (2018) 350–369
Take a tensor of format 2 ×2 ×· · ·×2. Each principal flattening [4] is a matrix with two 
rows and 2n−1 columns, obtained by combining the indices from all but one direction. 
Denoting the rows by vectors v and w, the Gram matrix is

[
← v →
← w →

]
·
[ ↑ ↑
v w
↓ ↓

]
=

[
||v||2 〈v,w〉
〈v,w〉 ||w||2

]
.

Its determinant is given by the Cauchy–Schwarz expression ||v||2||w||2 − 〈v,w〉2. For 
the ith flattening, this is the ith Gram determinant, denoted di. By the Cauchy–Binet 
formula, it is the sum of squares of the 2 × 2 minors of the ith flattening matrix.

Definition 1.2. Let n ≥ 2. Consider real binary tensors of format 2 ×2 ×· · ·×2 (n times). 
The map G sends a real binary tensor to its tuple of n Gram determinants:

G : R2 ⊗ · · · ⊗ R2 → Rn

(aij...k) �→ (d1, . . . , dn).

The map scales by a constant factor under rescaling the input tensor. We define the 
Gram locus to be the image G(B), where B is the unit ball of tensors whose norm does 
not exceed one:

B =

⎧⎨⎩(aij...k) ∈ R2 ⊗ · · · ⊗ R2 :
∑
ij...k

a2
ij...k ≤ 1

⎫⎬⎭ .

Each Gram determinant di is a polynomial of degree four in the entries of the tensor; 
the map G is given by n homogeneous degree four polynomials.

The Gram determinant map G gives the higher order singular values of a binary tensor, 
as follows. The higher order singular values of a tensor, introduced in [5], are the singular 
values of its n principal flattenings, the non-negative square roots of the eigenvalues of 
the n Gram matrices. Just as the singular values of a matrix describe it up to orthogonal 
change of basis, via the singular value decomposition (SVD), the higher order singular 
values give the corresponding multilinear structure of a tensor, via the higher order 
singular value decomposition (HOSVD). The trace of any Gram matrix, t, is the sum 
of the squares of the entries of the original tensor, its squared Frobenius norm, hence is 
unchanged by the choice of flattening. Thus the higher order singular values from the 
ith flattening are the non-negative solutions to the univariate polynomial in x:

x4 − tx2 + di.

Therefore, the map that sends a binary tensor to its higher order singular values is 
obtained by composing G with n maps
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di �→

⎛⎝√
t +

√
t2 − 4di
2 ,

√
t−

√
t2 − 4di
2

⎞⎠ . (1)

The first coordinate maps di to the largest higher order singular value in that flattening.
Characterizing feasible combinations of higher order singular values is an open prob-

lem [8, Problem 1.4]. In this paper we use the Gram locus to make progress towards its 
solution.

For any combination of Gram determinants, a dimension count shows there generically 
exists a (2n − n)-dimensional family of complex tensors whose image under G is those 
determinants. We seek a real tensor in the pre-image. The parts of the image of G
where some di almost vanishes are of particular interest: these are tensors which can be 
approximated to good accuracy by a tensor of smaller flattening rank than its dimension, 
as in [6].

We note that the analogue of the Gram determinants can also be studied in the case 
of hierarchical tensor representations, including the Tensor Train (TT)/Matrix Product 
State representation [7, Chapter 12]. The size of the TT format required to represent a 
tensor is given by the ranks of the flattenings obtained by grouping the first j indices for 
the rows, with the remaining indices forming the columns, for 1 ≤ j ≤ d − 1. A tensor 
being representable by a TT format with deficient jth bond dimension is equivalent to 
the determinant at that flattening vanishing.

The Gram locus G(B) is not convex. A natural first outer approximation is its convex 
hull, which the following theorem describes.

Theorem 1.3. Let n ≥ 2, and take the map G and the unit ball B as above. The boundary 
of the convex hull of the Gram locus G(B) is described by the following linear inequalities 
in the determinants di:

di ≤
∑
j �=i

dj , 0 ≤ di ≤
1
4 , 1 ≤ i ≤ n.

In particular, this is a convex polytope with 2n − n vertices, namely the point (0, . . . , 0)
and all points (1

4 , . . . , 
1
4 , 0, . . . , 0) consisting of any i ≥ 2 coordinates 14 , and the remaining 

coordinates zero.

When n = 2, we are in the case of a 2 × 2 matrix. It is well known that the two Gram 
determinants are equal. The inequalities simplify to 0 ≤ d1 = d2 ≤ 1

4 .
The constant bounds on the Gram determinants constrain them to the cube [0, 14 ]n. 

The other linear inequalities are satisfied on a proportion 1 − 1
(n−1)! of this cube. The 

volume occupied by tuples with d1 ≥ d2 + · · · + dn is 1
n! , and there are n such regions 

that are excluded overall, a total volume of 1
(n−1)! . This fraction is also the proportion 

of an arbitrarily small neighborhood of zero that is satisfied by the linear inequalities.
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The true image G(B) is a semi-algebraic subset of the convex hull. Its description relies 
on two polynomials. The first polynomial is the product of the linear conditions above:

Q1 =
n∏

i=1

⎛⎝∑
j �=i

dj − di

⎞⎠ .

Inside the positive orthant, the non-negativity of Q1 is equivalent to the non-negativity 
of each of its linear factors. The second polynomial is given by the following product of 
linear factors in the 

√
di:

Q2 = 1
2 ×

∏
i,j,...,k∈{±1}

(i
√

d1 + j
√

d2 + · · · + k
√

dn).

This is a product of 2n terms, yielding a polynomial of degree 2n−1 in the di. Each term 
appears twice in the product, up to global sign change. Hence Q2 is a perfect square.

Theorem 1.4. Let n = 3. The Gram locus G(B) is described, inside the cube 0 ≤ di ≤ 1
4 , 

by the union of the following two semi-algebraic sets:

1. The region Q1 ≥ Q2.
2. The region Q1 ≤ Q2 and (di − dj)2 + 1

2 (di + dj) ≤ 3
16 for all {i, j} ⊂ {1, 2, 3}.

Conjecture 1.5. Let n ≥ 4. The Gram locus G(B) is given by Q1 ≥ Q2 and 0 ≤ di ≤ 1
4

for i = 1, . . . , n.

In Section 3 we explain why the second algebraic set from Theorem 1.4 doesn’t appear 
in Conjecture 1.5. Theorem 1.3 says the convex hull of G(B) is given, inside the cube 
[0, 1

4 ]n, by Q1 ≥ 0. The region Q1 ≥ Q2 is contained in the convex hull, since the 
polynomial Q2 is a square.

2. The convex hull of the Gram locus

We begin by working through the main part of the proof of Theorem 1.3 in the case 
n = 3.

Example 2.1 (2 × 2 × 2 tensors). Consider the entries of the tensor as the vertices of the 
three-cube:
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Fig. 1. The minors unique to flattenings one, two and three respectively.

Fig. 2. The minors unique to one flattening are represented by edges. The black edges are minors from 
flattenings two or three. The red diagonal edges are from flattening one. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Each of the three determinants is the sum of squares of the 
(4
2
)

= 6 minors from 
a flattening in Example 1.1. These are combinations of four vertices in the cube. For 
example, the front face corresponds to the squared minor (a000a101 − a001a100)2. This 
minor features in flattenings one and three, but not two. Every face of the cube appears 
as a squared term in two out of three determinants. The faces account for 12 of the 18 
minors. The remaining six are unique to one flattening. They are the shaded crimson 
squares in Fig. 1.

The six crimson minors have monomials aiaj where i and j are multi-indices in {0, 1}3

that differ in all three coordinates. Each such term is determined by the two other indices 
in the term whose first index is zero, so it is represented by a vertex in Fig. 2. The edges 
connect monomials that appear in the same minor.

The three Gram determinants are denoted d1, d2 and d3. As in the statement of 
Theorem 1.3, we aim to show that

D(3) := d2 + d3 − d1 ≥ 0.

The other inequalities follow from D(3) by relabeling. Example 1.1 gives a sum-of-squares 
certificate for the non-negativity of D(3). Below we carry out the sum-of-squares com-
putation using the notation of the proof of Theorem 1.3. Each determinant is already 
given by a sum-of-squares expression, and we show how to absorb the subtraction of d1
into the expressions for d2 and d3.

The minors come in two types: the faces of the cube have monomials aiaj where i and 
j differ in two indices, and the crimson minors have i and j differing in all three indices. 
We write

D(3) = D
(3)
2 + D

(3)
3 ,
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where D(3)
m are the minors whose monomials differ in m indices. We find a sum-of-squares 

certificate for the two pieces D(3)
2 and D(3)

3 individually.
All terms in D(3)

2 that appear in d1 also appear in either d2 or d3, and hence they 
cancel out in D(3)

2 . Therefore D(3)
2 is a sum-of-squares polynomial consisting of all squared 

minors in d2 or d3 but not in d1:

D
(3)
2 = 2(a000a011 − a010a001)2 + 2(a100a111 − a110a101)2.

A direct computation shows that the combination of minors depicted in Fig. 2 can be 
expressed as a perfect square:

D
(3)
3 = (a010a101 + a001a110 − a011a100 − a000a111)2.

These are summed to give a sum-of-squares expression for D(3).

Example 2.2 (2 × 2 × 2 × 2 tensors). Define D(4) := d2 + d3 + d4 − d1. We have

D(4) = D
(4)
2 + D

(4)
3 + D

(4)
4

where, as above, D(4)
m consists of those minors from D(4) whose monomials aiaj have i

and j differing in m indices. D(4)
2 is already in sum-of-squares form:

2(a0000a0011 − a0001a0010)2 + 2(a0000a0101 − a0100a0001)2 + 2(a0000a0110 − a0010a0100)2 +

2(a1000a1011 − a1001a1010)2 + 2(a1000a1101 − a1100a1001)2 + 2(a1000a1110 − a1010a1100)2 +

2(a0100a0111 − a0101a0110)2 + 2(a0010a0111 − a0110a0011)2 + 2(a0001a0111 − a0011a0101)2 +

2(a1100a1111 − a1101a1110)2 + 2(a1010a1111 − a1110a1011)2 + 2(a1001a1111 − a1011a1101)2.

The piece D(4)
3 has sum-of-squares certificate

(a0100a1010 + a0010a1100 − a0110a1000 − a0000a1110)2 +

(a0101a1011 + a0011a1101 − a0111a1001 − a0001a1111)2 +

(a0010a1001 + a0001a1010 − a0011a1000 − a0000a1011)2 +

(a0110a1101 + a0101a1110 − a0111a1100 − a0100a1111)2 +

(a0100a1001 + a0001a1100 − a0101a1000 − a0000a1101)2 +

(a0110a1011 + a0011a1110 − a0111a1010 − a0010a1111)2 +

(a0000a0111 − a0001a0110)2 + (a0000a0111 − a0010a0101)2 + (a0000a0111 − a0100a0011)2 +

(a1000a1111 − a1001a1110)2 + (a1000a1111 − a1010a1101)2 + (a1000a1111 − a1100a1011)2 +

(a0001a0110 − a0011a0100)2 + (a0001a0110 − a0101a0010)2 + (a0010a0101 − a0100a0011)2 +

(a1001a1110 − a1011a1100)2 + (a1001a1110 − a1101a1010)2 + (a1010a1101 − a1100a1011)2,
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and the final piece D(4)
4 has sum-of-squares certificate

(a0010a1101 + a0111a1000 − a0011a1100 − a0110a1001)2 +

(a0000a1111 − a0001a1110 − a0100a1011 + a0101a1010)2 +

(a0000a1111 + a0111a1000 − a0010a1101 − a0101a1010)2 +

(a0100a1011 + a0011a1100 − a0001a1110 − a0110a1001)2,

which we obtain as follows. The monomials in D(4)
4 are of the form aiaj where i and j differ 

in all four indices. As in Example 2.1, we can label the vertices of a three dimensional 
cube by such terms, by writing the indices that occur after the zero in the term that 
starts with a zero. The minors coming from d1 are the red diagonal edges, with other 
minors labeled by black edges. We obtain:

To show that the polynomial represented by this picture has a sum-of-squares certifi-
cate, we write it as the sum of four pieces whose shape is that in Fig. 2. Such pieces are 
the same as D(3)

3 up to relabeling, hence they are perfect squares.

We now give the proof of Theorem 1.3, which builds on the above cases via induction.

Proof of Theorem 1.3. With a flattening denoted[
← v →
← w →

]
,

the trace of the Gram matrix is given by the expression ||v||2+||w||2 and the determinant 
is ||v||2||w||2 − 〈v,w〉2. The Cauchy–Schwarz inequality shows that the lower bound for 
the determinant is 0. The upper bound is 1

4 , since this is the maximum value taken by 
the product of two numbers that sum to one. Thus the image is contained in the cube 
[0, 1 ]n.
4
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The vertices of the polytope described by the linear inequalities are: the point 
(0, 0, . . . , 0) ∈ Rn, and all points consisting of i coordinates 1

4 and n − i coordinates 0, 
with i ≥ 2. For fixed i, there are 

(
n
i

)
such points. We first show that each of these vertices 

lies in the image G(B). The determinant tuple (0, 0, . . . , 0) ∈ S is obtained from any rank 
one tensor. Consider the tensor A with entries given by

a00...0 = 1√
2
, a110...0 = 1√

2
, aij...k = 0, otherwise.

The first two flattenings have one non-zero entry in each of v and w, with the two vectors 
v and w orthogonal. Hence the determinants of the corresponding Gram matrices both 
evaluate to 1

4 . For all other flattenings, w = 0 and the Gram determinant is zero. 
Permuting indices, we see that all points with two coordinates 1

4 , and all others equal to 
zero, are in the image. Modifying the above example, so that the second non-vanishing 
entry is at a1,1,...,1,0,0,...,0, with i indices equal to 1, shows similarly that vertices with 
i > 2 coordinates at 1

4 are in the image G(B). This implies that the true convex hull of 
the Gram locus contains the one in the statement of the theorem.

It remains to show that all other points are outside the image of the map. This is 
equivalent to showing that the Gram determinants di of a real binary tensor satisfy the 
inequality

D(n) := d2 + d3 + · · · + dn − d1 ≥ 0. (2)

Each Gram determinant di of a tensor A is the sum of squares of the 2 × 2 minors 
of the ith flattening of A. That is, each di is given by a sum-of-squares expression. 
The polynomial D(n) is degree four in the entries of the original tensor, and we seek a 
sum-of-squares certificate for it [1,2,10]. The set-up is symmetric in the different di, so 
this certificate can be re-labeled to give the other parts of the boundary.

We first split up the polynomial D(n) into manageable pieces, and find a sum-of-
squares certificate for each piece. The first Gram determinant can be written

d1 =
∑

(a0ia1j − a1ia0j)2

where the sum is taken over all i, j ⊂ {0, 1}n−1 with i �= j. Similarly, the kth determinant 
is expressible in this form, where instead it is the kth index that is swapped in each term. 
The polynomial D(n) can thus be written in terms of degree two monomials aiaj, where 
i, j ∈ {0, 1}n, and the multi-indices i and j differ in at least 2 locations. For a monomial 
aiaj, let m count the number of locations where i and j differ (so 2 ≤ m ≤ n). Our 
manageable pieces arise from fixing the value of m. The value of m is fixed on each 
summand of D(n), and we let D(n)

m denote the terms of D(n) with given value of m. We 
seek a sum-of-squares certificate for each piece D(n)

m . Their sum gives a certificate for 
D(n).
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The rest of the proof proceeds as follows. We first find the sum-of-squares certificate 
for the piece D(n)

2 . We also examine D(3). Then we show that the polynomial D(n)
m , with 

m < n, is equal to a sum of polynomials, each equal to D(m)
m up to relabeling indices. 

Finally we relate the structure of D(m)
m to D(m−1)

m−1 , and hence can conclude the proof by 
induction.

Terms in D(n)
2 that come from d1 are of the form (a0ia1j − a1ia0j)2, where i and j

differ in exactly one location. Without loss of generality, we can assume they differ in 
their first location, and that i = (0, . . .). We can therefore re-write the above term as

(a00ka11k − a10ka01k)2, k ∈ {0, 1}n−2
.

We observe that this term also appears in d2. Relabeling the above example, we see that 
all D(n)

2 -terms in d1 also appear in some other dk, and hence they do not appear in D(n)
2 . 

Therefore D(n)
2 is a sum-of-squares polynomial: it consists of all squared minors that 

appear in some dk, 2 ≤ k ≤ n, but not in d1.
Now we examine the structure of D(3)

3 . As in Example 2.1, a direct computa-
tion shows D(3)

3 = (a010a101 + a001a110 − a011a100 − a000a111)2. Combining this with 
the above sum-of-squares expression for D(n)

2 , we get a sum-of-squares certificate for 
D(3) = D

(3)
2 + D

(3)
3 .

Next we relate D(n)
m to the polynomial D(m)

m up to relabeling. Consider some term in 
D

(n)
m coming from d1. It is of the form

(a0ia1j − a1ia0j)2, i, j ∈ {0, 1}n−1

where i and j differ in exactly m −1 locations. Without loss of generality, we can assume 
that i and j differ in their first m − 1 locations. Forgetting the remaining n −m indices 
gives a projection onto D(m)

m . Repeating for all subsets of m indices gives 
(
n
m

)
copies 

of D(m)
m . We can obtain a sum-of-squares certificate for D(n)

m from one for D(m)
m by 

re-labeling 
(
n
m

)
times and summing.

The rest of the proof is by induction, with the base case D(3)
3 . For the induction step, 

we relate D(m)
m , where m ≥ 3, to D(m−1)

m−1 and D(3)
3 . We saw above that the polynomial 

D(m) consists of monomials aiaj with multi-indices i, j ∈ {0, 1}m. Those in D(m)
m have 

i different from j in all m locations. For example, the monomial a00...0a11...1 appears in 
D

(m)
m . For such monomials, the second variable is uniquely determined by the first.
We label the monomials in D(m)

m by {0, 1}m−1 according to the m − 1 indices that 
appear after the 0 in the term that starts with a 0. These are the 2n−1 vertices of the 
following graph. We build an edge between two vertices labeled by i and j if a0i and a0j ap-
pear in the same term in some dk, 1 ≤ k ≤ n. Thus each edge of the graph is a summand 
in D(m)

m . The edges are weighted by the coefficient with which the term appears in D(m)
m . 

Those coming from d1 have weight −1, while all others have weight +1. The positively-
weighted edges make the (m − 1)-dimensional cube. The negatively-weighted edges are 
the diagonals of this cube. For example, the summand (a000...0a111...1 − a100...0a011...1)2
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Fig. 3. A copy of D(3)
3 inside D(m)

m . (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

contains both a000...0 and a011...1, hence corresponds to the edge between (0, 0, . . . , 0)
and (1, 1, . . . , 1).

There are 2d−2 diagonals in the (m − 1)-dimensional cube. We group them into 2d−3

pairs, where the two diagonals in a pair differ in their first index. We extract 2d−3

sub-graphs by considering the edges contained in the four vertices of the two diagonals. 
We build part of the sum-of-squares certificate from each of the sub-graphs, and then a 
certificate from the remaining edges. Each sub-graph looks like Fig. 3.

The vertical edges in Fig. 3 are positively-weighted in the original graph. The red 
edges are negatively-weighted in the original graph. The horizontal edges were not in 
the original graph, but we include them in each sub-graph, at the expense of including 
them with negative weight among the remaining edges (this ensures they are present 
with overall weight 0). This graph is the 2-cube with negatively-weighted diagonals. 
Hence it encodes D(3)

3 , and thus the polynomial obtained from these sub-graphs has a 
sum-of-squares certificate.

It remains to consider the structure of the remaining positively and negatively-
weighted edges. We have disconnected vertices according to the value of their first index. 
So we have two cubes of dimension m − 2. The new negatively-weighted edges are the 
diagonals of these two smaller cubes. Hence we have two copies of D(m−1)

m−1 . By our 
induction hypothesis, these both have a sum-of-squares certificate. This concludes the 
proof. �
Proposition 2.3. There are

22n−5(3n− 5) − 2n−3(n2 − n− 1)

terms in the sum-of-squares certificate for D(n) = d2 + · · · + dn − d1 from Theorem 1.3. 
This formula is valid for all n ≥ 2.

Proof. Recall that we split up the expression D(n) as the sum D(n) =
∑n

m=2 D
(n)
m , where 

D
(n)
m consists of those terms containing products aiaj in which the multi-indices i and 

j differing in m indices. We count the terms that arise in the sum-of-squares certificate 
for each m.

We first count the terms in the sum-of-squares certificate for D(m)
m . From the proof 

of Theorem 1.3, recall that the sum-of-squares certificate for D(m)
m is made from 2d−3
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copies of the certificate for D(3)
3 , which is comprised of a single squared term, and two 

copies of D(m−1)
m−1 . This gives a recursive relationship, whose solution is 2m−3(m − 2).

We now split each D(n)
m up into two pieces, according to whether the multi-indices i

and j differ in their first index, noting that this property is constant on each term of the 
certificate. First consider those terms that arise from D(n)

m where i and j differ in their 
first index. There are 

(
n−1
m−1

)
choices for the remaining indices that differ. We fix all other 

n −m indices at value 0 or 1, with 2n−m choices. We are then left with a copy of D(m)
m . 

Hence, there are(
n− 1
m− 1

)
2n−m · 2m−3(m− 2) =

(
n− 1
m− 1

)
2n−3(m− 2) (3)

terms overall.
Next, we consider the terms that arise from variables aiaj where i and j differ in m

locations, and they do not differ in their first index. These are terms contributed solely 
by d2 + · · · + dn, hence they are of the form (aiaj − akal)2 where k and l are obtained 
from i and j by swapping a single index. To count such terms, we first count the number 
of such pairs aiaj that appear. There are 

(
n−1
m

)
choices for the m indices at which i and 

j differ. Let i and j be ordered so that i is 0 at the first location where they differ. There 
are 2n−1 choices for the indices of i, and these determine those of j. Furthermore, each 
term aiaj appears in m times in the certificate. The terms in which it appears are all 
distinct when m ≥ 3. Two such pairs comprise each term of the certificate, hence there 
are (

n− 1
m

)
2n−2m (4)

terms when m ≥ 3. The case m = 2 is similar, except that each term occurs with 
coefficient two, so we have a count of 

(
n−1

2
)
2n−2 terms. Summing (3) and (4) from 

m = 3 to n, and including the case m = 2, we get the desired formula for n ≥ 3.
The result also holds when n = 2, but with a different argument. The formula evaluates 

to 0 when n = 2. The set-up in this case is of a 2 ×2 matrix. The two Gram determinants 
d1 and d2 arise as the determinant of a matrix and its transpose respectively. Hence 
d1 − d2 = 0, and 0 terms suffice for the trivial sum-of-squares certificate. The formula 
also evaluates to 0 in the case n = 1. �

We now consider tensors that map to the boundary of the convex hull of the Gram 
locus.

Corollary 2.4. Real binary tensors with Gram determinants satisfying D(n) = d2 + · · ·+
dn − d1 = 0 have at most two determinants non-zero: d1 and one other. They are given 
by the tensor product of a 2 × 2 matrix, M , with n − 2 vectors, v(j), according to the 
formula:
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ai1...in = Mi1ijv
(2)
i2

· · · v̂(j)
ij

· · · v(n)
in

,

where v̂(j)
ij

denotes the omission of the jth term from the product. Conversely, all tensors 
of this form satisfy D(n) = 0.

Corollary 2.4 shows that the edges of the convex hull, along which two non-constant 
faces of the boundary meet, lie in the Gram locus. All other points of the boundary faces 
D(n) = 0 do not lie in the Gram locus.

If we restrict to tensors that represent joint probability distributions of n binary 
random variables X1, . . . , Xn, the boundary tensors from Corollary 2.4 have the following 
interpretation. They are distributions that satisfy the independence statement Xi ⊥
{X1, Xj}, for all i �= j. The full independence model is the special case d1 = · · · = dn = 0.

Proof. The hypothesis that D(n) = 0 means all terms in the sum-of-squares certificate for 
D(n) vanish. We assume that the first and second determinants, d1 and d2, are non-zero. 
Without loss of generality, it suffices to show that the third determinant vanishes.

Write out the second flattening of the tensor, arranging the columns in two blocks 
according to the value of the first index

T (2) =
[
← a00∗ → ← a10∗ →
← a01∗ → ← a11∗ →

]
.

All 2 ×2 minors for which the first index is constant appear as terms in the sum-of-squares 
certificate for D(n) (see the proof of Theorem 1.3). Therefore the left and right hand 
halves of T (2) are two rank one matrices. Say they are given by multiples of vectors x
and y respectively, of length 2n−2. We write

T (2) =
[
t0x s0y
t1x s1y

]
.

We now write the third flattening in terms of vectors x and y. We write x = [x0 x1 ], 
where the entries of x are arranged according to the value of the third index: x0 are those 
entries of the tensor with a 0 in their third index, and x1 are those with a 1 in their 
third index. Similarly for y. We can then write the third flattening as

T (3) =
[
t0x0 t1x0 s0y0 s1y0
t0x1 t1x1 s0y1 s1y1

]
.

Just as for the second flattening, we have organized the columns of the third flattening 
according to the value of the first index. So the matrix is formed of two rank one matrices 
concatenated side-by-side. This implies that there exist vectors x′ and y′ such that

T (3) =
[
α0t0x′ α0t1x′ β0s0y′ β0s1y′

α t x′ α t x′ β s x′ β s y′

]
. (5)
1 0 1 1 1 0 1 1
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The term

(a01ja10i + a00ia11j − a01ia10j − a00ja11i)2

appears in a sum-of-squares certificate for D(n), for all i and j, as follows. Let m be such 
that i and j differ in m − 2 indices. Projecting to the m indices consisting of these and 
the first two, we obtain one of the combinations of six minors from D(m)

m depicted in 
Fig. 3. Hence it must be zero. Substituting in our expression in (5) for the entries of the 
tensor yields the equation

(α1β2s1t2 + α2β1t1s2 − α2β1s1t2 − α1β2s2t1)x′
iy

′
j = 0, for all i and j

where the entry of x′ corresponding to multi-index i is denoted x′
i, and likewise for y′. 

Hence one of x′ and y′ must be zero, which contradicts T (2) being full rank, or 
(α2β1 − α1β2)(s2t1 − s1t2) = 0 which shows that T (3) is rank one, and hence d3 = 0, as 
required. �

The following example shows that the above inequalities in the Gram determinants 
do not always hold for tensors of size m1 ×m2 × · · · ×mn with some mi > 2.

Example 2.5. Consider the 2 × 2 × 3 tensor with entries

T111 = 1√
2
, T213 = 1√

2
, Tijk = 0 otherwise.

A computation shows that d1 = 1
4 while d2 = d3 = 0. This tensor can be appropriately 

included into larger tensor formats to show the result for fixed larger sizes.

3. The semi-algebraic description

We seek a semi-algebraic description for the Gram locus, the image of G(B). We begin 
with the case n = 3, where

G : R2 ⊗ R2 ⊗ R2 → R3, (aijk) �→ (d1, d2, d3),

and

B =

⎧⎨⎩(aijk) ∈ R2 ⊗ R2 ⊗ R2 :
∑
ijk

a2
ijk ≤ 1

⎫⎬⎭ .

Proof of Theorem 1.4. We first find the Zariski closure of the boundary of the image 
G(B). Following the approach in [9], this is contained in the branch locus of the map G
and that of its restriction to the boundary ∂B =

{
(aijk) ∈ R2⊗R2⊗R2 :

∑
ijk a

2
ijk = 1

}
. 



364 A. Seigal / Linear Algebra and its Applications 544 (2018) 350–369
Fig. 4. The surface Q = 0.

These branch loci are p and q respectively, obtained by direct computation (using the 
boxed code on page 365):

p = d1d2d3(d1 − d2)(d1 − d3)(d2 − d3),

q =
∏
i<j

(di − dj) ×
∏
i

(
di −

1
4

)
×Q, where

Q =
3∏

i=1

⎛⎝∑
j �=i

dj − di

⎞⎠− 1
2 ×

∏
(i,j,k)∈{±1}3

(i
√

d1 + j
√

d2 + k
√

d3) = Q1 −Q2

= (d1 + d2 − d3)(d1 − d2 + d3)(−d1 + d2 + d3)

− 1
2
(
d2
1 + d2

2 + d2
3 − 2(d1d2 + d1d3 + d2d3)

)2
.

The polynomial Q is the non-linear part of the boundary, depicted in Fig. 4. The Zariski 
closure of the boundary of G(B) is contained in V (pq), the vanishing locus of polyno-
mial pq.

The image G(B) is the closure of the union of some connected components in R3\V (pq): 
each connected component is either contained in the image, or disjoint from it. Hence it 
suffices to consider components contained inside the convex hull of G(B). Fig. 4 shows 
that [0, 14 ]3\V (Q) has five connected components. The connected component containing 
(1
4 − ε, ε, ε), for ε > 0 sufficiently small, intersects the set d1 > d2 + d3, hence by Theo-

rem 1.3 it is not contained in the image. There are three such components by symmetry. 
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Fig. 5. The surface Q = 0 meets the plane d1 = 1/4.

The interior of the surface V (Q) is contained in the convex hull of the image. Likewise for 
the component containing the point (1

4 − ε, 14 − ε, 14 − ε), for ε > 0 sufficiently small. A di-
rect computation finds tensors that map to each connected component of [0, 14 ]3\V (pq)
in these two last pieces, hence they are the image G(B).

It remains to find the semi-algebraic description. The interior of the surface V (Q) is 
given by Q ≥ 0. The surface Q = Q1 − Q2 meets the plane d1 = 1

4 along the planar 
curve (d2 − d3)2 + 1

2 (d2 + d3) − 3
16 with multiplicity two (see Fig. 5). Imposing that 

all three such polynomials, obtained by relabeling, be positive yields the component of 
[0, 14 ]3\V (Q) containing the point (1

4 − ε, 14 − ε, 14 − ε). �
Polynomials p and q from the proof of Theorem 1.4 are computed in Macaulay2 [3] as 

follows. Computational speed-ups are obtained by changing coordinates from the aijk, 
the eight entries of the array, to coordinates xijk that are invariant under the orthogonal 
group O2 ×O2 ×O2. The variables di refer to the determinants, while t is the trace of 
any flattening.

Make two ideals (using the xijk coordinates):

C1 = minors(3,jacobian(ideal(d1,d2,d3)));
C2 = minors(4,jacobian(ideal(d1,d2,d3,t)))+ideal(1-t);

Saturate with respect to the known ramification locus:

c = ideal((d1 - d2)*(d1 - d3)*(d2 - d3));
C1 = C1:c; C2 = C2:c;

Project C1 and C2 to the ring Q[d1, d2, d3] to obtain p and q respectively. 
The computation takes 5 minutes.
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Fig. 6. The surface Q = 0 in singular value coordinates. The black dot is Example 3.1.

Section 1 shows how to convert determinantal constraints to the higher order singular 
value coordinates. In [8], the authors work in the three-dimensional space of the highest 
singular values from each flattening. The image of Q = 0 in these coordinates is depicted 
in Fig. 6. The point of the star near (1, 1, 1) is the true algebraic description for the 
experiments with random tensors in [8, Fig. 3.1].

Conjecture 1.5 describes, for n ≥ 4, the image G(B) inside the cube [0, 14 ]n by the 
single polynomial inequality Q1 ≥ Q2. The reason for this discrepancy with the n = 3
case can be understood by evaluating Q1 −Q2 when all di = 1

4 . We obtain

Q1

(
1
4 , . . . ,

1
4

)
=

(
n− 2

4

)n

, Q2

(
1
4 , . . . ,

1
4

)
= 1

22n+1

n∏
k=0

(n− 2k)
(n
k

)
.

The value of Q2 is 0 for all even n. Among odd n, the difference Q1 − Q2 grows in n, 
and is positive for all n ≥ 5. Hence the connected component of the complement of 
V (Q1−Q2) containing the point (1

4 − ε, 14 − ε, 14 − ε), for some small ε > 0, is the same as 
the piece Q1 −Q2 ≥ 0 for all n ≥ 4. The sufficiency of Conjecture 1.5 for 4 ≤ n ≤ 7 has 
been tested for one million randomly generated tensors. Random tensors were generated 
with entries uniformly distribution on the interval [0, 1], as well as normally distributed 
entries with mean 0 and standard deviation 1.

The boundary of the Gram locus G(B) contains parts of all the hyperplanes di = 1
4 . 

If a tensor of norm one lies on the hyperplane di = 1
4 , its singular values in the ith 

flattening are both 1√
2 and, in particular, are the same. However, the following example 

shows that not all tensors on the boundary of the Gram locus have two singular values 
the same in some flattening. Since the change of coordinates given by Equation (1) does 
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not map boundary points to the interior, this disproves the conjecture stated in Section 1 
of [8].

Example 3.1. Consider the tensor

T000 = 1
4
√

2
, T101 = T011 =

√
1
2 − 1

2
√

2
, Tijk = 0, otherwise.

Its tuple of Gram determinants,

(d1, d2, d3) =
(

1
8 ,

1
8 ,

√
2 − 1
2

)
,

lies on the part of V (Q) that contributes to the boundary of G(B). The higher order 
singular values are: the square roots of 1+

√
2

2
√

2 and 1
2 − 1

2
√

2 , for flattenings one and two, 
and the square roots of 1√

2 and 1 − 1√
2 in the third flattening. It is labeled in Fig. 6 by 

a black dot which can be seen to lie on the boundary hypersurface.

4. The fibers

We conclude the paper with a discussion of the fibers of the Gram determinant map

G−1(d1, . . . , dn) ⊆ R2 ⊗ · · · ⊗ R2.

Each fiber is defined by n non-homogeneous quartics in the space of binary tensors. It 
consists of a union of orbits under the orthogonal equivalence action for binary tensors, 
O2 × · · · ×O2 [8, Proposition 2.2]. Dimension counting reveals that the quotient

G−1(d1, . . . , dn)/ (O2 × · · · ×O2)

has dimension exponentially sized in n. Recall from Section 1 that, for tensors of fixed 
norm, the Gram determinant map G corresponds to the map sending a tensor to its 
higher order singular values. Hence, while in the matrix case the singular values define 
a matrix up to orthogonal equivalence, the same is not true of tensors and their higher 
order singular values.

Distinguishing between distinct equivalence classes inside the fiber would allow this 
troublesome gap to be bridged. A direct computation proves the following for the case 
n = 3.

Theorem 4.1. A 2 × 2 × 2 tensor is defined up to orthogonal equivalence by its higher 
order singular values and its hyperdeterminant.
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The hyperdeterminant is the unique (up to scale) SL2 × SL2 × SL2 invariant:

a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

011a
2
100 + 4a000a011a101a110 + 4a001a010a100a111

−2a000a001a110a111 − 2a000a010a101a111 − 2a000a011a100a111

−2a001a010a101a110 − 2a001a011a100a110 − 2a010a011a100a101.

Theorem 4.1 says that if two tensors are related by a change of basis and have the same 
higher order singular values, they are related by an orthogonal change of basis. The result 
extends to tensors of multilinear rank (2, 2, 2) by projecting to the minimal subspaces. 
Letting t =

∑
ij...k a

2
ij...k, the fibers of the map

(d1, d2, d3, t,hyperdet) : R2 ⊗ R2 ⊗ R2 → R5,

are the equivalence classes of tensors under the O2 × O2 × O2 orthogonal equivalence 
action. Successful extension of Theorem 4.1 to higher n would yield a summary of tensors 
up-to-orthogonal-equivalence.

We lastly consider the map that sends a tensor of general format m1 × · · · ×mn to 
its higher order singular values, the singular values of each principal flattening. Given 
a fixed tensor T , the tensors S in the same fiber as T are those whose ith principal 
flattening is orthogonally equivalent to the ith principal flattening of T , for all 1 ≤ i ≤ n. 
In particular, the first flattening is orthogonally equivalent to the first flattening of T , 
hence S ∈ (Om1 ×Om2···mn

) · T . Repeating for all 1 ≤ i ≤ n, we obtain that the fiber is 
exactly those tensors S for which

S ∈
⋂
i

(Omi
×Om1···m̂i···mn

· T ).

However, the element of the group Omi
×Om1···m̂i···mn

will be different for each i. Indeed,⋂
i

(Omi
×Om1...m̂i...mn

) = Om1 × · · · ×Omn
,

so tensors in the same fiber, which also differ by the same matrices in each flattening, are 
actually orthogonally equivalent. We can only express the fiber as the above intersection 
of n orbits, not as a single orbit. It is an open problem to extend Theorem 4.1 to larger 
tensor formats: to add minimal additional invariants such that the fibers are single 
orthogonal equivalence classes.
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