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We introduce a tensor-based clustering method to extract sparse, low-

dimensional structure from high-dimensional, multi-indexed datasets. This

framework is designed to enable detection of clusters of data in the presence

of structural requirements which we encode as algebraic constraints in a

linear program. Our clustering method is general and can be tailored to a

variety of applications in science and industry. We illustrate our method

on a collection of experiments measuring the response of genetically diverse

breast cancer cell lines to an array of ligands. Each experiment consists of a

cell line–ligand combination, and contains time-course measurements of the

early signalling kinases MAPK and AKT at two different ligand dose levels.

By imposing appropriate structural constraints and respecting the multi-

indexed structure of the data, the analysis of clusters can be optimized for

biological interpretation and therapeutic understanding. We then perform

a systematic, large-scale exploration of mechanistic models of MAPK–

AKT crosstalk for each cluster. This analysis allows us to quantify the hetero-

geneity of breast cancer cell subtypes, and leads to hypotheses about the

signalling mechanisms that mediate the response of the cell lines to ligands.

1. Introduction
Muti-dimensional datasets are prevalent across the sciences; their ubiquity and

importance will only continue to grow [1–4]. The ever-increasing sophistication of

datasets requires the development of methodsthat preserve multi-dimensional struc-

tures and exploit them, while maintaining interpretability of results. In addition,

clustering biological data is far from a straightforward task. There are multiple chal-

lenges, including choosing an appropriate method for the data [5], handling

high-dimensional data [6,7] and, importantly, the consideration of the biological

context of the problem, which must be done almost on a case-by-case basis [8].

Among the wide variety of clustering methods, constrained clustering is an

active field of research [9–13]. The most common approaches incorporate pair-

wise must-link and cannot-link constraints to indicate whether two items must or

must not be in the same cluster [14,15]. Other methods set constraints on what

the possible clusters can be, rather than constraining the elements in a cluster

[16]. In these cases, there is a large pool of candidate clusters from which

those that meet selection criteria can be chosen.

In this work, we introduce a versatile data clustering framework based on

tensors and algebra to analyse high-dimensional datasets. One key feature of

our method is that it can incorporate general, application-specific constraints

on the composition of clusters, and is guaranteed to find optimal partitions.

The flexibility of the method allows it to be used directly on a dataset (i.e. as a

standalone clustering tool), or in combination with other clustering methods.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2018.0661&domain=pdf&date_stamp=2019-02-06
mailto:seigal@berkeley.edu
https://doi.org/10.6084/m9.figshare.c.4381760
https://doi.org/10.6084/m9.figshare.c.4381760
http://orcid.org/
http://orcid.org/0000-0002-2407-1095
http://orcid.org/0000-0002-8750-8346
http://orcid.org/0000-0002-1705-7869
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


ce
ll 

lin
es

ligands

best models for each cluster

 no prior clustering
(reverse flatten)

integer 
programming

clustering with algebraic constraints

similarity 

 ligands

 time points

pERKpAKT

ligands  c
el

l l
in

es

receptor

pAKT pERK

ligand

? ?

?
729  networks

structured clusters

parameter
estimation 

model analysis:
identifiability

model selection (figure 3)

unconstrained
clustering

input: multi-dimensional data (tensor Z)

 do
se

sce
ll 

lin
es

S
∼

S

interpretable
groups (X or Y)

S

W

W

ce
ll 

lin
es

li d

(b)

(a)

(c)

(d )

Figure 1. Schematic of the constrained tensor clustering method and model
identification. (a) The complete set of experiments can be represented by the
multi-indexed tensor Z; see §3. (b) The similarity scores between experiments
(each cell line/ligand combination) can be stored in a similarity matrix ~S that
can be used to construct a similarity tensor S, or to find a preliminary clus-
tering of the data W that may not comply with the constraints. (c) Structured
clustering via integer programming. The starting point can be either the simi-
larity tensor S or the pre-existing clustering W. The possible clusterings are
represented by points on the grid. The red line is the value of the objective
function (equations (4.2) and (4.3)). The best integer value (orange point) is
found inside the convex feasible region (blue). (d) A large-scale search for
mechanistic models for each cluster involves parametrizing, and ranking
the best ODE models for each cluster. (Online version in colour.)
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We showcase our clustering framework on an extensive

set of time-course measurements of the activation levels of

the mitogen-activated protein kinase (MAPK) and phosphoi-

nositide 3-kinase (PI3K) pathways that are involved in

cellular decisions and fates [17–20] and are known to dys-

function in cancer [21–25]. The key signalling proteins and

subtype responses in breast cancer cells are known; however,

among genetically diverse cell lines the specific dysfunction

mechanisms vary and are not well understood [26–28]. We

examine a set of experimental data [26] containing the

response of 36 breast cancer cell lines after exposure to 14

ligands (growth factors/signalling molecules). Each exper-

iment measures the temporal phosphorylation response of

one cell line to one ligand. Because the dataset is complete
(i.e. there is a measurement for every combination of times,

proteins, cell lines, ligands and doses), we can represent it

as a tensor in five dimensions (figure 1a).

We find clusters of experiments subject to interpretability
constraints (figure 1b,c). Our objective is to attribute differ-

ences between clusters to differences in the underlying

signalling mechanisms, so the composition of the clusters

must facilitate mechanistic interpretation. For example, the

cell lines in a cluster could share a mutation, and the ligands

are those whose effect is altered by the mutation. For this

reason, we constrain the clusters to be rectangular, i.e. to

match a subset of cell lines with a subset of ligands

(figure 2). The constraints help to rule out similarities

between experimental measurements that are incompatible

with a mechanistic interpretation. The interpretability

constraints take the form of algebraic inequalities.

We introduce a new notion of tensor similarity, which we

employ to find optimal clusterings. The global optimality

of the partitions is guaranteed by leveraging results from inte-

ger programming. One of the strengths of this approach is that

it can incorporate a pre-existing non-rectangular partition

obtained with other methods (e.g. conventional agglomerative

clustering, k-means, spectral methods, community detection

on graphs) and find the nearest optimal rectangular clustering.

The distance between partitions is given by the number of

experiments whose clustering assignment changes. Hence

this method can be used in conjunction with any other state-

of-the-art method and preserve the features that are compatible

with the constraints. Moreover, using the method from an

initial partition is computationally advantageous. The par-

tition into clusters can be visualized by colour coding the

grid of experiments according to their cluster assignment

(figure 1c). Each box on the grid represents the cluster

assignment of an entire vector (or even a tensor) of data.

Once we obtain an optimal partition of the data, the

second stage of our analysis is to search for mechanisms

that can explain the behaviour of the experiments in each

cluster. We perform a systematic search for nonlinear ordin-

ary differential equation (ODE) models that reproduce the

key dynamical features of the time series in each cluster

(figure 1d ). To this end, we construct, parametrize and rank

models for each cluster from a pool of 729 candidate models.
2. Tensors and algebra
2.1. Data tensor
We represent a multi-indexed dataset (e.g. the complete data-

set in figure 1a) as a tensor Z of order h in the real numbers
with size n1 � . . . � nh (i.e. Z [ Rn1�����nh , where ni [ N and

i ¼ 1, . . ., h). When the dataset is complete, every entry of

the tensor is filled with a number. A full treatment of tensors

is available in [1] and references therein. We introduce here

the tensor theory required for our analysis.

2.2. Similarity tensors
In a similarity matrix the entry (i, j ) records the pairwise simi-

larity of the two items labelled by unidimensional indices i
and j. We now introduce the high-dimensional generalization

of a similarity matrix, which extends this to multi-indexed

data. Suppose we want to compute the similarity of the

data indexed by i ¼ (i1, i2) and indexed by j ¼ ( j1, j2),

si,j ¼ sim(Z(i1, i2, :, . . . , :), Z(j1, j2, :, . . . , :)), (2:1)

where i1, j1 [ f1, . . ., n1g and i2, j2 [ f1, . . ., n2g. The simi-

larity function sim: Rn3�����nh � Rn3�����nh ! R computes the
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similarity between the data indexed by i and j (e.g. corre-

lation or cosine similarity). In general, for data indexed by

the first d dimensions, we have the multi-indices i ¼ (i1, . . .,

id) and j ¼ ( j1, . . ., jd). The dimensions of Z can be re-ordered

as needed. We can construct a similarity tensor S of order 2d.

The shape of S is determined by the chosen dimensions of the

data: S [ Rn1�����nd�n1����nd . The similarity tensor and the

similarity matrix are related by flattening the tensor as fol-

lows. The original data tensor Z can be flattened (re-

shaped) into a data matrix ~Z [ RN1�N2 , where N1 ¼
Qd

r¼1 nr

and N2 ¼
Qh

r¼dþ1 nr. Each row of ~Z is an N2-dimensional

vector that corresponds to multi-index i, and the length N2

is the product of the dimensions of Z that are not included

in i.

The similarity matrix between the rows of ~Z is ~S [ RN1�N1 ,

which is obtained by flattening the similarity tensor, S. We

summarize this relationship in the following diagram:

To compute the similarity tensor S, we can simply flatten the

data tensor Z into ~Z, construct a similarity matrix ~S, and then

reverse flatten it into the desired S. Note that Z and S have

the same number of entries as ~Z and ~S, respectively.
Example. Let Z [ R10�5�3 be a tensor of order 3. If i ¼ (i1, i2)

is the multi-index, then d ¼ 2, N1 ¼ 10 � 5 ¼ 50 and N2 ¼ 3.

The (order 4) similarity tensor S has size 10 � 5 � 10 � 5.
The similarity matrix ~S has size 50 � 50. The flattened data

matrix ~Z has size 50 � 3.

2.3. Algebraic interpretability condition
When clustering a set of data points we typically seek a partition

such that the points within a cluster are more similar (or close) to

each other than to the rest of the data [5]. In the simplest cases,

there are few restrictions on the clusters other than that the simi-

larity or distance be reflected in the cluster assignments. In

certain cases, imposing restrictions on the clusters can be desir-

able or even required [11]. Here we pursue structured clustering;

that is, we impose restrictions on the shape of the clusters in the

tensor. In this application, we seek clusters with a rectangular

shape, which allows us to interpret clusters in terms of data-

generating mechanisms (i.e. grouping cell lines/ligand combi-

nations to ensure mechanistic interpretation). We describe the

biological motivation for these constraints in the results

section (§5.1) and the mathematical details of the method here.

A hard partition of a dataset represented as a tensor Z of

size n1 � . . . � nh into m clusters can be encoded in two ways.

(1) An (n1 � . . . � nd) � (n1� . . . � nd) tensor X in which the

data have multi-indices i ¼ (i1, . . ., id) and j ¼ ( j1, . . ., jd), and:

xij ¼
0 if i and j belong to the same cluster,
1 otherwise.

�
(2:2)

The tensor X can be seen as a Boolean approximation of the

distances between pairs of data points: xij ¼ 0 if i and j are

‘close’ (in the same cluster), and xij ¼ 1 if they are ‘far’ (in

different clusters). To ensure that X encodes avalid clustering

of the data, the three conditions of an equivalence relation

must be met. These conditions are given by the following

algebraic equations and inequality:

reflexivity: xii ¼ 0,

symmetry: xij ¼ xji

and transitivity: 0 � �xik þ xij þ xjk � 2:

9>=
>; (2:3)

(2) In an n1 � . . . � nd � m tensor Y, where

yik ¼
1 if the data indexed by i belongs to cluster k,
0 otherwise.

�

(2:4)

We require that
Pm

k¼1 yik ¼ 1 to ensure that each data item

has been assigned to exactly one cluster.

The tensors X and Y are related by the following equation:

1� xi,j ¼
Xm

k¼1

yi,kyj,k:
2.4. Integer optimization
The structural or interpretability conditions we have imposed

on the clusters take the form of linear constraints. These con-

straints, along with the fact that the tensors are Boolean,

allow us to find optimal tensors X and Y by solving an inte-

ger linear program [29,30]. Specifically, we use the branch

and cut algorithm [31] as we describe in the Structured

clustering section (§4) below.

3. Data
We examine an extensive experimental dataset detailing the

temporal phosphorylation response of signalling molecules
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in genetically diverse breast cancer cell lines in response to

different growth factors [26]. This dataset is complete and

can be represented by a tensor Z of order 5 whose dimensions

correspond to 36 cell lines, 14 ligands, two doses, three time

points and two proteins (pERK, pAKT) (for more details, see

the electronic supplementary material, appendix). In this

work, each experiment is a set of measurements (for all

time points, doses and proteins) for each cell line/ligand

combination (36 � 14 ¼ 504 experiments). Our goal is to find

sets of experiments with a similar response; consequently,

the data structures we require are the following:

Z [ R36�14�2�3�2, (data tensor)

~Z [ R504�12, (flattened data tensor)

S [ R36�14�36�14 (similarity tensor)

and ~S [ R504�504: (similarity matrix).

Each experiment has a multi-index i ¼ (i1, i2), where i1 [ f1, . . .,

36g and i2 [ f1, . . ., 14g. We compute the 504 � 504 cosine

similarity matrix ~S of the normalized rows of ~Z (see electronic

supplementary materials, appendix, II.B and II.C).
1

4. Structured clustering
Given a similarity tensor S, we seek the best partition of

experiments subject to the interpretability constraints: clus-

ters must be rectangular with respect to cell lines and

ligands (see equation (4.1) and results section). This approach

is similar to those in [7]; however, we do not require the rec-

tangles to be connected. This is because we do not require a

fixed order for the rows and columns of the data. This is an

important strength of our method: an ordering of the data

is artificial, and we seek clustering results that are not

biased by order.

We present two implementations of our method. The first

one does not require previous knowledge about the clustering

assignment of the experiments, and provides an optimal

clustering directly from the similarity data. However, owing

to the high computational costs of performing integer pro-

gramming, this variant of our method is only appropriate for

small datasets. The computations can be sped up by employing

heuristics for the integer optimization (e.g. [32]).

To tackle larger datasets, we present a second implemen-

tation that begins with a pre-existing partition of the

experiments into clusters (not necessarily compliant with

the constraints), which might originate from any clustering

method (e.g. using the reshaped similarity tensor ~S). This

implementation then reconstructs S and finds the nearest

optimal clustering compliant with the constraints. Starting

with an initial clustering has the advantage that we can

employ the best methods for clustering a particular type of

data, whose results we then refine to find clusters that are

compatible with the interpretability condition. The initial

clustering must be chosen carefully to fit the application,

and should not be viewed as merely an initialization of

the algorithm. Pairing our method with a pre-existing cluster-

ing also has the advantage that it significantly reduces

computational cost (see electronic supplementary material,

appendix, figure S7).
4.1. No prior clustering
When we do not have any prior clustering of the experiments,

we work directly on the similarity tensor S. The entries of

this tensor record the similarity of experiments i and j,

where i ¼ (i1, i2), j ¼ ( j1, j2), where the ranges of indices are

i1, j1 [ f1, . . ., 36g and i2, j2 [ f1, . . ., 14g.
The clustering assignments are recorded by the tensor X

defined in equation (2.2). The rectangular-shaped inter-

pretability condition corresponds to three types of algebraic

constraints on the entries of X,

xi1 i2j1 j2 ¼ xi1j2 j1i2 ,

0 � xi1 i2j1 j2 � xi1i2 j1i2 � 1

and 0 � xi1 i2j1 j2 � xi1i2 i1j2 � 1:

9>=
>; (4:1)

We search over arrays X that satisfy these conditions. The

experiments in the same cluster should have high similarity,

so we maximize the similarity between experiments in the

same cluster. This maximization is equivalent to solving

the integer optimization problem

max
X

hS, (1� X)i þ lh1, Xi,

subject to bl � V � vec(X) � bu,
(4:2)

where the tensors X and S are as above, h�, �i denotes the

entry-wise inner product and . represents matrix multipli-

cation of the matrix V by the vector vec(X). The 5042 � 1

vector vec(X) is the vectorized form of X, and 1 is the

tensor of 1s with the same size as X. The coefficient l is a

regularization term introduced to control the number of clus-

ters. The matrix V encodes the constraints on X given in

equations (2.3) and (4.1). This matrix has over 1 million

rows, 5042 columns and is extremely sparse. The kth row of

V represents the kth constraint on the values of vec(X): the

entry is the coefficient (which can be 0, 1 or 21) with

which each entry of vec(X) appears in the constraint.

The kth entry of bl and bu (which can be 0, 1 or 2) gives the

lower and upper bounds, respectively, of each linear inequal-

ity. We solve this optimization program using the branch and

cut algorithm [31] via the IBM ILOG CPLEX Optimization

Studio [33].

The resulting rectangular clusters are a sparse, low-rank

representation of the data. The tensor 1 2 X, of size (36 �
14) � (36 � 14), gives a binary measure of the distance

between any two experiments. This tensor has sparse block

structure: it consists of m cuboids of 1s along the diagonal,

where m is the number of clusters, and has zeros everywhere

else. As a consequence X has low multilinear rank [34],

bounded above by (m, m, m, m), which is less than the

maximum possible value of (36, 14, 36, 14).

4.2. Pre-existing clusters
When we have a pre-existing or initial non-rectangular clus-

tering of the experiments, we find the nearest structured

clusters using linear integer optimization. The input to this

method is an initial partition of the 504 experiments into m
clusters. We then modify the cluster assignments to reach

the closest possible interpretable, structured clustering.

The initial clustering is encoded by a partition tensor, W,

of size 36 � 14 � m

wik ¼
1, i is in cluster k,
0, otherwise,

�
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where i ¼ (i1, i2) indexes an experiment. The new clusters are

encoded by a tensor Y of the same size (defined according to

equation (2.4)). In order to have rectangular clusters, the

entries of Y must satisfy the conditions

Xm

r¼1

yijr ¼ 1 (unique cluster assignment)

and � 1� yikrþ yjlr� yilr � 1 (interpretability condition):

As before, we use the branch and cut algorithm to obtain the

global optimum (given W) for the optimization problem

max
Y

hW, Yi: (4:3)

The inner product kW, Yl sums the number of clustering

assignments unchanged by converting the initial unstruc-

tured clustering into a clustering that satisfies the

interpretability constraints.

We obtain the tensor Y, of size 36 � 14 � m by solving

the optimization problem in equation (4.3). As with X, the

tensor Y also has sparse and low-rank structure. Its m two-

dimensional slices, each a matrix of size 36 � 14, have rank

2 and block structure with a rectangular shape populated

by 1s and all other values equal to 0.
5. Results
5.1. Biological interpretation of constraints
Each experiment in our data is indexed by (ci, lj), where ci is the

ith cell line and lj is the jth ligand. A high similarity between

experiments suggests the possibility of a common underlying

biological mechanism. This is the basic notion that underpins

the constraints in our clustering method, which force the clus-

ters to pair a subset of the cell lines with a subset of the ligands

in such a way that each cluster must be rectangular, although

possibly disconnected (figure 2). The motivation behind this

constraint is to enable the interpretation that the experiments

in each cluster are generated by the same biological mechanism

(e.g. if they share a feature such as a genetic mutation). The

difference between our constrained approach and conventional

clustering is that in the latter a high similarity is enough to clus-

ter two experiments together. In our approach, similarity alone

is not enough, we also require that the observations admit the

same mechanistic interpretation. For example, suppose that

two experiments (ch, li) and (ck, lj) belong to the same cluster.

If we swapped the ligands (i.e. we looked at the experiments

in the diagonally opposite entries (ck, li) and (ch, lj)), under

the assumption that the cell lines share the same signalling

mechanism, these experiments should also be in the same clus-

ter because we expect them to respond in a similar way (see left

columns of figure 2). If, however, (ch, li) and (ck, lj) are clustered

together but (ck, li) and (ch, lj) are not in the same cluster (see

right column of figure 2), it would be more difficult to assign

mechanistic interpretations to the clusters.

5.2. Interpretable groups by mutation and receptor
subtype

In a clinical setting, prognosis and treatment decisions for

breast cancer are guided by tumour grade, stage and clinical

subtype (see http://www.cancer.gov) which is based on the

presence of cellular receptors:
— HER2amp cells are characterized by amplification of the

HER2 gene, leading to over-expression of the ErbB2

receptor tyrosine kinase;

— HRþ cells are characterized by the expression of the

oestrogen receptor (ER) or progesterone receptor (PR);

— triple negative breast cancer (TNBC) cells are negative for

HER2 amplification, and express ER and PR at low levels.

We compare the clusters from our method with the three

standard clinical subtypes above. We also compare our clusters

with the mutational status of the cell lines [35,36], and with

their drug response [37,38], and with the findings from the

previous clustering and analysis of this dataset, found in [26].

We first investigate a fine-grained classification within each

of the three clinical subtypes. A summary statistic between 0

and 1 (based on the cosine similarity; see electronic supplemen-

tary material, appendix II.B) quantifies the within-class

variation for each clinical subtype. A score of 0 indicates com-

plete homogeneity, and 1 indicates complete heterogeneity.

The HER2amp cell lines show comparatively little variation,

with an average difference score of 0.086. The TNBC and the

HRþ cell lines have an average difference score of 0.224 and

0.334. We obtained clusters without prior knowledge of an

initial clustering by solving the optimization problem (4.2).

The results (shown in figure 3a,b) identify heterogeneity

within each subtype as well as cell lines of particular interest.

Figure 3a shows the clustering of the HRþ cell lines. Cell line

MDA-MB-415 stands out for its response to the so-called high-

response ligands [26] (ligands to the left of HRG in figure 3b).

Among all cell lines, MDA-MB-415 has the second highest

susceptibility to the drugs ixabepilone, methylglyoxal and

PD [37]. The CAMA-1 cell line is distinctive in its response to

the low-response ligands (to the right of HRG), which

might help explain why it is particularly susceptible to both

(Z)-4-hydroxytamoxifen and TCS PIM-11 [37]. The TNBC cell

lines are divided into 12 clusters (figure 3b), which mirror the

heterogeneous behaviour of TNBC in the clinic [39]. All but

one TNBC cell lines with a PTEN mutation appear in the

green cluster. The only exception is the HCC1937 cell line,

which has a PTEN mutation but appears in the yellow cluster.

The cluster assignment of cell lines MDA-MB-231 and MDA-

MB-157 is markedly different from that of the other cells

across the ligands. These assignments might be explained by

the mutational status of the cell lines; MDA-MB-231 is the

only cell line with an NF2 mutation or a BRAF mutation,

whereas MDA-MB-157 is the only cell line with an NF1

mutation. The bright orange cluster contains five cell lines

(all but HCC1937) with the same two CDKH2A mutations.

The HER2amp cell lines cluster together for all ligands except

for the MDA-MB-361 cell line. This is the HER2amp cell line most

resistant to HER2-targeted therapy such as lapatinib [37]. In

fact, its resistance to lapatinib exceeds that of some TNBC cell

lines (HCC2185 and MDA-MB-453). The grouping of the rest

indicates the consistency among all other HER2amp cell lines

(see electronic supplementary material, appendix II.B).
5.3. Clustering all cell lines
To cluster all cell lines, we solve the optimization problem (4.3),

which requires an initial ‘seed’ clustering of the experiments.

We obtained our initial clustering by first constructing a

graph of experiments from the similarity matrix ~S using the

relaxed minimum spanning tree algorithm [40–42]. Then we

http://www.cancer.gov/
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royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20180661

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 O

ct
ob

er
 2

02
2 
used the Markov stability community detection method [43,44]

to find robust partitions of the experiments into three, five

and seven groups (see electronic supplementary material,

appendix, figure S3).

From the initial partition into three clusters, we obtain three

rectangular clusters (figure 3c). These groups respect the broad

division of the cell lines seen in figure 3a,b, which is a sign of the

consistency between the two implementations of our method.

Of these, we find that two groups of ligands correspond to pre-

viously reported high active expression profiles (yellow and

green) and one to muted profiles (blue) [26]. Within the more

highly active group, the HRþ cell lines are predominantly in

the yellow cluster, while the HER2amp cells are in the green

cluster. This separation of the HRþ and HER2amp clinical sub-

types is entirely data driven and supports the notion that our

method is indeed able to find interpretable groups. The cell

lines that are not clustered according to their subtype reflect

previous findings that neither growth factor responses nor sen-

sitivity to drugs that target signal transduction pathways is

uniform within clinical subtypes [26,28,45]. The TNBC cell

lines are divided between the yellow and green clusters, pro-

viding further evidence of the heterogeneity in TNBC cell

lines [45–50].

When we start from the initial non-rectangular clustering

into five groups, the resulting rectangular clusters split the

ligands into a low response group (blues) and high response

(green, yellow, brown). This split is nearly the same as

we obtained before (figure 3d). Note that the difference in the

ligand HGF may be due to the fact that it is not part of

the ErbB nor the FGF families of ligands. The HER2amp cell

lines are now all assigned to the green cluster, and there are

only three HRþ cell lines not assigned to the yellow cluster. A

new brown cluster consists of cell lines: MDA-MB-175-VII
(classified as a HRþ), UACC-812 (HER2amp), 1845B5 (TNBC)

and HS578T (TNBC). While none of them has the same cell

classification or genetic mutation, all cell lines in the brown clus-

ter show high susceptibility to the drug gefitinib [37]. Note that

MDA-MB-175-VII is the only HRþ cell line that is not assigned to

the yellow group in either three or five clusters; this might be due

to the fact that this cell line carries a unique chromosomal trans-

location. The translocation leads to the fusion and amplification

of neuregulin-1, which signals through ErbB2/ErbB3 heterodi-

mers [51,52], and could be the underlying cause of the cell

line’s unique sensitivity to ErbB-targeting drugs such as lapatinib

or afatinib [28,45].

We compare the results from our clustering method with

the original analysis of this dataset [26]. In our analysis, we

are able to obtain simultaneously meaningful subsets of

both indices (the cell lines and the ligands), without biases

given to either index or to the ordering of the data. By con-

trast, in the unstructured clusters shown in [26, fig. 3], the

interpretation of the results required aggregating information

to study how the effects vary with each cell line or with each

ligand individually, but not simultaneously [26, fig. 4]. Our

method allowed the clinical subtypes to be recovered from

the data, based on temporal responses to a detected subset

of the ligands. Exceptions to this classification provide

biological hypotheses for possible subsequent investigation.

By contrast, the clinical subtypes were not detectable from

the clustering assignments of the temporal data made in

[26, fig. 3].

The clustering that begins from an initial partition into

seven groups shows high consistency with the five cluster

case (see electronic supplementary material, appendix,

figure S6). We therefore continue our analysis on the five

rectangular clusters.
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5.4. Systematic model identification
We now analyse the response of the five structured groups

found in the previous section (figure 3d ) to obtain a mechanis-

tic insight about the cell line/ligand combinations in each

cluster. We consider 729 possible ODE network models, and

then perform systematic model analysis of the 44 that are struc-

turally identifiable with the given data. We test structural

identifiability, a prerequisite for performing parameter

estimation and model selection, using Daisy [53]. Then, we

parametrize, rank and choose the models that best represent

each cluster’s response. As a result, we have a list of candidate

signalling mechanisms for each cluster which provides more

information than the statistical predictions of the sensitivity

of MAPK drug targets (e.g. ErbB drug class) [45].

Models of the MAPK and AKT pathways have been

studied under a variety of biological and modelling assump-

tions [54–56], including pathway crosstalk [20,21,57,58]. Here

we consider simple models to ensure the parameters are at

least locally identifiable so there are a finite number of par-

ameter values to fit the data. We construct nonlinear

ordinary differential equation models to describe the

dynamics of the AKT and ERK signalling pathways. See the

electronic supplementary material, appendix, for a synopsis
of MAPK models and details of their construction. Briefly,

these models include three molecular species: receptor (R),

pERK (E) and pAKT (A). Since the data contain the response

of pERK and pAKT, we assume that the receptor must phos-

phorylate ERK and/or AKT. We consider positive, negative

or no interaction between pERK and pAKT under different

types of kinetic regimes (mass action or Michaelis–Menten)

and different types of inhibition (blocking/sequestration or

removal/degradation). The combination of these features

results in the 44 structurally identifiable models that we

study in further detail. Each model corresponds to a different

mechanistic hypothesis of the dynamics in the pathways (see

electronic supplementary material, appendix III.C). To find

the models that best describe the response of each of the

five clusters, we estimate parameters using the squeeze-

and-breathe algorithm [59], and rank them using the

Akaike information criterion score (AICc) (see electronic sup-

plementary material, appendix IV.D). The best models for

each cluster are shown in figure 4.

The AICc, used for model selection, penalizes more com-

plex models; therefore, it is not surprising that the top models

are the simplest ones. The best models for each cluster have

different feedback strengths (parameter values) and network
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topologies (figure 4); this supports the hypothesis that

mutations may play a role in the dynamics. Although the

values of the parameters vary, the model with arrows from

the receptor (R) to pAKT and pERK appears in all clusters,

which is in line with how cells are understood to operate. We

remark that cluster 4, which corresponds to HRþ cells (yellow

in figure 2d), includes inhibition crosstalk as the second best

model, whereas in all other clusters this mechanism appears

in fourth place. This finding suggests the possibility that the

cell lines in cluster 4 share a feature which is relevant to the

ligands that also appear in this cluster. This type of insight is

made possible because of the constraint we have imposed on

the clusters.
J.R.Soc.Interface
16:20180661
6. Discussion
We have introduced a novel framework to cluster multi-

indexed data based on tensors that allows structural con-

straints to be incorporated using algebraic relationships.

This method can be used to extract clusters directly from

the data, and, if an initial clustering which may not satisfy

the constraints is provided, it can find the closest optimal par-

tition that satisfies the constraints. A key advantage of this

framework is that it allows more control over the composition

of clusters than in many unsupervised methods, and allows

the clustering to be tailored to the requirements of the pro-

blem. The main limitation of this method is that it requires

complete data (i.e. a measurement for every cell line/time/

dose/ligand/molecule combination), which can be difficult

to obtain. The metric used to compare data points could be

adapted to deal with a small number of missing entries,

but the method is unlikely to perform well for sparse data.

We applied this method on a dataset charting the response

of genetically diverse breast cancer cell lines to ligands. We

identified both similarities (e.g. HER2amp) and heterogeneities

(e.g. TNBC) within clinical subtypes. The heterogeneity of our

clustering analysis (figure 3b) seems to be related to both the

mutational status of the cells as well as their response to inhibi-

tors. This result means that similar analyses in patient tissues

might be able to identify patients that respond differently to

therapeutic methods commonly used within a clinical subtype.

By analysing clusters from all subtypes, we also showed that
we cannot attribute the dynamics of each data cluster with

only one signalling mechanism, which helps explain network

model differences across cell type.

The applicability of our method goes beyond the biological

problem presented here. It can be used in any context in which

the constraints on the clusters can be expressed in algebraic

form (as equalities and inequalities), such as when there are

size restrictions on the clusters, or to impose/prohibit particu-

lar combinations of data beyond must-link and cannot-link
constraints. For example, this method could be used to

construct optimal portfolios that comply with rules about

their composition [60], to help the formation of teams that

maximize members’ preferences and are compliant with skill

requirements [61] and to find communities in networks with

quotas, among others. The presented pipeline (a sophisticated

and interpretable data analysis method that feeds into a

nonlinear modelling framework) will be ever more necessary

as increasingly more large-scale, comprehensive datasets

become available.
Data accessibility. The dataset used in this analysis can be found in [26];
we also give a link to the data in the electronic supplementary
material. The Matlab code for the constrained clustering method
can be found in the electronic supplementary material, Section B.5
‘Code for constrained clustering’. A link to the code for the mechan-
istic analysis can be found in the electronic supplementary material,
Section D.3 ‘Parameter estimation’.
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