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We study cubic surfaces as symmetric tensors of format 4 ×
4 × 4. We consider the non-symmetric tensor rank and the 
symmetric Waring rank of cubic surfaces, and show that the two 
notions coincide over the complex numbers. The corresponding 
algebraic problem concerns border ranks. We show that the non-
symmetric border rank coincides with the symmetric border rank 
for cubic surfaces. As part of our analysis, we obtain minimal ideal 
generators for the symmetric analogue to the secant variety from 
the salmon conjecture. We also give a test for symmetric rank 
given by the non-vanishing of certain discriminants. The results 
extend to order three tensors of all sizes, implying the equality 
of rank and symmetric rank when the symmetric rank is at most 
seven, and the equality of border rank and symmetric border rank 
when the symmetric border rank is at most five. We also study 
real ranks via the real substitution method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

A cubic surface is the zero set in P 3 of a homogeneous cubic polynomial in four variables,

f = c3000x3
1 + c2100x2

1x2 + c1200x1x2
2 + c0300x3

2 + c2010x2
1x3 + · · · + c0003x3

4.

Such a polynomial has 20 coefficients, hence the space of cubic surfaces is 19-dimensional. Cubic 
surfaces are a central topic of study in classical algebraic geometry, and a motivating example for 
more modern topics. Most prominently, the discovery of the 27 lines on the cubic surface in 1849 is 
celebrated as the beginning of modern algebraic geometry (Segre, 1942; Vakil, 2017).
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We study cubic surfaces from the perspective of tensors, the multidimensional generalization of 
matrices. A symmetric tensor T of format 4 × 4 × 4 has entries Tijk , for 1 ≤ i, j, k ≤ 4, which sat-
isfy the symmetry relations Tijk = Tikj = T jik = T jki = Tki j = Tkji , hence there are 20 distinct entries. 
Homogeneous quaternary cubics and symmetric 4 × 4 × 4 tensors are in bijection via the correspon-
dence

f (x1, x2, x3, x4) =
4∑

i, j,k=1

Tijkxi x jxk.

More generally, homogeneous polynomials of degree d in n variables are in bijection with sym-
metric tensors of size n × · · · × n (d times). It is a question of classical interest to find the shortest 
decomposition of a degree d polynomial f ∈K[x1, . . . , xn] into a sum of powers, f = ∑r

i=1 λildi , where 
each li ∈ K[x1, . . . , xn] is a linear form and λi ∈K. The minimal number of summands in such a de-
composition is the Waring rank of f over K. Equivalently, the Waring rank is the symmetric rank of 
the tensor corresponding to f , the length r of its shortest decomposition as a sum of symmetric rank 
one tensors, T = ∑r

i=1 λiu
⊗d
i . The vector ui ∈ Kn lists the coefficients of the linear form li . There is 

also the notion of (non-symmetric) rank over K. This is the length of the shortest decomposition of a 
tensor into a sum of rank one tensors, T = ∑r

i=1 ui ⊗ vi ⊗ · · · ⊗ wi , where ui, vi, . . . , wi are d vectors 
in Kn . In the context of tensors the degree d is called the order. Algorithms to compute the rank of a 
symmetric tensor include Brachat et al. (2010).

The set of tensors of rank ≤ r may not be closed when it is a proper subset of the space of tensors 
and r > 1. The same holds for the space of symmetric tensors of symmetric rank ≤ r (Comon et al., 
2008). In light of this, each of the above notions of rank have closed analogues called border ranks. For 
a given notion of rank, and tensor T , the border rank is the smallest r such that T lies in the closure 
of the rank r tensors.

The rank of a tensor depends on the field K over which the decomposition is taken. In this article, 
we focus on the case of ranks defined over the complex numbers, K =C, and also consider the real 
rank case K = R. When the field is not specified, we are referring to the usual complex case. The 
real and complex rank of a tensor need not agree. It follows from the definitions that complex rank 
is bounded above by real rank, border rank is less than or equal to rank, and non-symmetric rank is 
less than or equal to symmetric rank. For matrices the real and complex ranks agree, and rank and 
border rank are also the same. This is not true for tensors, as we see in the following two examples.

Example 1.1 (The cubic surface x2
1x2 + x3

3 − x3x2
4). The monomial x2

1x2 has (complex or real) border 
rank two, and (complex or real) rank three. Evaluating the hyperdeterminant of x3

3 − x3x2
4 shows 

that it has complex rank two and real rank three (Seigal and Sturmfels, 2017), and its rank and 
border rank are equal. Since the variables from the two parts of the sum are disjoint, and Strassen’s 
Conjecture (Landsberg, 2012, §5.7) holds here, the cubic surface has complex border rank four, real 
border rank five, complex rank five and real rank six.

Example 1.2 (The cubic threefold x1(x1x2 + x2
3) + x2

4 − x4x2
5). The cubic curve x1(x1x2 + x2

3) is a conic and 
tangent line. It has (real or complex) border rank three and (real or complex) rank five (Banchi, 2015). 
Hence, using the previous example, the cubic threefold has complex border rank five, real border rank 
six, complex rank seven and real rank eight.

Tensors and symmetric tensors arise in applications such as complexity theory, multivariate statis-
tics, medical imaging, multiway factor analysis, numerical analysis, and signal processing (see Comon 
et al., 2008; Landsberg, 2017, 2012 and references therein). Just as for a matrix, the rank of a tensor 
is one of its fundamental properties. For a tensor of data, the rank is the number of ‘signals’ which 
are combined in the data. A key result from linear algebra says that a symmetric matrix of rank r can 
be written as a sum of r rank one symmetric matrices. The generalization of this result to tensors is a 
topic of ongoing study.
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Comon’s conjecture states the equality of the rank and symmetric rank of a symmetric tensor. 
First posed 10 years ago (Comon et al., 2008), it has been conjectured for complex rank, complex border 
rank, real rank and real border rank. The conjecture has been proved in many special cases: when 
the symmetric rank is at most two (Comon et al., 2008), when the rank is less than or equal to the 
order (Zhang et al., 2016), and when the rank is at most the flattening rank plus one (Friedland, 2016). 
Furthermore, the conjecture has been proved to generically hold in certain families of tensors (Ballico 
et al., 2018). On the other hand, a counter-example to Comon’s conjecture for complex rank has been 
found by Shitov (2018), a tensor of size 800 × 800 × 800. It is an open problem to characterize which 
tensors have the same rank and symmetric rank, for different notions of rank.

In this article, we study the smallest tensor format for which the agreement of rank and symmetric 
rank was not known: cubic surfaces, or symmetric 4 × 4 × 4 tensors. There does not exist a finite list 
of normal forms in this case, because the dimension of the general linear group P GL4 is 15, whereas 
the space of cubic surfaces is 19-dimensional. We prove the following result.

Theorem 1.3. The rank and symmetric rank agree for cubic surfaces.

The conclusion extends to symmetric tensors of format n ×n ×n, by giving a range of ranks among 
which all tensors have agreement of rank and symmetric rank.

Corollary 1.4. The rank and symmetric rank of a cubic polynomial in n variables (order three symmetric tensor) 
are the same, whenever the symmetric rank is at most seven.

We make the following contributions for border ranks over the complex numbers.

Theorem 1.5. The border rank and symmetric border rank agree for cubic surfaces.

Corollary 1.6. The border rank and symmetric border rank of a cubic polynomial are the same whenever the 
symmetric border rank is at most five.

We also consider ranks over the real numbers. We show that real rank and real border rank agree 
for generic cubic surfaces, and we study special cases in greater detail.

The notion of flattening rank is useful in our study. The flattening ranks of a tensor (see 
e.g. Landsberg, 2012) are the ranks of its flattening matrices, the reshapings of its entries into ma-
trix format. General tensors have a tuple of flattening ranks, one for each distinct flattening. In the 
n × n × n symmetric case the flattening rank is a single number, the rank of the n × n2 flattening ma-
trix. Since the flattening ranks are ranks of matrices, they inherit properties possessed by matrix rank 
(such as being closed, equivalence of real and complex rank, and equivalence of non-symmetric and 
symmetric rank). From the definition, the flattening rank cannot exceed any of the ranks described 
above; the flattening rank of T = ∑r

i=1 v⊗d
i is the dimension of the span of the vectors {v1, . . . , vr}, 

which is less than or equal to r.
The space of symmetric n × n × · · · × n (d times) tensors with entries in a field K is denoted 

Sd(Kn). The analogous space of (not necessarily symmetric) tensors is Kn ⊗ · · · ⊗Kn (d times).
The rest of this article is organized as follows. We prove the results in Theorem 1.3 and Corol-

lary 1.4 concerning complex rank in Section 2. We prove the complex border rank results in Theo-
rem 1.5 and Corollary 1.6 in Section 3. We discuss real ranks in Section 4.

2. Ranks of cubic surfaces

In this section we prove Theorem 1.3, that the rank and symmetric rank coincide for a cubic 
surface over the complex numbers. We use the following three results, as well as the classification 
of cubic surfaces in Segre (1942), which gives normal forms of certain cubic surfaces, including those 
that are reducible.



A. Seigal / Journal of Symbolic Computation 101 (2020) 304–317 307
Theorem 2.1 (Sylvester’s Pentahedral Theorem (1851), see Segre, 1942, §84). A generic cubic surface can be 
decomposed uniquely as the sum of five cubes of linear forms, f = l31 + l32 + l33 + l34 + l35 where each li ∈
C[x1, x2, x3, x4] is a linear form.

Theorem 2.2 (Friedland, 2016, Theorem 1.1). Let K be a field with at least three elements. Consider a tensor 
T ∈ Sd(Kn) whose rank is bounded above by its flattening rank plus one. Then the rank and symmetric rank 
of T defined over K coincide.

It follows from Theorem 2.2 that, if the symmetric rank is bounded above by the flattening rank 
plus two, then the rank and symmetric rank coincide: the alternative is that the rank is strictly less 
than the symmetric rank, which means it satisfies the hypothesis of the theorem.

Theorem 2.3 (The substitution method, e.g. Landsberg, 2017, §5.3.1). Let T ∈ Cn1 ⊗Cn2 ⊗Cn3 be a tensor 
of rank r. We write T = ∑n1

i=1 ei ⊗ Mi , where {ei : 1 ≤ i ≤ n1} are the elementary basis vectors, and the Mi

are n2 × n3 matrices, known as the slices of the tensor. Reordering indices to ensure that Mn1 �= 0, there exist 
constants λ1, . . . , λn1−1 such that the following (n1 − 1) × n2 × n3 tensor has rank at most r − 1:

n1−1∑
i=1

ei ⊗ (Mi − λi Mn1).

If the matrix Mn1 has rank one, the tensor above has rank exactly r − 1.

In the following four subsections we prove equality of rank and symmetric rank for the family of 
cubic surfaces named in the title of the subsection. Together the subsections prove Theorem 1.3.

2.1. Cones over cubic curves

Cones over cubic curves have a natural characterization in terms of tensors: they have sub-generic 
flattening rank, and parametrize the subspace variety (Landsberg, 2012, §7.1) defined by the vanishing 
of the 4 × 4 minors of the flattening. In this section we prove Theorem 1.3 for cubic surfaces with 
sub-generic flattening rank. The defining polynomials of such cubic surfaces have a change of basis 
that removes one of the four variables. We change coordinates by an element M of the general linear 
group GL4, with entries Mij , to obtain a tensor T ′ with non-zero entries only in its upper-left 3 ×3 ×3
block. Its entries are expressed in terms of T and M as

T ′
i jk =

4∑
a,b,c=1

Tabc Mai Mbj Mck.

Rank is invariant under general linear group action, hence T ′ has the same rank as T . Given an 
expression for T ′ as a sum of rank one tensors, setting the fourth entry of all vectors that appear in 
the decomposition to zero gives a valid expression with the same number of terms.

Hence, to study ranks of cones over cubic curves it suffices to study ranks of plane cubic curves, 
or symmetric 3 × 3 × 3 tensors. It is known that the rank and symmetric rank agree for cubic 
curves of sub-generic flattening rank (2 × 2 × 2 tensors and rank one tensors) e.g. via their normal 
forms (Landsberg, 2012, Chapter 10). Cubic curves have a generic flattening rank of three. Theorem 2.2
says that the rank and symmetric rank coincide provided that the symmetric rank is at most five. The 
classification of cubic curves in Segre (1942, §96) shows that five is the maximum possible symmetric 
rank. This concludes the proof for cones over cubic curves.

2.2. Non-singular cubic surfaces

Based on the previous subsection, it remains to consider cubic surfaces with flattening rank four. 
When the rank is at most five, Theorem 2.2 implies that the rank and symmetric rank coincide. This 
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leaves the cubic surfaces that are not expressible as a sum of five linear powers, those for which 
Theorem 2.1 fails to give a decomposition. There are two such families of non-singular cubic surfaces, 
see Segre (1942, §94), with equations

(x3
1 + x3

2 + x3
3) + x2

4(λ1x1 + λ2x2 + λ3x3 + λ4x4),

μ1x3
1 + x3

2 + x3
3 − 3x1(μ2x1x2 + x1x3 + x2

4).
(1)

The parameters λi , μ j are arbitrary subject to maintaining non-singularity. The failure of Sylvester’s 
Pentahedral Theorem for these surfaces is due to the non-genericity of their Hessian quartic surface, 
which has fewer than 10 distinct singular points. These cubics have symmetric rank six (Segre, 1942, 
§97). The non-symmetric rank cannot be five or less by Theorem 2.2.

2.3. Cubic surfaces with infinitely many singular points

We begin with the reducible cubic surfaces, followed by the irreducible cubic surfaces with in-
finitely many singular points. The three normal forms of reducible cubic surfaces are given in Carlini 
et al. (2016). They are x1(x2

1 + x2
2 + x2

3 + x2
4), x1(x2

2 + x2
3 + x2

4), and x1(x1x2 + x2
3 + x2

4). The first two have 
symmetric rank six (Carlini et al., 2016), hence by Theorem 2.2 they also have rank six. The third has 
symmetric rank seven (Segre, 1942). We show that the rank of this normal form is seven, and hence 
that its rank and symmetric rank agree.

Proposition 2.4. The cubic surface f = x1(x1x2 + x2
3 + x2

4) has non-symmetric rank seven.

Proof. The polynomial f can be written up to scale as the symmetric 4 × 4 × 4 tensor

e1 ⊗

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ + e2 ⊗

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ + e3 ⊗

⎡
⎢⎢⎣

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ + e4 ⊗

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦ .

We apply Theorem 2.3 iteratively to the second, third, and fourth slices of f . The slices are linearly 
independent 4 × 4 matrices. No linear combination of them can be subtracted from the first slice to 
give a vanishing determinant. These two observations imply that the rank of f is bounded from below 
by 4 + 3 = 7. Since the symmetric rank is seven, the non-symmetric rank cannot exceed seven. �

There are two normal forms of irreducible cubic surfaces with infinitely many singular points (Segre,
1942, §97), with representatives x1x2

2 + x3x2
4, which has symmetric rank six, and x2

1x2 + x1x3x4 + x3
3

with symmetric rank at most seven. In the former case the non-symmetric rank is also six, using 
Theorem 2.2. In the latter case we follow an approach as in Proposition 2.4.

Proposition 2.5. The cubic surface f = x2
1x2 + x1x3x4 + x3

3 has non-symmetric rank seven.

Proof. The polynomial f is the symmetric 4 × 4 × 4 tensor

e1 ⊗

⎡
⎢⎢⎣

0 1
3 0 0

1
3 0 0 0
0 0 0 1

6
0 0 1

6 0

⎤
⎥⎥⎦+e2 ⊗

⎡
⎢⎢⎣

1
3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦+e3 ⊗

⎡
⎢⎢⎣

0 0 0 1
6

0 0 0 0
0 0 1 0
1
6 0 0 0

⎤
⎥⎥⎦+e4 ⊗

⎡
⎢⎢⎣

0 0 1
6 0

0 0 0 0
1
6 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

The second, third, and fourth slices are linearly independent. No linear combination of them can be 
subtracted from the first slice to give a vanishing determinant. Hence the rank is at least 4 + 3 = 7. 
The symmetric rank is at most seven hence both ranks are seven. �
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2.4. Cubic surfaces with finitely many singular points

We introduce a test to show that a cubic surface f has symmetric rank at most five. The test 
checks that f does not lie on two discriminant loci that contain the tensors of higher rank. We use it 
to prove Theorem 1.3 for cubic surfaces with finitely many singular points.

The singular cubic surfaces lie on the discriminant hypersurface (Gelfand et al., 1994, Introduc-
tion II). Non-singular cubic surfaces, on the complement of the hypersurface, have symmetric rank at 
most five unless they are of the form in equation (1). The surfaces in (1) are contained in a second 
discriminant locus, which we describe. Our test is the following: if neither discriminant vanishes at f , 
it has symmetric rank at most five.

We now explain how to construct the second discriminant. The determinant of a 4 × 4 symmetric 
matrix of indeterminates defines a hypersurface in P 9 with a degree 10 and codimension three locus 
of singular points, where the 3 ×3 minors of the matrix vanish. Setting the entries of the 4 ×4 matrix 
to be linear forms in four variables gives a codimension six linear space in the space of symmetric 
matrices of indeterminates. The determinant is now a hypersurface in P 3 and, for a generic choice 
of linear forms, the singular locus consists of 10 points. The Hurwitz form of a variety is a hyper-
surface in the Grassmannian consisting of linear spaces that intersect the variety in a sub-generic 
number of points (Sturmfels, 2017). The linear forms whose determinant hypersurfaces have fewer 
than 10 singular points are the Hurwitz form of the variety of rank two 4 × 4 symmetric matrices, 
a hypersurface in the Grassmannian of codimension six linear spaces. Applying Sturmfels (2017, The-
orem 1.1) shows that the Hurwitz form in this setting is an irreducible hypersurface of degree 30 in 
the Plücker coordinates of codimension six linear spaces, since the sectional genus is six. The Hur-
witz form has degree 120 in the coordinates of the indeterminates, since each Plücker coordinate has 
degree four.

The Hessian matrix of a cubic surface is a 4 × 4 symmetric matrix of linear forms in four indeter-
minates, the second order partial derivatives. The determinant of the matrix is the defining equation 
of the Hessian surface, which generically has 10 singular points at which the 3 × 3 minors of the 
matrix vanish. The cubic surfaces in (1) are special in that their Hessian surfaces have fewer than 10 
distinct singular points. Hence they lie on the specialization of the Hurwitz form above to Hessian 
matrices of cubic surfaces. This is a discriminant hypersurface in the space of cubic surfaces, which 
we call the Hessian discriminant. It divides the specialization of the Hurwitz form. The above paragraph 
implies the following.

Proposition 2.6. The Hessian discriminant is a hypersurface of degree at most 120 in the 20 coefficients of the 
cubic surfaces.

We obtain a test for a cubic surface having symmetric rank at most six as follows. If there exists 
a linear form l such that f + l3 has symmetric rank at most five, then f has symmetric rank at most 
six. To check that f has symmetric rank at most six, it suffices to check that neither discriminant 
vanishes identically on the set of cubic surfaces of the form f + l3, as l ranges over the linear forms. 
We first prove this for the discriminant of singular cubics via the following result, which is stated 
without proof in Segre (1942, §97).

Lemma 2.7. Let f ∈C[x1, x2, x3, x4] be a cubic surface with finitely many singular points. Then for a generic 
linear form l ∈C[x1, x2, x3, x4] the cubic surface f + l3 is non-singular.

Proof. A generic l satisfies l(p) �= 0 at all singular points p of f , since the plane perpendicular to the 
coefficients of l needs to avoid finitely many points. A singular point of g = f + l3 at which l(p) �= 0

must satisfy g(p) = 0, and 
(

∂ f
∂x1

|p : ∂ f
∂x2

|p : ∂ f
∂x3

|p : ∂ f
∂x4

|p

)
= (l1 : l2 : l3 : l4). The partial derivatives of f

as p varies over g = 0 parametrize a subset of P 3 of dimension at most two. Hence for generic l this 
equation will not be satisfied at any p on the surface g . �
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Remark 2.8. Lemma 2.7 can fail for surfaces with infinitely many singular points, such as x1(x1x2 +
x2

3 + x2
4) from Proposition 2.4. It is singular at (x1 : x2 : x3 : x4) = (0 : t1 : t2 : ±it2) for (t1 : t2) ∈ P 1. 

Every linear form l vanishes at a non-zero singular point of f and at that point f + l3 is also singular.

We now prove the following result concerning the Hessian discriminant, which uses computations 
in the computer algebra systems Macaulay2 (Grayson and Stillman), Magma (Bosma et al., 1997) and 
Maple.

Lemma 2.9. For all cubic surfaces with finitely many singular points, except those of singularity type E6, there 
exists a linear form l such that f + l3 does not lie on the Hessian discriminant.

Proof. We refer to the classification of cubic surfaces with finitely many singular points in Bruce 
and Wall (1979); Schmitt (1997). There are infinitely many normal forms, which fall into 20 classes 
according to the structure of the singularities. Thirteen classes have a single normal form represen-
tative. For these, we compute in Macaulay2 the ideal of singular points of the Hessian of f + l3 for 
random linear form l. For 12 classes, all except singularity type named E6 in Bruce and Wall (1979), 
this computation gives an ideal of degree 10 and f + l3 does not lie on the Hessian discriminant.

It remains to consider the seven classes from Schmitt (1997, Theorem 2) which are given in terms 
of parameters, f = f (ρ). We sample linear forms l and compute the discriminant of f (ρ) + l3. This 
is done by constructing the ideal of 3 × 3 minors of its Hessian matrix, and then projecting the 
ideal by eliminating all but one variable xi , and then taking the greatest common divisor of the 
projections (Sturmfels, 2002). This gives a polynomial condition in the parameters ρ in order that 
f (ρ) + l3 lies on the Hessian discriminant. We consider sufficiently many linear forms, one more than 
the number of parameters, in order that there does not exist a choice of parameters such that the 
Hessian discriminant vanishes at f (ρ) + l3 for all linear forms in the sample. In theory, any generic 
linear forms can be used. In practice, we choose linear forms for which the computation to form the 
discriminant is not prohibitively slow: the computation depends on the coefficients of f (ρ) + l3 so 
we aim for this polynomial to have as many zero coefficients as possible. To this end, we use linear 
forms with integer coefficients. We construct the discriminant using Macaulay2 or Maple, and check 
that no parameters satisfy all discriminants using Macaulay2 or Magma.

A good choice of linear form is l = 0 because no extra non-zero coefficients are introduced. The 
linear form l = 0 can be used because, if the Hessian discriminant does not vanish at f then it also 
does not vanish at f + l3 when l has sufficiently small coefficients. In some cases we consider enough 
linear forms such that the Hessian discriminant only vanishes at all f (ρ) + l3 for a finite number of 
parameters ρ , and then we check the remaining parameter values one by one in the same way as for 
the single normal form representatives. �

It remains to consider the singularity type E6, with normal form x2
1x4 + x1x2

3 + x3
2. Here we can see 

that the symmetric rank is at most six directly, since the normal form can be re-written as a sum of 
six linear powers,

1

6
x3

4 + 1

6
(2x1 + x4)

3 − 1

3
(x1 + x4)

3 + x3
2 − 1

2
(x1 + i√

3
x3)

3 − 1

2
(x1 − i√

3
x3)

3.

Hence we have proved the following.

Theorem 2.10. Cubic surfaces with finitely many singular points have symmetric rank at most six.

When the symmetric rank is at most six, the equality of rank and symmetric rank follows from 
Theorem 2.2, hence this concludes our proof of Theorem 1.3. To conclude the section we prove Corol-
lary 1.4.
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Proof of Corollary 1.4. By Theorem 1.3, it remains to consider tensors of flattening rank five or more. 
By Theorem 2.2, the rank and symmetric rank agree when the rank is at most the flattening rank plus 
one. Hence they agree up to rank six, and symmetric rank seven. �
3. Border ranks of cubic surfaces

The set of rank one n × n × n tensors and the set of rank one n × n × n symmetric tensors, up to 
scale, are respectively the Segre and Veronese varieties in complex projective space. We denote them 
by

Sn := Seg(Pn−1 × Pn−1 × Pn−1) and Vn := ν3(P
n−1).

The rth secant variety σr(Sn) consists of all tensors of non-symmetric border rank at most r. Like-
wise σr(Vn) consists of all tensors of symmetric border rank at most r (Landsberg, 2012). The linear 
subspace of symmetric tensors up to scale in Pn3−1 is denoted Ln .

We prove Theorem 1.5, that the border rank and symmetric border rank agree for cubic surfaces, 
by establishing the equality of σr(V 4) and σr(S4) ∩ L4 for all r. For symmetric n × n × n tensors, we 
prove Corollary 1.6, that the border rank and symmetric border rank agree up to symmetric border 
rank five, by showing that σr(Vn) = σr(Sn) ∩ Ln for all n whenever r ≤ 4.

3.1. Border ranks of cones over cubic curves

As for the rank result, we begin by considering cones over cubic curves. For such surfaces, with 
coefficients in K, we can apply a symmetric change of basis, via a matrix with entries in K, to en-
sure that only the top-left 3 ×3 ×3 block contains non-zero entries. The tensors in any approximating 
sequence can always be chosen to have this property, hence it suffices to consider cubic curves. The 
space of cubic curves is 10-dimensional. The secant varieties of the Veronese variety V 3 = ν3(P 2) are 
not defective, by the Alexander-Hirschowitz Theorem (Alexander and Hirschowitz, 1995). The dimen-
sions are

dim(V 3) = 2, dim(σ2(V 3)) = 5 dim(σ3(V 3)) = 8, dim(σ4(V 3)) = 10.

Since the fourth secant variety fills the space S3(C3), cubic curves have border rank ≤ 4.

Lemma 3.1. The border rank and symmetric border rank of cubic curves coincide.

Proof. We compare the equations defining the secant variety σr(V 3) with the symmetric restriction 
of the equations defining the non-symmetric secant σr(S3), for 1 ≤ r ≤ 4. The equations defining the 
Segre variety S3 are the 2 × 2 minors of all flattenings. Restricting these equations to symmetric 
tensors gives the equations defining V 3, the 2 × 2 minors of the most symmetric catalecticant. Simi-
larly σ2(S3) is given by the vanishing of the 3 × 3 minors of the flattenings. Restricting to symmetric 
tensors, we get the equations for σ2(V 3), the 3 × 3 minors of the most symmetric catalecticant. The 
equations defining σ3(S3) are Strassen’s commuting conditions. Restricting these to symmetric tensors 
recovers the Aronhold invariant which defines σ3(V 3), see Landsberg (2012, Exercise 3.10.1.2).

Cubic curves outside σ3(V 3) have non-symmetric border rank at least four, as they do not lie in 
the symmetric restriction of σ3(S3). Their non-symmetric border rank cannot exceed their symmetric 
border rank, so the non-symmetric border rank must be exactly four. �
3.2. Symmetric salmon equations

Finding ideal generators for the secant variety σ4(S4) is the salmon conjecture, posed by Allman in 
2007. In Bates and Oeding (2011); Friedland and Gross (2012), set-theoretic equations for the variety 
are found, although ideal-theoretic equations are not known. Here we obtain the prime ideal for 
σ4(V 4), a ‘symmetric salmon’ result.
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The description for the set σ4(S4) consists of equations in degrees five, six and nine. The degree 
five equations make a 1728-dimensional module. Restricting the equations in this module to sym-
metric tensors yields 36 linearly independent quintics in the coefficients of the cubic surfaces which 
vanish on the set σ4(V 4). One of the quintics is

16c2
1002c0201c2

0120 − 8c2
1002c0210c0120c0111 − 12c1011c1002c0201c0120c0111

+4c1011c1002c0210c2
0111 + c2

1011c0201c2
0111 + 4c1020c1002c0201c2

0111 + 4c1101c1002c0120c2
0111

−c1101c1011c3
0111 − 2c1110c1002c3

0111 + c2001c4
0111 + 8c1011c1002c0210c0120c0102

+4c2
1011c0201c0120c0102 − 16c1101c1002c2

0120c0102 − 4c2
1011c0210c0111c0102

−8c1020c1002c0210c0111c0102 − 4c1020c1011c0201c0111c0102 + 4c1101c1011c0120c0111c0102

+8c1110c1002c0120c0111c0102 + 2c1110c1011c2
0111c0102 − 8c2001c0120c2

0111c0102

+8c1020c1011c0210c2
0102 − 8c1110c1011c0120c2

0102 + 16c2001c2
0120c2

0102 + 16c2
1002c2

0210c0021

+8c1011c1002c0210c0201c0021 − 4c2
1011c2

0201c0021 − 16c1020c1002c2
0201c0021

+8c1101c1002c0201c0120c0021 − 12c1101c1002c0210c0111c0021 + 4c1101c1011c0201c0111c0021

+8c1110c1002c0201c0111c0021 + c2
1101c2

0111c0021 + 4c1200c1002c2
0111c0021

−8c2001c0201c2
0111c0021 − 4c1101c1011c0210c0102c0021 − 16c1110c1002c0210c0102c0021

+8c1101c1020c0201c0102c0021 + 16c1200c1002c0120c0102c0021 − 16c2001c0201c0120c0102c0021

−4c1110c1101c0111c0102c0021 − 4c1200c1011c0111c0102c0021 + 24c2001c0210c0111c0102c0021

+4c2
1110c2

0102c0021 − 16c1200c1020c2
0102c0021 − 4c2

1101c0201c2
0021 − 16c1200c1002c0201c2

0021

+16c2001c2
0201c2

0021 + 8c1200c1101c0102c2
0021 − 16c1011c1002c2

0210c0012

+16c1020c1002c0210c0201c0012 + 8c1020c1011c2
0201c0012 + 8c1101c1002c0210c0120c0012

−4c1101c1011c0201c0120c0012 − 16c1110c1002c0201c0120c0012 + 4c1101c1011c0210c0111c0012

+8c1110c1002c0210c0111c0012 − 4c1101c1020c0201c0111c0012 − 4c1110c1011c0201c0111c0012

−4c2
1101c0120c0111c0012 − 8c1200c1002c0120c0111c0012 + 24c2001c0201c0120c0111c0012

+2c1110c1101c2
0111c0012 − 8c2001c0210c2

0111c0012 − 8c1101c1020c0210c0102c0012

+8c1110c1011c0210c0102c0012 + 8c1110c1101c0120c0102c0012 − 8c1200c1011c0120c0102c0012

−16c2001c0210c0120c0102c0012 − 4c2
1110c0111c0102c0012 + 16c1200c1020c0111c0102c0012

+4c2
1101c0210c0021c0012 + 8c1200c1011c0201c0021c0012 − 16c2001c0210c0201c0021c0012

−4c1200c1101c0111c0021c0012 − 8c1110c1101c0210c2
0012 + 16c2001c2

0210c2
0012

+4c2
1110c0201c2

0012 − 16c1200c1020c0201c2
0012 + 8c1200c1101c0120c2

0012.

Proposition 3.2. The prime ideal of σ4(V 4) is generated by 36 quintics.

Proof. The 36 quintics are obtained by restricting the degree five salmon equations to symmetric 
tensors. Using symbolic computations in Macaulay2, they are shown to generate an ideal of degree at 
most 105 and codimension 4. This computation takes a few hours on a computer with a CPU clock 
speed of 2.3 GHz. Their ideal is Gorenstein, with symmetric minimal free resolution

R1 ← R36 ← R70 ← R36 ← R1 ← 0,

where R =C[c3000, . . . , c0003]. Using the numerical methods of Bertini (Bates et al., 2006), the highest 
dimensional component of the variety defined by the 36 quintics is shown to be irreducible, and to 
have degree 105. The Gorenstein property means the unmixedness theorem applies: there cannot 
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be lower-dimensional components. The zero set of the 36 quintics contains the codimension four 
set σ4(V 4) of symmetric border rank four tensors, and hence since the codimensions agree, and the 
former set is irreducible, they are equal as sets. Furthermore, the ideal generated by the 36 quintics 
is prime, hence they generate the ideal of σ4(V 4). �
Proposition 3.3. The 36 quintics defining σ4(V 4) are the irreducible module S5,4,4,2(C4).

Proof. Proposition 3.2 shows that σ4(V 4) is generated by 36 quintics. Since σ4(V 4) is invariant under 
GL4 action, the quintics are a GL4 module in the 42504-dimensional space of quintic polynomials 
in the coefficients of cubic surfaces, S5(S3C4). The GL4 modules in S5(S3C4) are a subset of those 
from (C4)⊗15. The irreducible modules of the latter are indexed by Young diagrams with 15 boxes 
and no more than four rows (Landsberg, 2012). We compute in SAGE (The Sage Developers, 2016)
which GL4-modules from (C4)⊗15 occur in the decomposition of S5(S3C4), by evaluating

s = SymmetricFunctions(QQ).schur(); s[5].plethysm(s[3])

and then selecting modules whose diagrams have at most four parts. We obtain

S5,4,4,2 ⊕ S6,4,4,1 ⊕ S6,5,2,2 ⊕ S6,6,3 ⊕ S7,4,2,2 ⊕ S7,4,3,1 ⊕ S7,4,4 ⊕ S7,5,2,1
⊕S7,6,2 ⊕ S8,3,2,2 ⊕ S8,4,2,1 ⊕ S8,4,3 ⊕ S8,5,2 ⊕ S8,6,1 ⊕ S9,2,2,2 ⊕ 2S9,4,2
⊕S9,6 ⊕ S10,3,2 ⊕ S10,4,1 ⊕ S10,5 ⊕ S11,2,2 ⊕ S11,4 ⊕ S12,3 ⊕ S13,2 ⊕ S15.

The numbers labeling each module are the length of the rows of the Young diagram. A highest weight 
vector analysis shows that the quintics are the 36-dimensional module S5,4,4,2C4. Alternatively, this 
is the only combination of irreducible modules of dimension 36. �
3.3. Proof of border rank results

Proposition 3.4. If the border rank and symmetric border rank agree for r × r × r tensors of border rank r, 
then they agree for n × n × n tensors of border rank r, for all n ≥ r.

Proof. The containment σr(Vn) ⊆ σr(Sn) ∩ Ln always holds. It remains to prove the opposite contain-
ment. We use the technique of inheritance (see Landsberg, 2012, Example 5.7.3.8 and §7.4). Equations 
for σr(Sn) consist of (r + 1) × (r + 1) minors of flattenings, and copies of equations for σr(Sr) ob-
tained by choosing a basis of size r in each factor Cn . The (r + 1) × (r + 1) minors intersect with Ln

to give the minors of the symmetric flattenings, while the equations for σr(Sr) intersect with Ln to 
give σr(Vr) by the hypothesis of the proposition. We can then compare with the equations for σr(Vn)

given in Landsberg (2012, Corollary 7.4.2.3). The equations are the (r + 1) × (r + 1) minors of the 
symmetric flattenings, as well as copies of equations for σr(Vr) given by choosing the same basis of 
size r in each factor Cn . All such choices of basis are covered by the non-symmetric choices in the 
equations for σr(Sn), hence this proves the reverse containment. �
Proof of Theorem 1.5. By the Alexander-Hirschowitz theorem (Alexander and Hirschowitz, 1995), the 
secant variety σ5(V 4) fills the space of symmetric 4 ×4 ×4 tensors. As in Lemma 3.1, we compare the 
equations defining the secant variety σr(V 4) with the symmetric restriction of the equations defining 
the non-symmetric secant σr(S4), for 1 ≤ r ≤ 5. The result for r = 1, 2, 3 follows from Lemma 3.1
combined with Proposition 3.4. When r = 4 the result follows from Proposition 3.2. Finally, all tensors 
outside of σ4(V 4) have symmetric complex border rank five. Proposition 3.2 implies that they must 
also have non-symmetric complex border rank five. �
Proof of Corollary 1.6. Theorem 1.5 combined with Proposition 3.4 shows that all tensors of border 
rank r also have symmetric border rank r, for 1 ≤ r ≤ 4. Consider a tensor of symmetric border rank 
five. Its border rank cannot be four by Theorem 1.5. Hence the border rank is also five. �
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4. Real ranks of cubic surfaces

We first prove the following, by combining results from the literature.

Proposition 4.1. Real rank and real symmetric rank coincide for generic real cubic surfaces.

Proof. A generic real cubic surface has complex rank five, f = l31 + l32 + l33 + l34 + l35. The linear forms li

define five planes in P 3 that comprise Sylvester’s pentahedron. The triple intersections of the planes 
are the singular points of the Hessian surface. Since f has real coefficients, so does its Hessian surface, 
and the singular points of the Hessian occur in complex conjugate pairs. Hence the complex linear 
forms appearing in the decomposition of f also occur in complex conjugate pairs. There can be zero, 
one, or two complex conjugate pairs in the decomposition. A cubic l3 + l3, where l is complex and l
its complex conjugate, has real symmetric rank three. Hence in the first two cases the real symmetric 
rank is bounded above by six. In Bernardi et al. (2018), the authors show that the symmetric rank of 
the third case is also at most six, and therefore that a generic real cubic surface has real symmetric 
rank five or six. Generic cubic surfaces have flattening rank four, hence we can apply Theorem 2.2, 
which also holds over the field R, to conclude that the real symmetric and non-symmetric ranks 
coincide up to rank five, and hence up to symmetric rank six. �

We consider special cubic surfaces in more detail, starting with cones over cubic curves.

Proposition 4.2. Real rank and real symmetric rank coincide for cones over cubic curves.

Proof. Such surfaces have flattening rank at most three. We apply a general linear group transforma-
tion to obtain a real symmetric tensor with non-zero entries only in its top-left 3 × 3 × 3 block, and 
we study the cone as a cubic curve. Using Theorem 2.2, equality of real rank and real symmetric rank 
holds whenever the real symmetric rank is at most two more than the flattening rank. To conclude 
the proof, we check that all real cubic curves have this property (Banchi, 2015, Table 1). �

It remains to consider cubic surfaces of maximal flattening rank and, by Theorem 2.2, those of real 
symmetric rank at least seven. Among such non-generic cubic surfaces, one family are the reducible 
surfaces, for which ranges of real ranks are given in Carlini et al. (2016). We revisit the reducible real 
cubic surface from Proposition 2.4 from the perspective of real rank.

Proposition 4.3. The cubic surface f = x1(x1x2 + x2
3 + x2

4) has real non-symmetric rank and real symmetric 
rank seven.

Proof. The surface can be written as

f = −x2
1

(
2

3
x1 − x2 + x3 + x4

)
+ 1

3

(
(x1 + x3)

3 − x3
3 + (x1 + x4)

3 − x3
4

)
.

The first term has real symmetric rank three. The remaining terms are expanded as a real symmetric 
rank four decomposition. This gives an upper bound of seven. Equality follows from the lower bound 
in Proposition 2.4. �

We introduce a tool for obtaining lower bounds on the real non-symmetric rank of a tensor. It is 
the real analogue to the substitution method in Theorem 2.3.

Theorem 4.4 (The substitution method over R). Let T ∈Rn1 ⊗Rn2 ⊗Rn3 be a tensor of real rank r. We can 
write T in terms of its slices as T = ∑n1

i=1 ei ⊗ Mi , where {ei : 1 ≤ i ≤ n1} are the elementary basis vectors, and 
the Mi are n2 ×n3 real matrices. Reordering indices such that Mn1 �= 0, there exist real constants λ1, . . . , λn1−1

such that the following (n1 − 1) × n2 × n3 real tensor has real rank at most r − 1:
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n1−1∑
i=1

ei ⊗ (Mi − λi Mn1).

If the matrix Mn1 has rank one, the real tensor above has real rank exactly r − 1.

Proof. Assume T has real rank r, with real rank decomposition T = T1 + · · · + Tr . We can express 
each rank one tensor in the decomposition as Tk = ∑n1

i=1 μkiei ⊗ Lk where the μki are real scalars 
and Lk is a rank one real matrix. The slices of T can then be expressed as Mi = ∑r

k=1 μki Lk . By the 
assumption that Mn1 is non-zero, we can reorder the terms in the decomposition such that μrn1 �= 0. 
Setting λi = μri , the tensor 

∑n1−1
i=1 ei ⊗ (Mi − λi Mn1) has all slices expressible as a linear combination 

of L1, . . . , Lr−1, and hence it has real rank at most r − 1. The last sentence follows from the fact that 
if Mn1 has rank one, subtracting multiples of it can change the real rank by at most one. �

We illustrate Theorem 4.4 on the reducible cubic surface f = x1(x2
1 − x2

2 − x2
3 − x2

4). It has real 
symmetric rank seven, and complex rank six (Carlini et al., 2016). Since the real and complex ranks 
differ, the usual substitution method in Theorem 2.3 does not give a tight lower bound on the real 
rank. We use the real substitution method to bound the real rank below by seven, and hence to 
conclude that the real rank and real symmetric rank agree.

Proposition 4.5. The cubic surface f = x1(x2
1 − x2

2 − x2
3 − x2

4) has real rank and real symmetric rank seven.

Proof. The statement about the symmetric rank is in Carlini et al. (2016). For the lower bound on the 
non-symmetric rank, we use Theorem 4.4. For computational convenience we scale the cubic, leaving 
the rank unchanged, to x1(x2

1 − 3x2
2 − 3x2

3 − 3x2
4) or, as a tensor,

e1 ⊗

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ + e2 ⊗

⎡
⎢⎢⎣

0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

+ e3 ⊗

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ + e4 ⊗

⎡
⎢⎢⎣

0 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 0

⎤
⎥⎥⎦ .

We subtract off an arbitrary multiple of the slices of the tensor to give a 4 × 4 × 2, 4 × 2 × 2, and 
finally a 2 × 2 × 2 tensor. We show that there do not exist real multiples that can be subtracted to 
give a tensor of zeros. If the pairs of slices we subtract are linearly independent, Theorem 4.4 then 
implies that the real non-symmetric rank of f is at least 1 + 2 + 2 + 2 = 7.

Subtracting off three pairs of slices of f in multiples si, ti, ui, vi, wi, xi , where i = 1, 2 denotes 
which of the two slices we subtract from, gives the 2 × 2 × 2 tensor with slices

[
s1u1 + t1 v1 + t1x1 − v1x1 + 1 s2u1 + t2 v1 + t2x1 − w1

s1u2 + t1 v2 − v2x1 − w1 s2u2 + t2 v2 − 1

]
,

[
t1x2 − v1x2 + s1 − u1 t2x2 + s2 − w2

−v2x2 − u2 − w2 0

]
.

We show that the ideal generated by the eight entries does not contain any real points. Eliminating 
w1, w2, x1, x2, t1, t2 gives the hypersurface (s2u1 + s1u2)

2 + (s1 − u1)
2 + (s2 + u2)

2 + (s2 v1 + u2 v1 +
s1 v2 − u1 v2)

2 = 0. Over the reals, this is zero if and only if the individual squares in the sum vanish, 
hence s1 = u1 and s2 = −u2. The ideal obtained by eliminating w1, w2, x1, x2, v2 then has equation 
(t2u1 + t1u2)

2 + (u1u2 − t2 v1)
2 + t2

1 + t2
2 + u2

1 + u2
2 = −1, which has no real solutions. This concludes 

the main case.
It remains to consider the case when some pairs of slices of the tensor are linearly dependent. The 

first and second pairs of slices we subtract are always linearly independent, taking us to a 4 × 2 × 2
tensor whose real rank is four less than that of f . The third pair of slices are dependent only if 
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t1 = v1 and t2 = −v2. The result then follows as above, by choosing a different pair of slices to 
subtract, unless s1 = u1 and s2 = −u2. In this case, the 4 × 2 × 2 tensor has four slices spanned by

M1 =
[

s1u1 + t1 v1 + 1 s2u1 + t2 v1
s1u2 + t1 v2 s2u2 + t2 v2 − 1

]
and M2 =

[
0 1
1 0

]
,

with first slice a scalar multiple of M1, and the remaining three slices scalar multiples of M2. There 
does not exist a real multiple of M2 that can be subtracted from M1 to give a rank one matrix, 
because det(M1 − w1M2) = −(u2 v1 − u1 v2)

2 − u2
1 − u2

2 − v2
1 − v2

2 − w2
1 − 1 = 0 has no solutions over 

the reals. By Theorem 4.4, the real rank of the 4 × 2 × 2 tensor is at least three. Hence we obtain an 
overall lower bound of 3 + 2 + 2 = 7 on the real rank. �

We saw above that every real cubic surface is arbitrarily close to one of real symmetric rank five 
or six. The real rank five locus is separated from the real rank six locus by a degree 40 hypersur-
face (Michalek and Moon, 2018). We are interested in the real analogue of Theorem 1.5: to show that 
the real border rank and real symmetric border rank agree. Generic tensors have the same real rank 
as real border rank, hence their real border rank and real symmetric border rank agree by Proposi-
tion 4.1. To conclude the paper, we prove the following result.

Proposition 4.6. Real border rank and real symmetric border rank coincide for all cubic surfaces of sub-generic 
real symmetric border rank.

Proof. The set of real rank one tensors is closed, so we begin by considering a cubic surface of 
real border rank two. Such cubic surfaces lie in the real rank two locus, shown in Seigal and Sturmfels
(2017) to be defined by the non-negativity of the hyperdeterminant of all 2 ×2 ×2 blocks. The locus of 
real symmetric border rank two tensors is contained in this set, being described by the non-negativity 
of the diagonal (symmetric) 2 × 2 × 2 blocks (Seigal and Sturmfels, 2017). All diagonal combinations 
occur among the non-symmetric inequalities, hence the two sets are equal.

We now consider real border rank three cubic surfaces. Since the flattening rank is bounded above 
by the border rank, the flattening rank is at most three and we can change coordinates, as in the 
previous sections, to consider f as a plane cubic curve. From Theorem 1.5, it suffices to consider the 
orbits in Banchi (2015, Table 1-2) of cubic curves whose complex (symmetric) border rank is strictly 
less than their real symmetric border rank. This applies to only one orbit, which has border rank two, 
hence it is covered by the first paragraph. Finally, assume f is a cubic surface with real symmetric 
border rank four. The real non-symmetric border rank cannot be strictly less than four by the above 
cases. �

The results in this section constitute progress towards the real rank analogues of Theorem 1.3 and 
Theorem 1.5. Completing the real rank version of Theorem 1.3 requires proving the equality of real 
rank and real symmetric rank for singular irreducible cubic surfaces, and non-singular cubic surfaces 
for which Theorem 2.1 fails to give a decomposition. To prove Theorem 1.5 for real border rank, it 
remains to consider cubic surfaces whose rank and border rank differ, having real border rank five or 
six.

We conclude the paper by posing two questions for future study. The counter-example to Comon’s 
conjecture in Shitov (2018) is a tensor of size 800 × 800 × 800 and symmetric rank at least 904. The 
result in Theorem 1.3 gives the agreement of (complex) rank and symmetric rank for all tensors of 
size n × n × n where n ≤ 4. This suggests the question of finding a tensor of size n × n × n, with n
minimal, whose rank and symmetric rank differ. These results combine to show that 5 ≤ n ≤ 800. This 
is relevant in determining whether rank and symmetric rank agree for the sizes of tensors occurring 
in a particular application. Corollary 1.4 gives the agreement of (complex) rank and symmetric rank 
for all tensors of symmetric rank at most seven. This suggests the question of finding a tensor of 
symmetric rank r, with r minimal, whose rank and symmetric rank differ. We provide a lower bound 
of eight while Shitov (2018) implies an upper bound of 906.
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