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By Anna Seigal

Factorizations break an object into build-
ing blocks that we can understand and 

interpret: e.g., a number into primes, a vari-
ety into irreducible components, or a matrix 
into rank-one summands. This process 
underpins classical paradigms for data anal-
ysis, including principal component analy-
sis (PCA) via the eigendecomposition. But 
because modern datasets record informa-
tion from various contexts and modalities, 
classical factorizations no longer suffice to 
analyze them. Can new factorizations hold 
the key to human-interpretable understand-
ing of today’s complex systems?

Mathematically, the challenge involves 
factoring an interconnected collection of 
matrices or tensors, which is achievable 
through algebraic insights. Here, I will 
recap three classical factorizations in tra-
ditional data analysis tools and present 
two new factorizations for the analysis of 
multi-context data.

The following is a general framework for 
data analysis. We model observed random 
variables X  as an unknown mixture of 
unknown latent (unobserved) random vari-
ables Z  (see Figure 1). When the mixture 
occurs via a linear map A, then X AZ= . The 
factors A and Z  are both unknown.

Our goal is to recover the mixing matrix 
A and latent variables Z  from samples of 
X. The building blocks A and Z  define 
components that explain structure in the data 
— for example, identifying gene modules 
in gene expression data, separating signal 
from artifacts (such as eye blinks) in elec-
troencephalogram data, and providing axes 
for visualization in dimensionality reduction.

We recover the latent variables Z  and 
mixing map A by turning the relationship 
X AZ=  into a factorization problem. The 
first cumulant of X  is its mean and the 
second is its covariance: the p p´  positive 
semidefinite matrix SX that records at entry 
( , )i j  the way in which variables Xi and Xj 
vary together. The relationship X AZ=  
implies that the covariance matrices of X  
and Z  relate via congruence action

                    Σ ΣX ZA A= .

When SX  is known and SZ  and A are 
unknown, this is a matrix factorization 
problem. In practice, we do not have 
access to the true SX  and instead work 
with the sample covariance matrix,1 which 
is denoted by S. Classical data analysis 
tools live in this factorization framework, 
as I will demonstrate next.

PCA Is the Eigendecomposition
In PCA, observed variables are an 

orthogonal transformation of uncorrelated 
latent variables (see Figure 2a). So 

                       S VDV= ,

where the columns of V  are the prin-
cipal components—which express each 
latent variable as a linear combination of 
observed variables—and D is a diagonal 

1  For data x x( ) ( ),...,1 n pÎ  that are 
mean-centered, the sample covariance is 
the average of the outer products of the data 
points: 

texts. This process requires new factoriza-
tions, as evidenced by the following two 
examples.

Linear Causal Disentanglement 
Is the Partial Order QR 
Decomposition

The three preceding methods assume 
uncorrelated latent variables. In contrast, 
causal disentanglement is an area of 
machine learning that seeks latent variables 
with causal dependencies between them. 
In linear casual disentanglement (LCD), 
observed variables X  are a linear transfor-
mation of latent variables Z  that follow an 
LSEM (see Figure 3a) [6]. The covariance 
therefore has factorization

     ΣX A I B D I B A= − −− −( ) ( ) .1  

Too many parameters exist for unique recov-
ery from SX . Instead, LCD is appropriate 
for data that are observed under multiple 
contexts that are related via interventions on 
a latent variable. We characterize the number 
of required contexts for identifiability and 
give an algorithm to recover the parameters. 
To do so, we define the partial order QR 
factorization: a version of the QR factoriza-
tion3 for matrices whose columns observe a 
partial order rather than the usual total order.

Contrastive ICA Is Coupled 
Tensor Decomposition

To describe a foreground dataset (i.e., 
an experimental group) relative to a back-
ground dataset (i.e., a control group), we 
attempt to jointly model variables across 
the two contexts. In contrastive ICA [8], 
we model the foreground and background 
as two related ICA models (see Figure 3b). 
The d th cumulants of the foreground and 
background are respectively
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We jointly factorize the two cumulant ten-
sors. For matrices, we can always take a 
best low-rank approximation to be a sum of 
orthogonal terms. However, this is no lon-
ger true for tensors; we must find a tradeoff 
between accuracy and orthogonality. We 
first use the subspace power method [4] for 
accuracy, then incorporate a new hierarchi-
cal tensor decomposition for orthogonality.

3  The QR factorization writes a matrix as 
the product of an orthogonal multiplied by an 
upper triangular matrix.

As datasets increase in richness, their 
complexity presents an opportunity for 
mathematicians to reveal the structure in 
modern data by advancing and applying the 
mathematics of factorizations. There are 
many open directions, including the devel-
opment of linear and multilinear algebra 
ideas to establish the existence and unique-
ness of new factorizations, sample complex-
ity investigations, numerical algorithms, and 
extensions to nonlinear transformations.
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matrix that records the variance of the 
latent variables. The eigendecomposition 
proves that a real symmetric matrix has 
such a factorization (V  is the matrix of 
eigenvectors and D is their eigenvalues), 
and that it is unique for general S.

Linear Structural Equation Models 
Are the LDL Decomposition

We can model variables X  to relate via 
noisy linear dependencies: X BX Z= +  
(see Figure 2b). In such a linear struc-
tural equation model (LSEM), bij  is the 
effect of variable Xj on Xi and Z  is a 
vector of exogenous noise variables (typi-
cally assumed to be independent) [10]. We 
usually further assume that the dependen-
cies follow a directed acyclic graph, where 
bij= 0 unless j i®  is an edge in the graph. 
It is then possible to reorder the variables to 
make B  strictly lower triangular. We obtain 
X AZ=  for A I B= − −( ) 1 and hence

  
          

S I B D I B= − −− −( ) ( ) ,1 

where D records the variances of the latent 
variables. This is the LDL decomposition.

In both of the previous examples, the 
latent variables have diagonal covariance 
because they are uncorrelated. But the fac-
torization ADA would not be unique 
without additional structure on A, which 
is orthogonal in PCA and becomes lower 
triangular in the LSEM. This extra structure 
makes the factorization unique; the unique-
ness of the eigenvectors v or weights bij  
aids downstream analysis.

I have only focused on covariance so 
far, but a distribution has a dth cumu-
lant2 kd X( ) for any positive integer d. If 
X AZ= , then the cumulants relate via a 
higher-order congruence action 

                k kd dX A Z( ) • ( ),=

which specializes to matrix congruence when 
d=2. For the p p p p´ ´ ´  cumulant (i.e., 
kurtosis tensor), the ( , , , )i j k l  entry of k4( )X  
is Σ ′ ′ ′ ′= ′ ′ ′ ′ ′ ′ ′ ′i j k l

q
ii jj kk ll i j k la a a a Z, , , ( ( )) .1 4k  The 

tensor kd X( ) is known (or estimated from 
data), while A and Z  are unknown. This is 
now a tensor factorization.

Independent Component   
Analysis Is Symmetric        
Tensor Decomposition

Independent variables have diagonal 
cumulants. If X AZ=  for independent 
variables Zi, then the congruence transfor-
mation yields
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where ai is the i th column of A and li is the 
d th cumulant of Zi . This is the usual sym-
metric tensor factorization. Under the corre-
spondence between symmetric tensors and 
homogeneous polynomials, the factoriza-
tion seeks to decompose a polynomial into a 
sum of powers of linear forms — a method 
that dates back to the 19th century [7]. We 
can impose additional structure on A, such 
as orthogonality [11] or A I= − −( )Λ 1 [5], 
but doing so is not required; the uniqueness 
of tensor factorization [1] makes inde-

pendent component analysis (ICA) 
identifiable for general matrices A, 
including in the “overcomplete” 
case when q p>  [2, 3, 9].

We have now explored the fac-
torizations behind three classical 
tools. In today’s experiments, we 
aim to understand systems by col-
lecting data across a range of con-

2  The d th order cumulant 
is the tensor of order d  terms in 
t = …( , ),t t

p1
 in the cumulant gener-

ating function log (exp( )). tX
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Figure 1. Observed variables X  are describable via 
latent variables Z. Figure courtesy of the author.

Figure 2. Connections between variables in classical data analysis methods. 2a. In principal 
component analysis, observed variables are an orthogonal transformation of uncorrelated 
variables. In independent component analysis, they are a linear transformation of independent 
variables. 2b. In a linear structural equation model, observed variables relate linearly — each 
with an independent latent variable to model noise. Figure courtesy of the author.

Figure 3. Connections between variables in two new data analysis methods. 3a. In linear 
casual disentanglement, observed variables X  are a linear transformation of latent variables 
with causal dependencies between them. 3b. In contrastive independent component analysis, 
observed variables are a linear transformation of independent latent variables, some of which 
only appear in the foreground (those connected via green arrows). Figure courtesy of the author.


