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We lower bound the rank of a tensor by a linear combination 
of the ranks of three of its unfoldings, using Sylvester’s rank 
inequality. In a similar way, we lower bound the symmetric rank by 
a linear combination of the symmetric ranks of three unfoldings. 
Lower bounds on the rank and symmetric rank of tensors are 
important for finding counterexamples to Comon’s conjecture. A 
real counterexample to Comon’s conjecture is a tensor whose real 
rank and real symmetric rank differ. Previously, only one real 
counterexample was known, constructed in a paper of Shitov. We 
divide the construction into three steps. The first step involves 
linear spaces of binary tensors. The second step considers a linear 
space of larger decomposable tensors. The third step is to verify a 
conjecture that lower bounds the symmetric rank, on a tensor of 
interest. We use the construction to build an order six real tensor 
whose real rank and real symmetric rank differ.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Tensors are multidimensional arrays. We consider real tensors T ∈ RI1 ⊗ · · · ⊗RId , where RI j is 
the vector space with basis elements indexed by the set I j . After fixing a basis for each vector space, 
the tensor T is a multidimensional array of 

∏d
j=1 I j real entries. The entry of T at (k1, . . . , kd) ∈

I1 × · · · × Id is denoted T (k1| . . . |kd). The number of indices d is called the order of T . Tensors 
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appear in statistics (Anandkumar et al., 2013, 2014; McCullagh, 2018; Robeva and Seigal, 2019; Bi 
et al., 2021), complexity theory (Bürgisser and Ikenmeyer, 2011; Landsberg, 2017), biological data 
analysis (GTEx Consortium, 2015; Hore et al., 2016; Subramanian et al., 2017; Schürch et al., 2020; 
Ahern et al., 2021), and many other applications.

A tensor T ∈ (RI )⊗d is symmetric if its entries are unchanged under permuting indices; i.e., if 
T (k1| . . . |kd) = T (σ (k1)| . . . |σ(kd)) for σ any permutation of d letters. For example, the moment ten-
sors of probability distributions and the higher order derivatives of smooth functions are symmetric 
tensors. There is a natural correspondence between symmetric tensors in (RI )⊗d and homogeneous 
polynomials of degree d in |I| variables with coefficients in R. The bijection is

T ↔
∑

k1,...,kd∈I

T (k1| . . . |kd)xk1 · · · xkd .

We will refer to a symmetric tensor and its corresponding polynomial interchangeably. In this paper, 
we consider tensor ranks defined over the real numbers. These can be greater than those over the 
complex numbers, see e.g. Comon et al. (2008, Example 8.3).

Definition 1.1. A tensor T is decomposable (or has rank at most one) if there exist vectors v j ∈RI j for 
all j ∈ {1, . . . , d} such that

T (k1| . . . |kd) = v1(k1) · · · vd(kd).

The rank rkT is the minimal r such that T can be written as the sum of r decomposable tensors. For 
symmetric T , the symmetric rank srkT is the minimal r such that T can be written as the sum of r
symmetric decomposable tensors.

Writing a tensor as a sum of rank one terms decomposes it into building blocks that can be inter-
preted in a context of interest, such as recovering parameters in a mixture model (Lim and Comon, 
2009; Anandkumar et al., 2014; Sullivant, 2018) and counting the multiplications in an optimal algo-
rithm for a linear operator (Landsberg, 2017). The symmetric rank appears in independent component 
analysis while the rank arises in multiway factor analysis (Comon et al., 2008).

There are many numerical algorithms to decompose a tensor (Vervliet et al., 2016; Kolda and 
Bader, 2006). However, there are few exact tools and it is difficult to find the exact rank or symmetric 
rank of a tensor (Håstad, 1989; Hillar and Lim, 2013; Landsberg, 2012). The main challenge is to find 
lower bounds for the rank, since an upper bound is obtained by exhibiting a decomposition. Known 
methods to lower bound the rank of a tensor that apply in general are the substitution method (Bür-
gisser et al., 2013), lower bounding by the rank of a flattening or unfolding (Landsberg, 2012), and 
using the singularities of a hypersurface defined by the tensor (Landsberg and Teitler, 2010).

The rank and symmetric rank coincide for a symmetric matrix; i.e., for an order two tensor. The 
rank can be found from a matrix decomposition such as the eigendecomposition and singular value 
decomposition. The question of whether the rank and symmetric rank are always equal for higher 
order tensors was posed by Comon. First results for the agreement of rank and symmetric rank were 
given in Comon et al. (2008). The assertion that the rank and symmetric rank of a tensor always 
agree is known as Comon’s conjecture. There has been significant progress into Comon’s conjecture, 
see e.g. Friedland (2016); Zhang et al. (2016). The conjecture has also been posed for tensors over 
other fields (Zheng et al., 2020), for partially symmetric decompositions (Gesmundo et al., 2019), and 
for the border rank of a tensor (Buczyński et al., 2013), which may differ from the rank (De Silva and 
Lim, 2008).

However, Comon’s conjecture was disproved, via construction of a complex counterexample (Shi-
tov, 2018) and a real counterexample (Shitov, 2020). These two counterexamples demonstrate how 
linear algebra along the different indices of a tensor can combine in unintuitive ways. Shitov (2018)
constructs a symmetric 800 × 800 × 800 tensor with complex rank 903 and complex symmet-
ric rank at least 904. Shitov (2020) shows the existence of a real symmetric tensor of format 
208 × 208 × 208 × 208, with rank 761 and symmetric rank 762. To date, these large tensors are the 
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only known counterexamples. In comparison, the agreement of rank and symmetric rank was shown 
for small tensors in Seigal (2019, 2020). The problem of finding a minimal size, or minimal rank, 
counterexample to Comon’s conjecture remains unsolved. The border rank analogue to the conjecture 
also remains open.

In this paper, our first main contribution is to give new lower bounds on the rank and symmetric 
rank of a tensor. To state the lower bounds, we first recall the standard notions of flattenings and 
slices of a tensor.

Definition 1.2 (Flattenings). Fix T ∈RI1 ⊗· · ·⊗RId and a subset J ⊂ [d]. The J flattening of T , denoted 
T ( J ) , is a matrix with rows indexed by × j∈ J I j and columns indexed by ×h/∈ J Ih . The entry of T ( J )

at row index (k j : j ∈ J ) and column index (kh : h /∈ J ) is T (k1| . . . |kd). For J = ∅ we obtain a vector 

T (∅) ∈R
∏d

j=1 I j . We call this vector the vectorisation of T and denote it by VectT .

A partition [d] = J1 ∪· · ·∪ Jδ gives an order δ unfolding of T , whose entry at ((k j : j ∈ J1), . . . , (k j :
j ∈ Jδ)) is T (k1| . . . |kd). The J flattening is the case [d] = J ∪ J c .

Definition 1.3 (Slices). Given T ∈RI1 ⊗ · · · ⊗RId , its ith j slice T j
i ∈RI1 ⊗ · · · ⊗RI j−1 ⊗RI j+1 ⊗ · · · ⊗

RId is obtained by fixing the jth index of T to take value i,

T j
i (k1|k2| . . . |k j−1|k j+1| . . . |kd−1|kd) = T (k1|k2| . . . |k j−1|i|k j+1| . . . |kd−1|kd).

Fixing i = (i j : j ∈ J ) ∈ × j∈ J I j for J ⊂ [d], the ith J slice T J
i ∈ ⊗h/∈ JRIh is obtained by fixing index j

to take value i j , for all j ∈ J .

The columns of the flattening T ( J ) are the vectorisations of the slices T J c

i , where J c = [d]\ J and 
i ranges over ×h/∈ J Ih .

To state our first main contribution, we give the following new definitions.

Definition 1.4. The J th slice space L J ⊂ ⊗ j∈ JRI j is the span of {T J c

i : i ∈ ×h/∈ J Ih}; i.e., the span of the 
tensors whose vectorisations appear as the columns of T ( J ) .

Definition 1.5. The J th decomposable flattening rank of T , denoted drk J T , is the smallest r such that 
there exist r decomposable tensors in ⊗ j∈ JRI j whose linear span contains the slice space L J .

We note the comparison with decompositions to compute the strength of a tensor (Bik et al., 
2019), which depend on indexing sets that may vary from one summand to the next.

For a symmetric tensor T ∈ (RI )⊗d , the flattening T ( J ) only depends on J via j = | J |, so we 
abbreviate T ( J ) to T ( j) . Similarly, we abbreviate L J to L j and drk J T to drk j T .

Definition 1.6. The jth symmetric decomposable flattening rank of T ( j) , denoted sdrk j T , is the smallest 
r such that there exist r symmetric decomposable tensors in (RI )⊗ j that span the slice space L j .

Remark 1.7. Definition 1.6, with R replaced by C, is the jth gradient rank from Gesmundo et al. 
(2019, Definition 1.2). However, Definition 1.6 differs from the decomposable symmetric rank in Ro-
dríguez (2021), the smallest r such that a symmetric tensor can be written as the sum of r tensors of 
the form 1

d!
∑

σ∈Sd
zσ(1) ⊗ · · · ⊗ zσ(d) .

Our first main result is the following lower bounds on the rank and symmetric rank.
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Theorem 1.8. Let T be an order d tensor, and fix J ⊂ [d], with J c := [d]\ J and j = | J |. Then

rkT ≥ drk J T + drk J c T − rkT ( J ).

If T is symmetric then

srkT ≥ sdrk j T + sdrkd− j T − rkT ( j).

Theorem 1.8 gives a tight lower bound on the rank of the quaternary quartic polynomial (or, sym-
metric 4 × 4 × 4 × 4 tensor)

x4 − 3y4 + 12x2 yz + 12xy2 w, (1)

see Corollary 3.10 and Proposition 4.1. The coefficients ensure integer entries in the tensor. This 
polynomial is the starting point to the construction of a real counterexample to Comon’s conjec-
ture from Shitov (2020). A tight lower bound is not possible via the substitution method, by lower 
bounding by the rank of a single unfolding, or using the lower bound in Landsberg and Teitler (2010).

Shitov (2020) constructs an order four counterexample to Comon’s conjecture. He also gives a 
framework for the construction of counterexamples to Comon’s conjecture. We make a small sim-
plification, removing the need for two conditions. We break down the construction into three steps. 
The last step is to prove a conjecture to lower bound the real symmetric rank of a tensor of interest. 
This conjecture (Conjecture 3.17) is the real analogue to Shitov (2018, Conjecture 6). Proving Conjec-
ture 3.17 would give a clearer path to finding more counterexamples to Comon’s conjecture. Shitov 
(2020) writes that the construction potentially allows one to construct counterexamples for tensors 
of any even order d ≥ 4. Our second main result is to resolve the next case d = 6 using combinatorial 
and linear algebraic arguments.

Theorem 1.9. There is an order six real tensor whose rank and symmetric rank differ.

The rest of this paper is organised as follows. We outline preliminaries in Section 2. We prove 
Theorem 1.8 in Section 3, where we also state Conjecture 3.17 and use Theorem 1.8 to prove it in 
special cases. In Section 4 we describe three steps to construct a counterexample to Comon’s conjec-
ture, extracted from Shitov (2020). We construct an order six counterexample in Section 5, with some 
proofs given in Appendix A. We conclude with some open problems.

2. Preliminaries

For background on tensors see Landsberg (2012) and Hackbusch (2012). Recall the definitions of 
flattenings and slices from Definitions 1.2 and 1.3.

Theorem 2.1 (The real substitution method, see Alexeev et al. (2011, Lemma B.1), Seigal (2020, Theorem 
4.4), Shitov (2020, Lemma 4.6)). Fix T ∈ RI1 ⊗ · · · ⊗ RId with j slices T j

1 , · · · , T j
n , where I j = [n]. There 

exist c1, . . . , cn−1 ∈R such that

rkT ≥ rk(T j
1 + c1T j

n | · · · |T j
n−1 + cn−1T j

n ) + 1.

Equality holds if the slice T j
n is decomposable.

Following Shitov (2020, Section 4), we define some linear operations on tensors. We keep most 
notation consistent with Shitov (2020). Fix C ∈ RI1 ⊗ · · · ⊗ RId and consider d finite sets of order 
(d − 1) tensors

M j ⊂RI1 ⊗ · · · ⊗RI j−1 ⊗RI j+1 ⊗ · · · ⊗RId , j ∈ {1, . . . ,d}.
We index the tensors in M j by the set W j .
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Fig. 1. Illustration of Definition 2.2. Three sets M j are adjoined to a tensor in RI1 ⊗RI2 ⊗RI3 to produce a tensor in RI1∪W1 ⊗
RI2∪W2 ⊗RI3∪W3 .

Definition 2.2 (Adjoining slices to a tensor, see Shitov, 2020, Definitions 4.7 and 4.8). The adjoining of 
M1, . . . , Md to C is the tensor

T := Adjoin(C,M1, . . . ,Md) ∈RI1∪W1 ⊗ · · · ⊗RId∪Wd ,

with entries

1. T (k1| . . . |kd) = C(k1| . . . |kd) if k j ∈ I j for all j ∈ {1, . . . , d}
2. T (k1| . . . |k j−1|w|k j+1| . . . |kd) =M(w)

j (k1| . . . |k j−1|k j+1| . . . |kd) if kh ∈ Ih for all h 	= j and w ∈ W j , 
where M(w)

j is the tensor in M j indexed by w .
3. T (k1| . . . |kd) = 0 otherwise, i.e. if k j /∈ I j , for more than one j ∈ {1, . . . , d}.

See Fig. 1 for an illustration. If I := I1 = . . . = Id and M :=M1 = . . . =Md is a finite set of tensors 
indexed by W , the symmetric adjoining of M to C is

SAdj(C,M) := Adjoin(C,M, . . . ,M) ∈ (RI∪W )⊗d.

Definition 2.3 (Shitov, 2020, Definition 4.4). The set C mod(M1, . . . , Md) is the linear space of tensors 
obtained from C by adding an element of SpanM j to every j slice of C, for all j ∈ {1, . . . , d}. That is, 
C mod(M1, . . . , Md) is the space of tensors with entries

C(k1| . . . |kd) + M(k1)
1 (k2| . . . |kd) + M(k2)

2 (k1|k3| . . . |kd) + · · · + M(kd)

d (k1| . . . |kd−1),

where M
(k j)

j ∈ SpanM j for all j ∈ {1, . . . , d} and all k j ∈ I j . If I1 = . . . = Id and M :=M1 = . . . =Md , 
we define C modM := C mod(M, . . . , M). The elements of SpanM added to each of the j slices of C
need not be the same.

Given a set of tensors A, define min rkA to be the minimal rank of a tensor in A. We have the 
following consequence of Theorem 2.1.

Corollary 2.4 (Shitov, 2020, Lemma 4.10). Fix C and M1, . . . , Md as above. Then

rk Adjoin(C,M1, . . . ,Md) ≥ min rk (Cmod(M1, . . . ,Md)) +
d∑

j=1

dim SpanM j.

Equality holds if each linear space SpanM j has a basis of decomposable tensors.
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3. Lower bounds on the rank and symmetric rank

In this section, we study the decomposable flattening rank and symmetric decomposable flattening 
rank, from Definitions 1.5 and 1.6. We combine the notions with Sylvester’s rank inequality to prove 
Theorem 1.8. This result enables us to find the rank of a tensor by studying the decomposable matrices 
in a certain linear space. We see in examples that our new lower bounds can improve on existing 
lower bounds. We discuss a symmetric analogue to the real substitution method in Conjecture 3.17. 
Although we focus on real ranks, much of what we discuss extends to complex ranks.

3.1. Decomposable flattening rank

Recall the definitions of flattenings from Definition 1.2, the slice space from Definition 1.4, and the 
decomposable flattening rank from Definition 1.5.

Example 3.1. Let T = x3 y. Then rkT = 4 (Comon et al., 2008, Proposition 5.6). We have

T (2) =

⎛
⎜⎜⎝

0 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and L2 =

{(
a1 a2
a2 0

)
| a1,a2 ∈R

}
.

Observe that rkT (2) = 2. Moreover, drk2T ∈ {2, 3}, since the space of 2 × 2 symmetric matrices has 
dimension 3. Assume drk2T = 2, for contradiction. Then L2 ⊆ 〈M1, M2〉 for some decomposable 
M1, M2 ∈ R2×2. Since L2 is two-dimensional, this containment is an equality, hence M1, M2 ∈ L2. 
But any decomposable matrix in L2 has a2 = 0, hence M1 and M2 are collinear, a contradiction. 
Hence drk2T = 3. For this example, rkT (2) < drk2T < rkT .

Proposition 3.2. The decomposable flattening rank drk J T is the rank of the order | J | + 1 unfolding of T
whose | J | + 1 slices are {T ( J c)

i | i ∈ ×h/∈ J Ih}.

Proof. Denote the order | J | + 1 unfolding by S. Let {U1, . . . , Ur} be decomposable tensors whose 
span contains L J , where r = drk J T . Each T ( J c)

i can then be written as a linear combination of 
U1, . . . , Ur , say T ( J c)

i = ∑r
k=1 c(k)

i Uk . These linear combinations combine to give an expression for S
as a sum of r decomposable tensors

S=
∑

i∈×h/∈ J Ih

r∑
k=1

c(k)

i Uk ⊗ ei =
r∑

k=1

Uk ⊗
⎛
⎝ ∑

i∈×h/∈ J Ih

c(h)

i ei

⎞
⎠ . (2)

Hence rkS ≤ drk J T . Conversely, if S is the sum of r′ decomposable tensors {x(1)
i ⊗ . . . ⊗ x(| J |+1)

i | i ∈
{1, . . . , r′}}, then each | J | + 1 slice of S lies in 〈x(1)

i ⊗ . . . ⊗ x(| J |)
i | i ∈ {1, . . . , r′}〉, hence rkS ≥ drk J T . 

In conclusion, drk J T = rkS. �
Proposition 3.3. Fix T ∈RI1 ⊗ · · · ⊗RId and J ⊂ [d]. Then

(i) We have rkT ( J ) ≤ drk J T ≤ rkT ,

(ii) If | J | = 1 then drk J T = rkT ( J ) ,

(iii) If | J | = d − 1 then drk J T = rkT , and

(iv) If J ′ ⊂ J ⊂ [d] then drk J ′ T ≤ drk J T .

Proof. Any decomposition of a tensor gives a decomposition of its unfoldings. Statements (i)-(iv) then 
follow from Proposition 3.2. �
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The inequalities in Proposition 3.3 can be strict, see Example 3.1 and the following.

Example 3.4. Set T = x4 y, J ′ = {1, 2} and J = {1, 2, 3}. Then drk J ′ T = 3 and drk J T = 4, as follows. 
The slice spaces are

L J ′ = 〈xy, x2〉 and L J = 〈x2 y, x3〉.
The slice space L J ′ appeared in Example 3.1, so drk J ′ T = 3. We have drk J T ∈ {3, 4}, since x2 y has 
rank 3 and x3 has rank 1. But any rank 3 decomposition of x2 y does not contain x3 in its span, see 
Lemma 3.21, so drk J T = 4.

The decomposable flattening rank can be studied via the ideal of decomposable tensors in a linear 
space. This gives lower bounds on the difference drk J T − rkT ( J ) . We saw this idea in Example 3.1. 
We illustrate the approach on (1), a larger example.

Proposition 3.5. Fix T = x4 − 3y4 + 12x2 yz + 12xy2 w. Then drk2T = sdrk2T = 9.

Proof. The slice space is L2 = 〈x2, xy, y2, xz − yw, yz, xw〉 or, in coordinates,

L2 =
〈⎛
⎜⎜⎝

a1 a2 a4 a6
a2 a3 a5 −a4
a4 a5 0 0
a6 −a4 0 0

⎞
⎟⎟⎠ | a1, . . . ,a6 ∈R

〉
⊂ R4×4. (3)

The nine symmetric decomposable matrices x2, (x + y)2, y2, (x + z)2, (x + w)2, (y + z)2, (y + w)2, z2, 
w2 span L2, hence sdrk2T ≤ 9. It remains to show that drk2T ≥ 9.

The decomposable rank drk2T is the smallest r such that r rank one 4 × 4 matrices span L2. Let 
K denote the span of these rank one matrices. If dimK = 6, then every matrix in K is also in L2. 
But a decomposable matrix in L2 has a4 = a5 = a6 = 0, and such matrices do not span L2. Hence 
dimK > 6.

We extend this argument to show that dimK > 8. If dimK ≤ 8, then K is spanned by L2 together 
with two other rank one matrices. Then every element of K is⎛

⎜⎜⎝
a1 a2 a4 a6
a2 a3 a5 −a4
a4 a5 0 0
a6 −a4 0 0

⎞
⎟⎟⎠ + a7

⎛
⎜⎜⎝

x11
x12
x13
x14

⎞
⎟⎟⎠ ⊗

⎛
⎜⎜⎝

x21
x22
x23
x24

⎞
⎟⎟⎠ + a8

⎛
⎜⎜⎝

y11
y12
y13
y14

⎞
⎟⎟⎠ ⊗

⎛
⎜⎜⎝

y21
y22
y23
y24

⎞
⎟⎟⎠ (4)

for fixed x11, . . . , x24 and variable coefficients a1, . . . , a8. Consider the decomposable matrices of the 
form (4). The ideal of 2 × 2 minors contains

a7a8(x14 y13 − x13 y14)(x24 y23 − x23 y24).

If x24 y23 −x23 y24 = 0, then the lower-right 2 ×2 block of any matrix in K has both rows proportional 
to 

(
x23 x24

)
. A decomposable matrix in K therefore has top right 2 ×2 block with rows proportional 

to 
(

x23 x24
)
. But K contains L2, which contains matrices with rank two top right 2 × 2 block 

(e.g. a5 = a6 = 1, all other ai = 0). This is a contradiction to x24 y23 − x23 y24 = 0. By symmetry, this 
argument also excludes x14 y13 − x13 y14 = 0. Hence a7a8 = 0. This argument also shows that we need 
at least two extra matrices to span K , hence dimK > 7.

We now consider decomposable matrices as in (4) with a7 	= 0 and a8 = 0. Then

a4x14 = a6x13, a5x14 = −a4x13, a4x24 = a6x23, a5x24 = −a4x23. (5)

Hence a4 = a5 = a6 = 0 or a4a5a6 	= 0. If a4 = a5 = a6 = 0, then the matrix must be
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a7

⎛
⎜⎜⎝

x11
x12
x13
x14

⎞
⎟⎟⎠ ⊗

⎛
⎜⎜⎝

x21
x22
x23
x24

⎞
⎟⎟⎠ . (6)

If a4a5a6 	= 0, the vectors 
(

x13 x14
)

and 
(

x23 x24
)

are linearly dependent, by (5). Rescaling one 
of the x vectors, we may assume x13 = x23 and x14 = x24. Moreover, (5) allows us to set a4 = x13α, 
a6 = x14α, and a5 = − x2

13α

x14
, for some α 	= 0. Without loss of generality a7 = 1. Then the matrix is

⎛
⎜⎜⎝

α + x11

− x2
13

x14
α + x12

x13
x14

⎞
⎟⎟⎠ ⊗

⎛
⎜⎜⎝

α + x21

− x2
13α

x14
+ x22

x13
x14

⎞
⎟⎟⎠ = M0 + αM1 + α2M2

where Mi are fixed matrices with entries given in terms of x11, . . . , x24. The span of such matrices 
has dimension at most 3. Moreover, the matrix M0 is of the form (6). Hence, after combining with 
the case a4a5a6 = 0, we still have a space of matrices of dimension at most 3. Similarly, the span 
of the space of decomposable matrices with a7 = 0 and a8 	= 0 has dimension at most 3. Denote 
the linear spaces spanned by the decomposable matrices in (4) with (a7 	= 0, a8 = 0), (a7 = 0, a8 	=
0), (a7 = 0, a8 = 0) by X, Y, and Z respectively. Then K = X + Y + Z. Our assumption is that 
dim(X +Y+Z) ≤ 8 and we have already ruled out dim(X +Y+Z) ≤ 7.

We show that dim(X + Y) − dim((X + Y) ∩ Z)) ≤ 4. If dimX = 3 then M2 = v⊗2
x ∈ X, where 

vx = (
1 −x2

13/x14 0 0
)
. This M2 has zeros outside of its top left 2 × 2 block, so it also lies in 

Z. Hence dim(X ∩Z) ≥ 1. Similarly, if dimY = 3 then dim(Y ∩Z) ≥ 1, since v⊗2
y ∈ Y ∩Z, where 

v y = (
1 −y2

13/y14 0 0
)
. Hence if dimX = dimY = 3, then dim((X +Y) ∩Z) ≥ 2, if v⊗2

x and v⊗2
y

are linearly independent. If v⊗2
x and v⊗2

y are linearly dependent, then dim(X +Y) ≤ 5 and dim((X +
Y) ∩Z) ≥ 1. Hence, in all cases, dim(X +Y) − dim((X +Y) ∩Z)) ≤ 4.

The previous paragraph, together with dimZ ≤ 3, implies that dimK ≤ 7, since dim(X +Y+Z) ≤
dim(X +Y) − dim((X +Y) ∩Z)) + dimZ. This is our required contradiction, hence drk2T ≥ 9. �
3.2. Sylvester’s rank inequality

We use the decomposable flattening rank to lower bound the rank of a tensor, by combining it 
with Sylvester’s rank inequality.

Theorem 3.6 (Sylvester’s rank inequality). For matrices A ∈Rm×n and B ∈Rn×k,

rk AB ≥ rk A + rk B − n.

The inequality gives the first lower bound in Theorem 1.8, which we restate here.

Theorem 3.7. Let T be an order d tensor, and fix J ⊂ [d], with J c = [d]\ J . Then

rkT ≥ drk J T + drk J c T − rkT ( J ).

Proof. Set r := rkT and fix a decomposition T = ∑r
i=1 x(1)

i ⊗ · · · ⊗ x(d)
i . Without loss of generality 

J = {1, . . . , j}. Then,

T ( J ) =
r∑

i=1

Vect(x(1)
i ⊗ · · · ⊗ x( j)

i ) ⊗ Vect(x( j+1)

i ⊗ · · · ⊗ x(d)
i ) = U S, (7)
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where U is the (I1 · · · I j) × r matrix with ith column Vect(x(1)
i ⊗· · ·⊗ x( j)

i ), and S is the r × (I j+1 · · · Id)

matrix with ith row Vect(x( j+1)

i ⊗· · ·⊗ x(d)
i ). Applying Sylvester’s rank inequality to (7) gives rkT ( J ) ≥

rk U + rk S − r.
Every column of T ( J ) is a linear combination of the columns of U , which are decomposable. 

Choose a subset of the columns of U that are linearly independent. This gives an expression for each 
column of T ( J ) as a linear combination of rk U (vectorised) decomposable tensors. Hence rk U ≥
drk J T . Similarly, each row of T ( J ) (i.e. each column of T ( J c)) is a linear combination of the rows of 
S . The rows of S are (vectorised) decomposable tensors, hence rk S ≥ drk J c T . In conclusion, rkT ( J ) ≥
drk J T + drk J c T − r. �
Remark 3.8. Theorem 3.7 gives inequalities among the ranks of certain unfoldings of a tensor. Given 
T ∈RI1 ⊗ · · · ⊗RId , the unfoldings of T are indexed by partitions of [d], see Wang et al. (2017) and 
the discussion after Definition 1.2. Let J = {1, . . . , j}, for ease of notation. Then Theorem 3.7 compares 
the flattening indexed by partition {1, . . . , j} ∪ { j + 1, . . . , d} with the unfoldings of {1} ∪ . . . ∪ { j} ∪
{ j + 1, . . . , d} and {1, . . . , j} ∪ { j + 1} ∪ . . . ∪ {d}.

Remark 3.9. There are other applications of Sylvester’s rank inequality in the study of tensor rank. It 
is used to show that the rank of a generic tensor is equal to the rank of its (I1 · · · I j) × (I j+1 · · · Id)

flattening, provided rkT ≤ min(I1 · · · I j, I j+1 · · · Id), in Calvi et al. (2019, Equation (17)). It is used in 
the study of CUR decomposition (Mahoney and Drineas, 2009) of tensors in Cai et al. (2021). It is 
used in multilinear rank decompositions in Domanov and Lathauwer (2020) and in the context of 
orthogonal tensor decomposition in Anandkumar et al. (2013).

We return to polynomial (1). Later, we will see that the following lower bound holds with equality.

Corollary 3.10. The tensor T = x4 − 3y4 + 12x2 yz + 12xy2 w has rkT ≥ 12.

Proof. Theorem 3.7 gives rkT ≥ 2 drk2T − rkT (2) . We have drk2T = 9, by Proposition 3.5. The slice 
space L2 in (3) is six-dimensional, i.e. flattening T (2) ∈R16×16 has rank 6. Hence r ≥ 18 −6 = 12. �
3.3. Symmetric decomposable rank

Recall the symmetric decomposable flattening rank from Definition 1.6.

Proposition 3.11. For 1 ≤ j ≤ d, we have rkT ( j) ≤ drk j T ≤ sdrk j T ≤ srkT .

Proof. The inequality drk j T ≤ sdrk j T follows from the definitions and rkT ( j) ≤ drk j T is in Propo-

sition 3.3. Let r := srkT with 
{

x⊗d
i | i ∈ {1, . . . , r}

}
tensors in a symmetric decomposition of T . Then, {

x⊗ j
i | i ∈ {1, . . . , r}

}
spans the slice space L j , and is a set of symmetric decomposable tensors, so 

sdrk j T ≤ srkT . �
The ( j, 1) partially symmetric rank of an order j + 1 tensor is the smallest r such that the tensor 

can be written as a linear combination of decomposable tensors of the form x⊗ j ⊗ y, see Gesmundo 
et al. (2019). The following is proved for j = d − 1, and for ranks defined over the complex numbers, 
in Gesmundo et al. (2019, Corollary 2.5).

Proposition 3.12. The symmetric decomposable flattening rank sdrk j T is the ( j, 1) partially symmetric rank 
of the order j + 1 tensor whose j + 1 slices are the order j slices of T .

Proof. Let {U1, . . . , Ur} be symmetric decomposable tensors whose linear span contains L j , where 
r = sdrk j T . Let S ∈ (RI )⊗ j ⊗ RId− j

be the order j + 1 tensor from the statement. Each j + 1 slice 
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of S is a linear combination of the Ui . This gives an expression for S as the sum of r terms, as 
in (2), with the required symmetry. Conversely, if S has partially symmetric rank r′ , then S is a 
linear combination of decomposable tensors {x⊗ j

i ⊗ yi | i ∈ {1, . . . , r′}}. Each j + 1 slice is spanned by 
{x⊗ j

i | i ∈ {1, . . . , r′}}, which means r′ ≥ sdrk j T . Hence, sdrk j T = rkS. �
As in the non-symmetric case, we combine the symmetric decomposable flattening rank with 

Sylvester’s rank inequality to lower bound the symmetric rank. This gives the second inequality from 
Theorem 1.8, which we restate here.

Theorem 3.13. Let T be an order d symmetric tensor, and fix 1 ≤ j ≤ d. Then

srkT ≥ sdrk j T + sdrkd− j T − rkT ( j).

Proof. Write r := srkT and T = ∑r
i=1 λi x

⊗d
i , where the λi are non-zero scalars. Then

T ( j) =
⎛
⎝ ↑ ↑

Vect(x⊗ j
1 ) · · · Vect(x⊗ j

r )

↓ ↓

⎞
⎠

⎛
⎜⎝

λ1
. . .

λr

⎞
⎟⎠

⎛
⎜⎜⎝

← Vect(x⊗(d− j)
1 ) →
...

← Vect(x⊗(d− j)
r ) →

⎞
⎟⎟⎠

= U � S.

By Sylvester’s rank inequality, rkT ( j) ≥ rk U + rk(�S) − r = rk U + rk S − r. As in the proof of Theo-
rem 3.7, we have rk U ≥ sdrk j T and rk S ≥ sdrkd− j T . �
3.4. Minimal rank and minimal symmetric rank

Given a set of tensors A, recall that min rkA is the minimal rank of a tensor in A. Its symmetric 
analogue min srkA is the minimal symmetric rank of a symmetric tensor in A. In this section, we 
compare min rkA and min srkA.

Proposition 3.14. If min srkA ≤ 1 then min srkA = min rkA.

Proof. If min rkA = 0, the zero tensor lies in A. Since the zero tensor is symmetric, this implies 
min srkA = 0. Hence min srkA > 0 implies min rkA > 0. The inequality min rkA ≤ min srkA then 
shows that min srkA = 1 implies min rkA = 1. �

We describe a linear space of tensors C modM with min rk(C modM) strictly less than 
min srk(C modM). This example is extracted from Shitov (2020, Section 5).

Proposition 3.15. Let C := x4 − 3y4 and M := {x2 y, xy2}. Then min rk(C modM) < min srk(C modM).

Proof. We show that the linear space of tensors C modM contains a decomposable tensor but no 
symmetric decomposable tensor. A symmetric tensor in C modM

x4 − 3y4 + x2 y(ax + by) + xy2(cx + dy), for some a,b, c,d ∈R. (8)

A symmetric decomposable 2 × 2 × 2 × 2 tensor with coefficient of x4 equal to 1 can be written as

(x + αy)4 = x4 + 4αx3 y + 6α2x2 y2 + 4α3xy3 + α4 y4. (9)

Equating the coefficient of y4 in (8) and (9) gives α4 = −3, which has no real solutions. Hence 
min srk(C modM) ≥ 2.
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We show that min rk(C modM) ≤ 1. Adding xy2 + x2 y to the first 4 slice and −3(xy2 + x2 y) to 
the second 4 slice of C gives the 2 × 2 × 2 × 2 tensor with 4 slices[

1 1 1 1
1 1 1 0

]
and

[
0 −3 −3 −3

−3 −3 −3 −3

]
. (10)

Starting with a tensor of zeros, adding x2 y in multiples a1, a2, a3, and a4 to the first 1 slice, 2 slice, 
3 slice, and 4 slice respectively gives the tensor with 4 slices[

0 a2 a3 0
a1 0 0 0

]
and

[
a4 0 0 0
0 0 0 0

]
, (11)

where ai := (
∑4

j=1 a j) − ai . Similarly, adding xy2 in multiples b1, b2, b3, and b4 to the second 1 slice, 
2 slice, 3 slice, and 4 slice respectively gives the tensor with 4 slices[

0 0 0 0
0 0 0 b4

]
and

[
0 0 0 b1

0 b3 b2 0

]
, (12)

where bi := (
∑4

j=1 b j) − bi . The sum of (10), (11), and (12) is decomposable when (a1, a2, a3, a4) =
(−1, −1, −1, 2) and (b1, b2, b3, b4) = ( 1

3 , 13 , 13 , − 2
3 ). �

Remark 3.16. Proposition 3.15 generalises to C = xd − 3yd , M = {xd−2 y, . . . , xyd−2} for any even d ≥
4, as follows. The comparison of (8) and (9) generalises to give min srk(C modM) = 2. Moreover, 
min rk(C modM) = 1, see Shitov (2020, Lemma 5.11). These results also hold for C = xd −kyd , for any 
k ∈R>0.

3.5. The symmetric substitution conjecture

We use the minimal rank and minimal symmetric rank to study tensors SAdj(C, M), see Defini-
tion 2.2. We have, by Corollary 2.4,

rk SAdj(C,M) ≥ min rk(CmodM) + d dim SpanM.

We conjecture its symmetric analogue, the real analogue to Shitov (2018, Conjecture 7).

Conjecture 3.17 (The real symmetric substitution conjecture). Fix a symmetric tensor C ∈ (RI )⊗d and a finite 
set of symmetric tensors M ⊂ (RI )⊗(d−1) . Then

srk SAdj(C,M) ≥ min srk(CmodM) + d dim SpanM.

Equality holds if M consists of decomposable tensors.

Proposition 3.18. Fix a symmetric tensor C ∈ (RI )⊗d, with M ⊂ (RI )⊗(d−1) a finite set of symmetric decom-
posable tensors. Then

srk SAdj(C,M) ≤ min srk(CmodM) + d dim SpanM.

Proof. Let k := dim SpanM. Reorder so that the first k tensors in M are linearly independent and 
denote the ith tensor in M by v⊗(d−1)

i . Let T ∈ (RI )⊗d be a tensor of minimal symmetric rank in 
C modM. We view T as a tensor in (RI∪W )⊗d under the inclusion of index sets I ⊂ I ∪ W , this is 
called padding in Shitov (2020, Definition 7.6). Then

SAdj(C,M) = T +
k∑(

v⊗(d−1)
i ⊗ w(d)

i + · · · + w(1)
i ⊗ v⊗(d−1)

i

)
, (13)
i=1

79



K. Wang and A. Seigal Journal of Symbolic Computation 118 (2023) 69–92
for some w( j)
i ∈RI∪W , where i ∈ {1, . . . , k} and j ∈ {1, . . . , d}. Permuting indices in (13) gives another 

expression for the symmetric tensor SAdj(C, M). Averaging over all rotations of indices, gives

SAdj(C,M) = T +
k∑

i=1

�d−1
vi

�wi , (14)

where the coefficients of �vi and �wi are the vectors vi and wi = 1
d (w(1)

i + · · · + w(d)
i ). Each ten-

sor �d−1
vi

�wi has symmetric rank d, since vi 	= wi . The symmetric rank of SAdj(C, M) is therefore at 
most rkT + dk. �
Proposition 3.19. If min srk(C modM) ≤ 1 then Conjecture 3.17 holds.

Proof. Corollary 2.4 gives rk SAdj(C, M) ≥ min rk(C modM) + d dim SpanM. This is the lower bound 
in the conjecture, since min rk(C modM) = min srk(C modM) by Proposition 3.14. Equality when M
consists of decomposable tensors is Proposition 3.18. �

When the tensors in M are decomposable, (14) is an expression for SAdj(C, M), where T is a 
tensor of minimal symmetric rank in C modM. Since the linear powers {�d−1

vi
| i ∈ {1, . . . , k}} are 

a basis of M, they are linearly independent. The linear forms {�wi | i ∈ {1, . . . , k}} are also linearly 
independent, since their coordinates in W give the coefficient of v⊗(d−1)

i in each element of M. In 
the presence of further linear independence assumptions, we can prove Conjecture 3.17.

Proposition 3.20. Fix SAdj(C, M) = T + ∑k
i=1 �d−1

vi
�wi , where T = ∑r

j=1 x⊗d
j is a tensor of minimal sym-

metric rank in C modM. If the linear forms �vi , �wi , x j are all linearly independent, for i ∈ {1, . . . , k} and 
j ∈ {1, . . . , r}, then Conjecture 3.17 holds.

Proof. As in the proof of Proposition 3.18, we view T ∈ (RI )⊗d as a tensor in (RI∪W )⊗d . Complex 
rank lower bounds real rank. The complex symmetric rank of 

∑r
i=1 x⊗d

i + ∑k
i=1 �d−1

vi
�wi is r + dk, by 

Carlini et al. (2012, Theorem 3.2), since it is a sum of coprime monomials, r of rank one and k of rank 
d. �
3.6. Comparison of lower bounds

Theorem 1.8 gives lower bounds on the rank and symmetric rank of a tensor, by combining the de-
composable flattening rank with Sylvester’s rank inequality. In this section, we compare these lower 
bounds to those of the substitution method (Theorem 2.1 and Conjecture 3.17). We see that Theo-
rem 1.8 can prove Conjecture 3.17 in special cases. We also compare to the lower bounds from a 
single unfolding and to Landsberg and Teitler (2010).

Lemma 3.21. Fix f = xd−1(αx + dy). The rank d symmetric decompositions of f are

d∑
i=1

(λi x + y)d∏
j: j 	=i(λi − λ j)

, where λ1, ..., λd ∈R are distinct and α =
d∑

i=1

λi .

Proof. The polynomial xd−1 y has rank d (Comon et al., 2008, Proposition 5.6). Hence f has rank d for 
all α, since the rank is unchanged by invertible change of basis. This means there does not exist a rank 
d decomposition of f with summand λxd: if there were, we would have a symmetric decomposition 
of xd−1((α−λ)x +dy) of rank d −1. Hence we restrict to decompositions 

∑d
i=1 μi(λi x + y)d , for scalars 

μi and λi . Equating coefficients, finding a decomposition is equivalent to finding a linear relation, with 
non-zero coefficient of the first row, among the rows of the (d + 1) × (d + 1) matrix
80



K. Wang and A. Seigal Journal of Symbolic Computation 118 (2023) 69–92
A =

⎛
⎜⎜⎜⎝

α 1 0 · · · 0
λd

1 λd−1
1 λd−2

1 · · · 1
...

...

λd
d λd−1

d λd−2
d · · · 1

⎞
⎟⎟⎟⎠ . Let B =

⎛
⎜⎝

λd
1 λd−2

1 . . . 1
...

...

λd
d λd−2

d . . . 1

⎞
⎟⎠ ,

then det A = α det V − det B , where V is the d × d Vandermonde matrix. The ratio det B
det V is (λ1 + · · · +

λd), as follows. Both det B and det V are alternating functions, with det B degree one higher than 
det V . Hence their ratio is a symmetric function of degree 1, a scalar multiple of (λ1 + · · · + λd). It 
remains to compare coefficients to see that the scalar multiple is one. Hence det A = (α − (λ1 + . . . +
λd)) det V , cf. Comon et al. (2008, Proposition 5.6).

The condition α = λ1 + · · · + λd holds on the component of the solution that uses a non-zero 
multiple of the first row. To find μ1, . . . , μd , we write

(
μ1 μ2 . . . μd

)
⎛
⎜⎝

λd−1
1 λd−2

1 . . . 1
...

...

λd−1
d λd−2

d . . . 1

⎞
⎟⎠ = (

1 0 . . . 0
)

By Cramer’s rule, we conclude that μi = (−1)i+1 det Ai1
det A = (

∏
j: j 	=i(λ j − λi))

−1 where Aij is the sub-
matrix of A with ith row and jth column deleted. �
Proposition 3.22. Assume d = 2δ is even, let M = {v⊗(d−1)}, and let T = ∑r

j=1 x⊗d
j be a tensor of minimal 

symmetric rank in C modM. If x⊗δ
1 , . . . , x⊗δ

r , v⊗δ are linearly independent, then Conjecture 3.17 holds for 
SAdj(C, M).

Proof. Let U = SAdj(C, M). Conjecture 3.17 is the inequality srkU ≥ r +d, since dim SpanM = 1. We 
write U = ∑r

j=1 x⊗d
j + vd−1 w , where vd−1 w is shorthand for v⊗(d−1) ⊗ w + v⊗(d−2) ⊗ w ⊗ v + · · · +

w ⊗ v⊗(d−1) . The slice space of order δ slices of U is

Lδ = 〈 x⊗δ
1 , . . . , x⊗δ

r , v⊗δ, vδ−1 w〉.
The vector w is not in 〈x1, . . . , xr, v〉, since it has a non-zero component along the adjoined basis 
vector. Hence Lδ is a linear space of dimension r + 2, i.e. rkU(δ) = r + 2. We therefore have the 
inequality srkU ≥ 2 sdrkδU− (r + 2), by Theorem 1.8. It remains to show that sdrkδU ≥ r + δ + 1. At 
least r + 1 rank one tensors are needed to span the subspace 〈x⊗δ

1 , . . . , x⊗δ
r , v⊗δ〉, since all the rank 

one tensors appearing in it are linearly independent, by assumption. It remains to consider vδ−1 w .
A decomposition of vδ−1 w must have at least δ linearly independent rank one terms, by 

Lemma 3.21. Project the decomposition to the subspace 〈v, w〉 and consider it in the basis {v, w}. 
In at least δ terms in the decomposition, the vector w has non-zero coefficient, by the proof of 
Lemma 3.21. Each of these δ terms are not in the span of the others, hence sdrkδU ≥ r + 1 + δ. �
Remark 3.23. We explain how Theorem 1.8 might prove Conjecture 3.17 for k := dim SpanM > 1. We 
need to show that at least r + k(δ + 1) decomposable symmetric tensors are needed to span Lδ . The 
idea is to show that each new rank δ tensor vi

δ−1 wi from (14) requires at least δ new decomposable 
tensors. The challenge is to rule out the possibility of overlap between the different decompositions.

Both Theorem 1.8 and the substitution method (Theorem 2.1) lower bound the rank of a tensor in 
terms of the rank of tensors of strictly smaller size or order. In both approaches, there is a trade-off: 
larger, higher order tensors may give better lower bounds, but it is more difficult to find their rank.

We compare Theorem 1.8 to the substitution method for the tensor T = x4 − 3y4 + 12x2 yz +
12xy2 w from (1). We see that Theorem 1.8 can give a better lower bound than the substitution 
method. Corollary 3.10 explains how Theorem 1.8 gives a lower bound of 12 on the rank of T . (Later, 
we will see that this bound holds with equality.) The lower bound is obtained via a study of a linear 
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space of matrices, i.e. an order three tensor. This is a better bound than can be obtained by using the 
substitution method to get an order three tensor from T via the subtraction of slices.

Proposition 3.24. Using the substitution method to reduce T = x4 − 3y4 + 12x2 yz + 12xy2 w to an order 
three tensor gives, at best, the lower bound rkT ≥ 11.

Proof. In the substitution method, the order in which slices are subtracted does not impact the lower 
bound obtained. Hence we consider the minimum rank in a linear space of tensors spanned by the 4
slices of T . The slices are cubics proportional to

Tx = x3 + 6xyz + 3y2z, Ty = −y3 + x2z + 2xyw, Tz = x2 y, Tw = xy2.

In the linear space, the coefficient of one of the four slices must be 1, see Theorem 2.1. Hence the 
lower bound is at best 3 + max{rkTx, rkTy, rkTz, rkTw}. We have srk xyz = 4 and srk y2z = 3, so 
rkTx ≤ 3 + 4 + 1 = 8. Similarly, rkTy ≤ 8. Moreover rkTz = rkTw = 3. Hence the lower bound we 
obtain is at best 3 + 8 = 11. �
Remark 3.25. We consider other ways to lower bound rkT for the tensor T in (1). The highest rank 
unfolding corresponds to the partition {1, 2} ∪ {3} ∪ {4}. Its rank is drk2T , which is 9 by Propo-
sition 3.5. The lower bound from Landsberg and Teitler (2010, Theorem 1.3) is, in the notation 
of Landsberg and Teitler (2010), at best φ2,2 + dim	s + 1 = 6 + 1 + 1 = 8.

4. Constructing tensors whose rank and symmetric rank differ

A real counterexample to Comon’s conjecture over the real numbers is a real tensor whose (real) 
rank and symmetric rank differ. The only previously known example is from Shitov (2020). In this 
section, we organise the results of Shitov (2020) into three steps

Step 1. Find C ∈ (RI )⊗d symmetric and M ⊂ (RI )⊗(d−1) a finite set of symmetric tensors with

min rk(CmodM) < min srk(CmodM). (15)

Step 2. Modify C and M so that (15) still holds and M consists of decomposable tensors.
Step 3. Prove Conjecture 3.17 for SAdj(C, M).

If these three steps hold, then T := SAdj(C, M) has

rkT = min rk(CmodM) + dk < min srk(CmodM) + dk = srkT ,

where k = dim SpanM and the first equality is from Corollary 2.4. We use the results of Shitov (2020)
to show that the three steps hold on a family of examples. We prove accompanying results to high-
light the importance of the choices made in the construction.

4.1. Step 1

We saw an example of a symmetric tensor C ∈ (R2)⊗4 and finite set of symmetric tensors M ⊂
(R2)⊗3 with min rk(C modM) < min srk(C modM) in Proposition 3.15, namely C = x4 − 3y4 and 
M = {x2 y, xy2}. For this C and M,

T := SAdj(C,M) = x4 − 3y4 + 12x2 yz + 12xy2 w

is the polynomial from (1). Since min rk(C modM) and min srk(C modM) differ, Corollary 2.4 and 
Conjecture 3.17 give different lower bounds on the rank and symmetric rank of T . Corollary 2.4 gives 
rkT ≥ 9 and Conjecture 3.17 gives srkT ≥ 10. However, neither lower bound holds with equality and 
T is not a tensor whose rank and symmetric rank differ.
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Proposition 4.1. Fix T = x4 − 3y4 + 12x2 yz + 12xy2 w. Then rkT = srkT = 12.

Proof. Corollary 3.10 showed rkT ≥ 12. Here we show that srkT ≤ 12, using the Apolarity Lemma, 
see e.g. Carlini et al. (2017, Lemma 2.1) or Iarrobino and Kanev (1999, Lemma 1.15). We examine 
the structure of the apolar ideal of T to impose structure on a possible rank 12 decomposition. This 
reduces the number of parameters in the decomposition, making it feasible to find a solution.

The two polynomials f (x, y, z) := x4 + 12x2 yz and g(x, y, w) := −3y4 + 12xy2 w have the same 
symmetric rank, since g(y, x, −3z) = −3 f (x, y, z). Since T = f + g , it suffices to show that srk f ≤ 6. 
By the apolarity lemma, we seek vanishing ideals of points that are contained in the apolar ideal

f ⊥ = 〈x5, y2, z2, x3 − xyz, x3 y, x3z〉.
Since y2 and z2 are contained in f ⊥ , we have y2 − a2z2 = (y − az)(y + az) ∈ f ⊥ for all constants a. 
We restrict our attention to ideals of points that are contained in y2 − a2z2 for fixed a. That is, we 
look for a decomposition f = ∑6

i=1 λi�
4
i , where �i = bi x ± ay + z. We equate coefficients of f and the 

decomposition

f =
3∑

i=1

λi(bi x + ay + z)4 +
6∑

i=4

λi(bi x − ay + z)4 (16)

and set (b1, b2, b4, b5) = (1, 2, 1, 3). The system of equations can then be solved in mathematica or 
Macaulay2 to give a = −3 and the rank six decomposition

f = 1

24
(x − 3y + z)4 − 1

30
(2x − 3y + z)4 − 1

120
(−3x − 3y + z)4

− 1

60
(x + 3y + z)4 + 1

84
(3x + 3y + z)4 + 1

210
(−4x + 3y + z)4 .

When looking for a general rank six decomposition, rather than one of the restricted form (16), our 
computation did not terminate. �
4.2. Step 2

We seek to modify C and M so that the lower bounds from Corollary 2.4 and Conjecture 3.17 hold 
with equality. Equality holds (or is conjectured to hold) when the adjoined tensors are decomposable. 
A first approach is therefore to replace M by symmetric rank one tensors that span M. We show that 
such an approach breaks the strict inequality (15).

Proposition 4.2. Let C = x4 − 3y4 and let W be a finite set of symmetric decomposable tensors that spans 
M = {x2 y, xy2}. Then min rkC modW= 0.

Proof. To show that the zero tensor is in C modW, it is enough to show that W spans K =
{x3, x2 y, xy2, y3}, since then any slice of C is in SpanW. If dimW= 4, then W spans K . It therefore 
suffices to rule out the possibility that dimW ≤ 3.

Suppose for contradiction that dimW ≤ 3. Since x2 y has rank 3, we have dimW = 3. Then 
(λ1x + μ1 y)3, (λ2x + μ2 y)3, (λ3x + μ3 y)3 are a basis for W. They must be the rank one terms 
in a decomposition for both x2 y and xy2. By Lemma 3.21, λ1, λ2, λ3, μ1, μ2, μ3 are non-zero and 
λ1
μ1

+ λ2
μ2

+ λ3
μ3

= 0, μ1
λ1

+ μ2
λ2

+ μ3
λ3

= 0. Then 1 = μ1
λ1

λ1
μ1

= ( λ2
μ2

+ λ3
μ3

)(
μ2
λ2

+ μ3
λ3

) = 2 + t + t−1, where 
t = λ2μ3

λ3μ2
. This function is either at least 4 or at most 0 so is never 1, the desired contradiction. �

The set W from Proposition 4.2 results in min rk(C modW) = min srk(C modW), cf. Proposi-
tion 3.14. We need a different way to replace M with decomposable tensors, in order to preserve 
the strict inequality in (15).
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Definition 4.3 (See Shitov (2020, Definition 6.3) and Shitov (2019, Notation 1.1)). Fix a binary tensor T ∈
(R2)⊗d . Let E := {1, . . . , n} and E := {n + 1, . . . , 2n}. The n clone of T , denoted Tc , is the tensor in 
(R2n)⊗d = (RE∪E)⊗d with entries

Tc(k1| · · · |kd) = T (h1| · · · |hd), where hi =
{

1 ki ∈ E

2 ki ∈ E.

For M ⊂ (R2)⊗d we denote by Mc ⊂ (R2n)⊗d the set of n clones of each tensor in M.

Example 4.4. The 2 clone of the matrix

(
1 0
0 1

)
is

⎛
⎜⎜⎝

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎞
⎟⎟⎠ .

Definition 4.5 (See Shitov, 2020, Remark 6.6). Given T ∈ (RE∪E)⊗d , let TE ∈ (RE )⊗d be its restriction 
to index set E . Similarly, for W ⊂ (RE∪E)⊗d , let WE denote the restriction of each tensor in W to 
index set E . Denote the tensor in (RE )⊗d with all entries equal to 1 by I(E, d). For the set E, define 
TE , WE , and I(E, d) similarly.

The following result gives conditions on the set of decomposable tensors W such that the strict 
inequality (15) is preserved. It is extracted from Shitov (2020), in particular Shitov (2020, Lemmas 6.5 
and 8.14). The numbering of conditions comes from Shitov (2020, Definition 6.7).

Proposition 4.6. Fix C = xd − 3yd and M = {xd−2 y, . . . , xyd−2} for d ≥ 4 even. Let W ⊂ (RE∪E)⊗(d−1) be 
such that

(3) SpanW contains the n clone of every tensor in M

(4e) I(E, d) is the only decomposable tensor in I(E, d) modWE

(4ε) I(E, d) is the only decomposable tensor in I(E, d) modWE .

Then min rk(Cc modW) < min srk(Cc modW).

Proof. We saw that min rk(C modM) < min srk(C modM) in Remark 3.16. Next we show that 
min rk(Cc modW) = 1, cf. Shitov (2020, Proof of Lemma 6.1). By (3),

min rk(Cc modW) ≤ min rk(Cc modMc).

Moreover, by the definition of cloning, min rk(Cc modMc) = min rk(C modM) = 1. We can rule out 
min rk(Cc modW) = 0: this would imply that the zero tensor lies in (Cc)E modWE , a contradiction 
to (4e), since (Cc)E = I(E, d).

Finally, we show that min srk(Cc modW) = 2. Assume for contradiction that there is a decom-
posable symmetric T in Cc modW. Then TE ∈ (Cc)E modWE , and therefore TE ∈ I(E, d) modWE . 
Hence TE = I(E, d), by (4e). Similarly, TE ∈ (Cc)EmodWE , i.e. TE ∈ −3 · I(E, d) modWE . Hence 
TE = −3 · I(E, d), by (4 ε). Since both diagonal blocks of T are clones, and T is decomposable, 
the tensor T must be a clone, i.e. T =Uc for some decomposable U ∈ (R2)⊗d , see Shitov (2020, 
Lemma 6.5). The tensor U has U(1| · · · |1) = 1 and U(2| · · · |2) = −3, hence U is not decomposable, 
the desired contradiction. �
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4.3. Step 3

We have seen conditions on a set W to preserve the strict inequality in (15). We aim to use this 
strict inequality min rk(Cc modW) < min srk(Cc modW) to conclude a strict inequality between the 
rank and symmetric rank of SAdj(Cc, W). For this, we seek conditions for Conjecture 3.17 to hold 
with equality.

Proposition 4.7. Fix C = xd − 3yd and M = {xd−2 y, . . . , xyd−2} for d ≥ 4 even. Assume that W is such that 
conditions (3), (4e), and (4 ε) from Proposition 4.6 hold. Moreover, assume that

(2) W consists of decomposable tensors

(6) Sets uE ⊗ (RE )⊗(d−1) and I(E, d) modWE are disjoint for all u⊗(d−1) ∈ SpanW.

Then Conjecture 3.17 holds for SAdj(Cc, W).

Proof. The upper bound srk SAdj(Cc, W) ≤ d dim SpanW+ 2 is Proposition 3.18. We explain how the 
results of Shitov (2020) give equality. Let r = dk + 1, where k = dim SpanW and assume for contra-
diction srk SAdj(Cc, W) ≤ r. We transform the symmetric rank r decomposition into a decomposition 
of r (possibly non-symmetric) rank one terms

SAdj(Cc,W) = T +
d∑

j=1

k∑
w=1

T ( j)
w ,

where T ∈ (RE∪E∪W )⊗d satisfies three conditions: (i) T ∈ Cc modW (in particular, T is zero outside 
of the index set E ∪ E) (ii) T is symmetric, and (iii) T =Uc for some U ∈ (R2)⊗d . Such a T cannot 
be decomposable, by Proposition 4.6, which contradicts srk SAdj(Cc, W) ≤ dk + 1.

The procedure to build the new decomposition is Shitov (2020, Procedure 8.6). The fact that Pro-
cedure 8.6 produces T satisfying (i) and (iii) is the culmination of Shitov (2020, Section 8) in Shitov 
(2020, Lemma 8.14). Part (ii) follows from Shitov (2020, Claim 9.3 and Lemma 9.4). It remains to show 
that Shitov (2020, Claim 9.3) works whenever the conditions in our statement hold. In Shitov (2020), 
the author proves that Claim 9.3 holds for a monomial emulator (Shitov, 2020, Definition 6.7), a finite 
set of tensors in (RE∪E)⊗d that satisfies properties (2), (3), (4e), (4ε), and (6), as well as

(1) W is linearly independent,

(5e) I(E, d − 1) is the only rank one tensor in I(E, d − 1) + SpanWE ,

(5ε) I(E, d − 1) is the only rank one tensor in I(E, d − 1) + SpanWE .

We show that (5e) is implied by (4e). A decomposable T ∈ I(E, d − 1) + SpanWE that is not equal 
to I(E, d − 1) gives a decomposable tensor in I(E, d) modWE that is not I(E, d) by setting each of 
the |E| 1-slices equal to T . Similarly, (4ε) implies (5ε).

Finally, we can disregard property (1), as follows. We can assume that W consists of linearly in-
dependent tensors, by restricting to a linearly independent subset of W, cf. Shitov (2020, Observation 
7.1). This does not affect the other properties (2)-(6). �
Corollary 4.8. Fix C = xd − 3yd and M = {xd−2 y, . . . , xyd−2} for d ≥ 4 even. Let W satisfy the conditions of 
Propositions 4.6 and 4.7. Then SAdj(Cc, W) is a tensor whose rank and symmetric rank differ.

Proof. Corollary 2.4 gives rk SAdj(Cc, W) = d dim SpanW + 1, since W is a set of decomposable 
tensors. In comparison, srk SAdj(Cc, W) = d dim SpanW + 2, since min srk(Cc modW) = 2 and Con-
jecture 3.17 holds for SAdj(Cc, W), by Propositions 4.6 and 4.7. �
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Fig. 2. Let n = 4. The sets W1 and W2 each consist of 225 tensors u⊗5 for some u ∈ R16. We illustrate these two 16 × 225
matrices of u vectors as heatmaps.

5. A counterexample of order 6

In this section we give an order 6 counterexample to Comon’s conjecture; i.e., we prove Theo-
rem 1.9. We define a set of symmetric order 5 tensors that satisfies the conditions from Proposi-
tions 4.6 and 4.7, namely:

(2) W consists of decomposable tensors,

(3) SpanW contains the n clone of every tensor in M = {x4 y, x3 y2, x2 y3, xy4},

(4e) I(E, 6) is the only decomposable tensor in I(E, 6) modWE ,

(4ε) I(E, 6) is the only decomposable tensor in I(E, 6) modWE ,

(6) Sets uE ⊗ (RE )⊗5 and I(E, 6) modWE are disjoint for all u⊗5 ∈ SpanW.

Definition 5.1 (The set W). For any i ∈ {1, ...n}, let αi ∈R2n have αi(2i − 1) = αi(2i) = 1, and all other 
entries zero. Let W1 be the set of tensors u⊗5, where u ∈R4n is one of

(αi1 + αi2 + αi3 + αi4 | 0) (αi1 + αi2 + αi3 | 0) (αi1 + αi2 | 0) (αi1 | 0)

(αi1 + αi2 + αi3 + αi4 |αk1 ) (αi1 + αi2 | (n−2)2

(n−3)(n−1)
αk1 ) (αi1 | n−2

n−3 αk1 ) (αi1 | n−1
n−4 αk1 )

(αi1 + αi2 + αi3 |αk1 + αk2 ) (αi1 + αi2 | n−2
n−3 (αk1 + αk2 )) (αi1 + αi2 | n−2

n−4 αk1 ) (0|αk1 )

(αi1 + αi2 + αi3 | n−3
n−4 αk1 ) (αi1 + αi2 + αi3 | n−2

n−1 αk1 ) (αi1 | n−1
n−3 (αk1 + αk2 )) (0|αk1 + αk2 )

where 1 ≤ i1 < i2 < i3 < i4 ≤ n and 1 ≤ k1 < k2 ≤ n. Define the permutation

π(i1|i2| · · · |i2n|k1|k2| · · · |k2n) = (k2| · · · |k2n|k1|i2| · · · |i2n|i1). (17)

Let W2 be the set of tensors of the form u⊗5 where u is the image of one of the above vectors under 
permutation π . Define W :=W1 ∪W2. See Fig. 2 for an illustration.

Definition 5.1 is the extension of Shitov (2020, Lemma 11.4) from order 4 to 6. We use it to find 
an order 6 counterexample, which we now describe in more detail.

Theorem 5.2. Let C = x6 − 3y6 and let W ⊂ (R28)⊗5 be as in Definition 5.1. Let Cc be the 14 clone of C. 
Then SAdj(Cc, W) ∈ (R5180)⊗6 has rank 30913 and symmetric rank 30914.

We prove Theorem 5.2, and therefore Theorem 1.9, by showing that W satisfies conditions (2), (3), 
(4e), (4ε) and (6), provided n ≥ 7. Condition (2) holds, since each tensor in W is rank one. We show 
that the remaining conditions hold.

Proposition 5.3. Condition (3) holds for W in Definition 5.1, provided n ≥ 5.
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Proof. This proof is the d = 6 analogue to Shitov (2020, Lemma 11.7). The set M is equal 
to {x4 y, x3 y2, x2 y3, xy4}. The n clones of x4 y and x3 y2 are in SpanW1: see our matlab code 
github.com/seigal/loborrt for a numerical check, or Lemma A.1 and Lemma A.2 for the alge-
braic identities. Similarly, the clones of x2 y3 and xy4 are in SpanW2: for tensors that are clones, the 
permutation π in (17) just swaps the first 2n indices with the second 2n indices. Hence the n clone 
of every tensor in M is in SpanW. �
Proposition 5.4. Properties (4e) and (4ε) hold for W in Definition 5.1, for n ≥ 7.

Proof. This proof is the d = 6 analogue to Shitov (2020, Lemma 11.9). By symmetry, we only need 
to prove (4e). Every tensor in WE is zero at location (k1| · · · |k5), provided all 

(5
2

)
differences δi j =

(ki − k j) mod 2n satisfy |δi j | ≥ 2. Such entries exist provided n ≥ 5. For example, all tensors in W are 
zero at entry (1|3|5|7|9).

Let T be a tensor in I(E, 6) modWE . Then T (k1| · · · |k6) = 1 whenever all the 
(6

2

)
differences δi j =

(ki − k j) mod 2n satisfy |δi j | ≥ 2. Such entries exist provided n ≥ 6. For example, T (1|3|5|7|9|11) = 1, 
T (2|4|6|8|10|12) = 1, and T (1|4|6|8|10|12) = 1, and the entries of T at all permutations of these 
indices are also 1.

Assume that T is decomposable, T = u1 ⊗ · · · ⊗ u6. Since T (2|4|6|8|10|i) = 1 for i ∈ {12, . . . , 2n}, 
we have u6(12) = u6(13) = . · · · = u6(2n). This gives equality of multiple entries of u6, provided n ≥ 7. 
Similarly, T (2n − 1|2n − 3|2n − 5|2n − 7|2n − 9|i) = 1 for i ∈ {1, . . . , 2n − 11}, hence we have u6(1) =
u6(2) = · · · = u6(2n − 11). Other combinations of indices show that all entries of u6 are equal. By a 
similar argument, all entries of the vectors ui are equal for i ∈ {1, . . . , 5}. So all the entries of T are 
equal. Since some entries of T are one, we conclude that T = I(E, 6). �
Proposition 5.5. Property (6) holds for W in Definition 5.1, provided n ≥ 6.

Proof. We want to show that the sets uE ⊗ (RE )⊗5 and I(E, 6) modWE are disjoint for all u⊗5 ∈
SpanW. Fix T = u⊗5 ∈ SpanW. Then T (1|3|5|7|9) = 0, since this is true for every tensor in W, 
using the fact that n ≥ 5. Hence uE has some entry equal to zero, and so uE ⊗ (RE )⊗5 contains a slice 
of zeros. We show that every tensor in I(E, 6) modWE has a non-zero entry in every slice. Given an 
index i, consider the (i|(i + 2) mod 2n| . . . |(i + 12) mod 2n) entry of a tensor in I(E, 6) modWE . The 
difference between any pair of indices is at least 2, since n ≥ 6. Hence, in any subset of 5 of these 
indices, every tensor in WE has a zero at that entry. Hence the (i|(i + 2) mod 2n| . . . |(i + 12) mod 2n)

entry of any tensor in I(E, 6) modWE is 1, cf. Shitov (2020, Lemma 11.15). �
Next, we show that tensors in W are linearly independent. This is required to compute the rank 

and symmetric rank of the counterexample SAdj(Cc, W). We also show that the tensors in the order 
4 example from Shitov (2020) are linearly independent. This verifies the stated rank and symmetric 
rank for the order 4 example from Shitov (2020).

Lemma 5.6. Fix T1 ∈ SpanW1 and T2 ∈ SpanW2 , where W1 and W2 are as in Definition 5.1, with n ≥ 5. 
If T1 +T2 = 0, then T1 = T2 = 0.

Proof. A tensor in SpanW1 has

T (i|k2| · · · |kd) = T (i + 1|k2| · · · |kd), (18)

for i ∈ {1, 3, . . . , 2n − 1, 2n + 1, 2n + 3, . . . , 4n − 1}, and all k2, . . . , kd , by the definition of the vectors 
αi in Definition 5.1. Similarly, a tensor in W2 satisfies (18) for i ∈ {2, 4, . . . , 2n − 2, 2n + 2, . . . , 4n − 2}
as well as T (1|k2| · · · |kd) = T (2n|k2| · · · |kd) and T (2n + 1|k2| · · · |kd) = T (4n|k2| · · · |kd). The ten-
sor T1 lies in SpanW1 and SpanW2, since T1 = −T2. Then T1 satisfies (18) for i ∈ {1, . . . , 2n −
1} ∪ {2n + 1, . . . , 4n − 1}. Moreover, T1 is symmetric, so T (· · · |k j−1|i| · · · ) = T (· · · |k j−1|i + 1| · · · )
for i ∈ {1, . . . , 2n − 1} ∪ {2n + 1, . . . , 4n − 1} for any j ∈ {2, . . . , d}. This is the condition for T to 
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Fig. 3. The proof of Proposition 5.7 shows that the coefficients in (19) are zero, in three steps. Each step studies a 20 × 20 × 20
tensor of unknown coefficients, illustrated here as a 20 × 400 matrix. Darkest (dark blue) entries are zero, second darkest (light 
blue) entries are equal to one coefficient, and brightest (yellow/orange) entries are a linear combination of more than one 
coefficient.

be a clone: T (k1| · · · |kd) = T (k′
1| · · · |k′

d) if ki, k′
i ∈ {1, . . . , 2n} or if ki, k′

i ∈ {2n + 1, . . . , 4n}. That is, 
T1 =Uc for some symmetric U ∈ (R2)⊗5. The symmetric tensor U is a binary quintic. We show 
that U ∈ 〈x4 y, x3 y2〉. We have T1(1|3|5|7|9) = T1(2n + 1|2n + 3|2n + 5|2n + 7|2n + 9) = 0, provided 
n ≥ 5, since T1 ∈ SpanW1. Hence the monomials x5 and y5 do not appear in U. Moreover, we have 
T1(1|1|2n + 1|2n + 3|2n + 5) = T1(1|2n + 1|2n + 3|2n + 5|2n + 7) = 0, since T ∈ SpanW1. Hence the 
monomials x2 y3 and xy4 do not appear in U. Therefore U ∈ 〈x4 y, x3 y2〉. By a similar argument for 
W2, we conclude −U ∈ 〈x2 y3, xy4〉. Hence U = 0. �
Proposition 5.7. The set of tensors defined in Shitov (2020, Definition 11.4) are linearly independent.

Proof. Denote the set by W(4) =W(4)
1 +W(4)

2 . We show linear independence of W(4)
1 . A linear 

combination of tensors in W(4)
1 is∑

1≤i< j≤5
1≤k≤5

bijk(αi + α j|αk)
⊗3 +

∑
1≤i< j≤5

ci j(αi + α j|0)⊗3 +
∑

1≤i≤5
1≤k≤5

bik(3αi|4αk)
⊗3

+
∑

1≤i≤5

ci(αi |0)⊗3 +
∑

1≤k≤5

bk(0|αk)
⊗3.

(19)

This is a 20 × 20 × 20 tensor whose entries are linear combinations of the 95 coefficients. Setting (19)
to zero gives a system of 8000 = 20 × 20 × 20 equations in 95 unknowns. We show that the 95
coefficients must all be zero in three steps, illustrated in Fig. 3.

In (19), 3840 of the 8000 tensor entries are zero. A further 2400 entries are a single coefficient, the 
coefficients of the 50 elements of W(4)

1 of the form (αi + α j|αk)
⊗3. If (19) is zero, these coefficients 

vanish. Removing these terms from (19) gives a linear combination of the remaining 45 tensors in 
W(4)

1 . Repeating the argument, we have 1680 entries of the tensor that are a single coefficient, the 
coefficients of 35 tensors. Setting these to zero gives a linear combination of 10 tensors in W(4)

1 , with 
80 non-zero entries, each equal to a single coefficient. These are the coefficients of the remaining 10
vectors in W(4)

1 . Hence all 95 = 50 + 35 + 10 tensors in W(4)
1 have coefficient zero.

It remains to show that if Ti ∈W(4)
i with T1 +T2 = 0, then T1 = T2 = 0. This is Lemma 5.6 but in 

the order four case, with similar proof: a similar argument shows that T1 = −T2 is the clone of some 
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U ∈ (R2)⊗3. Then T1 ∈ SpanW(4)
1 implies U ∈ 〈x2 y〉 while T2 ∈ SpanW(4)

2 implies −U ∈ 〈xy2〉. 
Hence U = 0. �
Proposition 5.8. The set of tensors W from Definition 5.1 is linearly independent.

Proof. We have W =W1 ∪W2. First we show that the vectors in W1 are linearly independent. 
Consider a linear combination T of vectors u⊗6 where u ranges over the 16 types of vector in Defi-
nition 5.1. Assume that this linear combination vanishes.

The only tensor in W1 that is non-zero at entry (2i1|2i2|2i3|2i4|2n + 2k) is u⊗6 where u =
(αi1 + αi2 + αi3 + αi4 |αk). Hence no such terms appear in a vanishing linear combination. Having 
removed these terms, the only tensor in W1 that is non-zero at entry (2i1|2i2|2i3|2i4|2i1) is u⊗6

where u = (αi1 + αi2 + αi3 + αi4 |0). Hence no such terms appear in a vanishing linear combina-
tion. The only tensor in W1 with non-zero coefficient (2i1|2i2|2i3|2k1 + 2n|2k2 + 2n) is u⊗6, where 
u = (αi1 + αi2 + αi3 |αk1 + αk2 ). Hence no such terms appear in a vanishing linear combination. Re-
peating, by considering tensors in W1 with smaller and smaller support, shows that all terms in 
the linear combination must have coefficient zero. By a similar argument, the set W2 is linearly in-
dependent. Now assume we have T1 ∈W1 and T2 ∈W2 with T1 + T2 = 0. Then T1 = T2 = 0, by 
Lemma 5.6. �
Proof of Theorem 5.2. The tensor SAdj(Cc, W) has different rank and symmetric rank, by Corol-
lary 4.8 and Propositions 5.3, 5.4, and 5.5. It remains to find the size, rank, and symmetric rank 
of this tensor. The set of W1 consists of 

(7
4

) + (7
3

) + (7
2

) + (7
1

) + (7
4

)(7
1

) + (7
2

)(7
1

) + 2
(7

1

)(7
1

) + (7
3

)(7
2

) +(7
2

)(7
2

) + (7
2

)(7
1

) + (7
1

) + 2
(7

3

)(7
1

) + (7
1

)(7
2

) + (7
2

) = 2576 tensors. Hence W consists of 2576 × 2 = 5152
tensors. Therefore SAdj(Cc, W) ∈ (RI )⊗6, where |I| = 28 + 5152 = 5180. The set W is linearly in-
dependent, by Proposition 5.8. Hence rk SAdj(Cc, W) = 1 + 5152 × 6 = 30913 and srk SAdj(Cc, W) =
2 + 5152 × 6 = 30914. �
Remark 5.9. We can reduce the size of the tensor in Theorem 5.2 slightly, as follows. Given u =
(uE |uE) ∈R28 with u⊗5 ∈W, the vectors uE , uE ∈R14 have the sum of their entries at even indices 
equal to the sum of their entries at odd indices, hence the vectors u = (uE |uE) lie in a 26-dimensional 
subspace, cf. Shitov (2020, Remark 11.2). So, with a change of basis, we have a counterexample in 
(RI )⊗6, where |I| = 28 − 2 + 5152 = 5178.

Remark 5.10. The border rank of the tensor SAdj(Cc, W) ∈ (R5180)⊗6 is at most 2 +5152 ×2 = 10306, 
since each adjoined slice xd−1 y has border rank two.

We conclude with some open problems.

• For a symmetric tensor T , compare the decomposable rank drk J T with the symmetric decom-
posable rank sdrk J T across subsets J ⊂ [d]. The two ranks coincide for | J | = 1, since the slice 
space L J is then a linear space of vectors, but they may differ for | J | = d − 1.

It remains unknown whether counterexamples to Comon’s conjecture exist for small tensors, and 
whether they exist at low ranks, see Seigal (2019, Problem 5.5). We mention next steps for these 
lines of investigation.

• Find other symmetric tensors C ∈ (RI )⊗d and finite sets of symmetric tensors M ⊂ (RI )⊗(d−1)

that satisfy Step 1 of the construction of a counterexample, i.e. for which there is strict inequality 
min rk(C modM) < min srk(C modM). Find an order three real example. Shitov (2018) gives an 
example over the complex numbers with 3 = min rk(C modM) < min srk(C modM) = 4. Find an 
example over the complex numbers with min rk(C modM) = 1.

• Prove Conjecture 3.17, and its complex analogue Shitov (2018, Conjecture 7), for a wider class of 
tensors, cf. Remark 3.23.
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Appendix A. Proofs from Section 5

Lemma A.1. The clone of x4 y is in SpanW1 , for n ≥ 5.

Proof. Take the following linear combination of tensors in W1 ⊂ (RE∪E)⊗5:

∑
1≤i1<i2<i3<i4≤n

1≤k1≤n

(αi1 + αi2 + αi3 + αi4 |αk1)
⊗5 + λ1

∑
1≤i1<i2<i3≤n

1≤k1≤n

(
αi1 + αi2 + αi3 |

n − 3

n − 4
αk1

)⊗5

+λ2

∑
1≤i1<i2≤n

1≤k1≤n

(
αi1 + αi2 |

n − 2

n − 4
αk1

)⊗5

+ λ3

∑
1≤i1≤n
1≤k1≤n

(
αi1 |

n − 1

n − 4
αk1

)⊗5

,

where λ1 = − (n−4)2

n−3 , λ2 = (n−3)(n−4)2

2(n−2)
and λ3 = − (n−2)(n−3)(n−4)2

6(n−1)
. This T coincides with the clone of 

x4 y, on all entries except its diagonal blocks TE and TE . We correct the diagonal blocks by adding 
the following linear combination of tensors in W1:

λ4

∑
1≤i1<i2<i3<i4≤n

(αi1 + αi2 + αi3 + αi4 |0)⊗5 + λ5

∑
1≤i1<i2<i3≤n

(αi1 + αi2 + αi3 |0)⊗5

+λ6

∑
1≤i1<i2≤n

(αi1 + αi2 |0)⊗5 + λ7

∑
1≤i1≤n

(αi1 |0)⊗5 + λ8

∑
1≤k≤n

(0|αk)
⊗5,

where λ4 = −n, λ5 = (n−4)2n
n−3 , λ6 = − (n−3)(n−4)2n

2(n−2)
, λ7 = (n−2)(n−3)(n−4)2n

6(n−1)
, and λ8 = −(

(n
4

) − (n−3)4

(n−4)3

(n
3

) +
(n−3)(n−2)4

2(n−4)3

(n
2

) − (n−2)(n−3)(n−1)4n
6(n−4)3 ). �

Lemma A.2. The clone of x3 y2 is in SpanW1 , for n ≥ 5.

Proof. Take the following linear combination of tensors in W1 ⊂ (RE∪E)⊗5:

∑
1≤i1<i2<i3≤n

1≤k1<k2≤n

(αi1 + αi2 + αi3 |αk1 + αk2)
⊗5 + μ1

∑
1≤i1<i2≤n
1≤k1<k2≤n

(
αi1 + αi2 |

n − 2

n − 3
(αk1 + αk2)

)⊗5

+μ2

∑
1≤i1≤n

1≤k <k ≤n

(
αi1 |

n − 1

n − 3
(αk1 + αk2)

)⊗5

+ μ3

∑
1≤i1<i2<i3≤n

1≤k ≤n

(
αi1 + αi2 + αi3 |

n − 2

n − 1
αk1

)⊗5
1 2 1
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+μ4

∑
1≤i1<i2≤n

1≤k1≤n

(
αi1 + αi2 |

(n − 2)2

(n − 3)(n − 1)
αk1

)⊗5

+ μ5

∑
1≤i≤n

1≤k1≤n

(
αi|n − 2

n − 3
αk1

)⊗5

,

where μ1 = − (n−3)3

(n−2)2 , μ2 = (n−2)(n−3)3

2(n−1)2 , μ3 = − (n−1)2

n−2 , μ4 = (n−1)2(n−3)3

(n−2)3 , μ5 = − (n−3)3

2 . This tensor T
agrees with the clone of x3 y2 on all except the blocks TE and TE . We fix these blocks by adding on 
the linear combination

μ6

∑
1≤i1<i2<i3≤n

(αi1 + αi2 + αi3 |0)⊗5 + μ7

∑
1≤i1<i2≤n

(αi1 + αi2 |0)⊗5

+μ8

∑
1≤i1≤n

(αi1 |0)⊗5 + μ9

∑
1≤k1≤n

(0|αk1)
⊗5 + μ10

∑
1≤k1<k2≤n

(0|αk1 + αk2)
⊗5,

where μ6 = −(n
2

) + (n−1)2n
(n−2)

, μ7 = (n−3)3

(n−2)2

(n
2

) − (n−1)2(n−3)3n
(n−2)3 , μ8 = − (n−2)(n−3)3

2(n−1)2

(n
2

) + (n−3)3n
2 , μ9 =

(n−2)4

(n−1)3

(n
3

) − (n−2)7

(n−1)3(n−3)2

(n
2

) + (n−2)5n
2(n−3)2 , and μ10 = −(n

3

) + (n
2

)
(n−2)3

(n−3)2 − (n−1)3(n−2)n
2(n−3)2 . �
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