
1

Supporting Information for2

Contrastive independent component analysis for salient patterns and dimensionality reduction3

Kexin Wang, Aida Maraj, Anna Seigal4

Corresponding Author Anna Seigal.5

E-mail: aseigal@seas.havard.edu6

This PDF file includes:7

Supporting text8

Figs. S1 to S109

SI References10

Kexin Wang, Aida Maraj, Anna Seigal 1 of 18



Supporting Information Text11

1. Comparison of HTD with other tensor decomposition methods12

1.1. Comparison of HTD with other hierarchical tensor decompositions. We compare HTD in Algorithm 1 to other hierarchical13

tensor decompositions. The goal of hierarchical tensor decomposition (1, Chapter 11) is to efficiently represent a tensor that14

lives in a high-dimensional space. Given a tensor of order d, a hierarchical decomposition is based on a hierarchy of vector15

spaces given by a dimension partition tree on indices {1, . . . , d}, such as those in Figure S1.16

{1, 2, . . . , d}

{1} {2, . . . , d}

{2} ⋮

{d − 1} {d}

(a)

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}
(b)

Fig. S1. The dimension partition trees used in (a) the PARATREE algorithm of (2) and (b) our HTD from Algorithm 1.

Hierarchical tensor representations in (1, Chapter 11) start at the leaves of the tree, which are labeled by single indices. One17

finds subspaces Ui ⊆ Rni such that the tensor is well-approximated by a tensor in the lower-dimensional space U1 ⊗⋯⊗Ud ⊂18

Rn1 ⊗ ⋯ ⊗ Rnd . Proceeding from leaves to the root, when two indices {i} and {j} combine to form the subset {i, j}, the19

representation finds a subspace Uij ⊂ Ui ⊗Uj that well-approximates the tensor. This repeats until we have a low-dimensional20

subspace U1⋯d ⊆ Rn1 ⊗ ⋯ ⊗ Rnd such that the tensor T lies in this subspace to reasonable accuracy. Fixing ranks in the21

representation fixes the allowable dimension of the subspaces UI for the subsets I ⊆ [d] in the tree. See (1, Figure 11.1).22

The PARATREE model starts at the root of the tree. For example, if the root is the splitting of {1, 2, 3} into {1} ∪ {2, 3}23

(i.e. Figure S1 in the case d = 3) then one computes a decomposition of the flattened tensor in Rn1 ⊗ Rn2n3 to give a sum24

∑r1
i=1 ui ⊗ xi, with ui ∈ Rn1 and xi ∈ Rn2n3 . The second step is the splitting of indices {2, 3} = {2} ∪ {3}. This decomposes each25

vector xi = ∑r2
j=1 vi,j ⊗wi,j , where xi ∈ Rn2n3 is viewed as a matrix of size n2 × n3. This results in the decomposition26

T =
r1

∑
i=1

ui ⊗
⎛
⎝

r2

∑
j=1

vi,j ⊗wi,j

⎞
⎠

. [1]27

This pattern can be continued for larger d, see (2, Equation 9).28

Our HTD takes a symmetric p × p × p × p tensor as input. We use the dimension partition tree in Figure S1(b). HTD can be29

viewed as a symmetric analog of the PARATREE model, but differs in that it uses a different dimension partition tree, and30

leverages the symmetry of the tensor and decomposition to produce a rank r decomposition, rather than the rank r1r2 (or,31

more generally, rank r1⋯rd−1) decomposition obtained from [1]. Compared to the hierarchical tensor representations of (1,32

Chapter 11), it differs in that the tensor is symmetric and it uses the dimension partition tree from root to leaves rather than33

leaves to root.34

1.2. Comparison of HTD with other linear algebra based tensor decompositions. We compare HTD in Algorithm 1 to other35

linear algebra based tensor decompositions.36

Jennrich’s Algorithm (3) decomposes an order 3 tensor T = ∑r
i=1 ui ⊗vi ⊗wi, requiring u1, . . . , ur to be linearly independent37

and v1, . . . , vr to be linearly independent. It computes two matrices Mz = T (∶, ∶, z), Mz′ = T (∶, ∶, z′) for random unit norm38

vectors z, z′ and then computes eigendecompositions of MzM+
z′ and Mz′M

+
z . The decomposition of T can then be recovered via39

pairing the eigenvalues of the two eigendecompositions. When applying Jennrich’s algorithm to an order-4 symmetric tensor,40

we need to flatten the 3rd and 4th dimensions of the tensor to form an order-3 tensor first. It can decompose a symmetric41

p× p× p× p tensor of rank at most p due to the linear independence requirement and it takes O(p4) operations, where the most42

costly step is forming the matrices Mz and Mz′ .43

Orthogonal symmetric decomposition (4) decomposes a symmetric tensor T = ∑r
i=1 u⊗d

i where u1, . . . , ur are orthogonal. It44

takes a random tensor S in (Rp)⊗(d−2) and computes the eigendecomposition of T (S, ∶, ∶). The vectors u1, . . . , ur are eigenvectors45

of the matrix T (S, ∶, ∶). As in Jennrich’s algorithm, it can also decompose a symmetric tensor in (Rp)⊗4 with rank at most p46

due to the orthogonal requirement and it takes O(p4) operations where the most costly step is forming the matrice T (S, ∶, ∶).47

In comparison, HTD can decompose a symmetric p × p × p × p tensor of rank up to p2. The algorithm has a computational48

complexity of O(p4r) for decomposing a rank r tensor, primarily due to the eigendecomposition of the tensor flattening. HTD49

recovers the orthogonal symmetric decomposition when the tensor is orthogonally decomposable.50

2 of 18 Kexin Wang, Aida Maraj, Anna Seigal



2. Detailed proof of Theorem 2.451

Theorem 2.4. Fix vectors b1, . . . , bℓ ∈ Rp with ∣⟨bi, bj⟩∣ ≤ ϵ for all i ≠ j. Let

T =
ℓ

∑
i=1

νib⊗4
i ,

where ν1 > ⋯ > νℓ, ℓ ≤ p, and b⊗2
1 , . . . , b⊗2

ℓ are linearly independent. Fix T̂ with ∥T̂ − T ∥F ≤ δ. Let ci be the output patterns of
the HTD algorithm with input tensor T̂ and µi the corresponding recovered scalars ordered so that µ1 > ⋯ > µℓ. Then for any
i ∈ [ℓ],

∣νi − µi∣ ≤ (2∣νi∣L +K)ϵ2 + ( ∣νi∣
ν

2
5
2 + 1) δ + o(ϵ2) + o(δ)

min {∥bi − ci∥, ∥bi + ci∥} ≤ 23/2Lϵ2 + 8δ

ν
+ o(ϵ2) + o(δ).

where
K =

√
8

ℓ

∑
i=1
∣νi∣(i − 1), L = 23/2 K

ν
+ 2ℓ − 2, ν =min

i≠j
{∣νi − νj ∣, ∣νi∣}.

We prove Theorem 2.4 via the following lemma.52

Lemma 2.1. Let b1, . . . , bℓ be vectors in Rp such that ∣⟨bi, bj⟩∣ ≤ ϵ for all i ≠ j. Let Bi be the vectorization of b⊗2
i . Define

M = ∑ℓ
i=1 νiB⊗2

i . Then there exists a matrix M ′ with eigendecomposition M ′ = ∑ℓ
i=1 νiB′⊗2

i such that for all i ∈ [ℓ],

∥Bi −B′i∥ ≤ 2(ℓ − 1)ϵ2 +O(ϵ4) and ∥M −M ′∥F ≤
√

8
ℓ

∑
i=1
∣νi∣(i − 1)ϵ2 +O(ϵ4).

Proof. We generate orthogonal vectors via Gram-Schmidt:

B′′j = Bj −
j−1

∑
i=1
⟨B′i, Bj⟩B′i, B′j =

B′′j
∥B′′j ∥

.

The vectors Bi satisfy ∥Bi∥ = 1 for all i and ⟨Bi, Bj⟩ ≤ ϵ2 for i ≠ j. We will prove by induction on j that

∣⟨B′j , Bk⟩∣ ≤ ϵ2 +O(ϵ4) for all k > j.

When j = 1, B′1 = B1, so the result follows immediately. Assume the result is true for j − 1. Then,53

∣⟨B′′j , Bk⟩∣ = ∣⟨Bj , Bk⟩ −
j−1

∑
i=1
⟨B′i, Bj⟩⟨B′i, Bk⟩∣54

≤ ∣⟨Bj , Bk⟩∣ +
j−1

∑
i=1
∣⟨B′i, Bj⟩∣∣⟨B′i, Bk⟩∣55

≤ ϵ2 + (j − 1)(ϵ2 +O(ϵ4))256

= ϵ2 +O(ϵ4).57

The inner product with B′j is obtained from that with B′′j via

∣⟨B′j , Bk⟩∣ =
∣⟨B′′j , Bk⟩∣
∥B′′j ∥

,

so we obtain
∣⟨B′j , Bk⟩∣ ≤

ϵ2 +O(ϵ4)
∥Bj∥ − ∥Bj −B′′j ∥

≤ ϵ2 +O(ϵ4)
1 − (j − 1)ϵ2 +O(ϵ4) = ϵ2 +O(ϵ4),

which proves the inductive step. By Gram-Schmidt and the triangle inequality, we have

∥B′′j −Bj∥ = ∥
j−1

∑
i=1
⟨B′i, Bj⟩B′i∥ ≤

j−1

∑
i=1
∣⟨B′i, Bj⟩∣ ≤ (j − 1)ϵ2 +O(ϵ4) ≤ (ℓ − 1)ϵ2 +O(ϵ4).

Thus, we can bound the distance between B′j and Bj using the triangle inequality and B′j =
B′′j
∥B′′

j
∥ by58

∥B′j −Bj∥ ≤ ∥B′j −B′′j ∥ + ∥B′′j −Bj∥59

= ∣
1 − ∥B′′j ∥
∥B′′j ∥

∣ + ∥B′′j −Bj∥60

≤
∥Bj −B′′j ∥

1 − ∥Bj −B′′j ∥
+ ∥Bj −B′′j ∥61

≤ 2(j − 1)ϵ2 +O(ϵ4).62
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Finally, we can bound the Frobenius norm of the difference between the matrices M and M ′ by63

∥M −M ′∥F = ∥
ℓ

∑
i=1

νiB⊗2
i −

ℓ

∑
i=1

νiB′⊗2
i ∥F64

≤
√

2
ℓ

∑
i=1
∣νi∣∥Bi −B′i∥65

≤
√

8
ℓ

∑
i=1
∣νi∣(i − 1)ϵ2 +O(ϵ4).66

Proof of Theorem 2.4. Fix M = ∑r
i=1 νiB⊗2

i and M ′ = ∑r
i=1 νiB′⊗2

i as in Lemma 2.1. Fix M̂ =Mat(T̂ ) and let

M̂ =
r

∑
i=1

ν̂iB̂i
⊗2

be its eigendecomposition. By the triangle inequality and Lemma 2.1, we have

∥M̂ −M ′∥F ≤ ∥M̂ −M∥F + ∥M −M ′∥F = δ + ∥M −M ′∥F ≤ δ +Kϵ2 +O(ϵ4),

where K =
√

8∑ℓ
i=1 ∣νi∣(i − 1). By Weyl’s theorem,

∣νi − ν̂i∣ ≤ ∥M̂ −M ′∥op ≤ ∥M̂ −M ′∥F .

By the variant of the Davis-Kahan theorem in (5),

∥B̂i −B′i∥ ≤
2 3

2

ν
∥M̂ −M ′∥F where ν =min

j≠i
{∣vi∣, ∣vi − vj ∣}.

Thus, we can bound the distance between Bi and B̂i, using the triangle inequality, by67

∥Bi − B̂i∥ ≤ ∥Bi −B′i∥ + ∥B′i − B̂i∥68

≤ 2(ℓ − 1)ϵ2 + 2 3
2

ν
δ + 2 3

2 K

ν
ϵ2 +O(ϵ4)69

= Lϵ2 + 2
3
2

δ

ν
+O(ϵ4),70

where L = 23/2 K
ν
+ 2ℓ − 2.71

The top eigenvector of Mat(B̂i) is ci, and we suppose its eigenvalue is α. The top eigenpair of Mat(Bi) is (bi, 1). Therefore,
again by the Davis-Kahan theorem, we have

min {∥bi − ci∥, ∥bi + ci∥} ≤ 2
3
2 ∥Bi − B̂i∥ ≤ 2

3
2 Lϵ2 + 8 δ

ν
+O(ϵ2).

By Weyl’s theorem,

∣α − 1∣ ≤ ∥Bi − B̂i∥op ≤ ∥Bi − B̂i∥F ≤ Lϵ2 + 2
3
2

δ

ν
+O(ϵ4).

The algorithm of HTD implies
µi = ν̂iα

2.

Hence, we obtain, by the triangle inequality,72

∣µi − νi∣ ≤ ∣µi − ν̂i∣ + ∣ν̂i − νi∣73

≤ ∣ν̂i∣∣1 − α2∣ + ∣ν̂i − νi∣74

≤ (∣ν̂i − νi∣ + ∣νi∣)∣1 − α∣(2 + ∣1 − α∣) + ∣ν̂i − νi∣75

≤ 2∣1 − α∣∣νi∣ + ∣ν̂i − νi∣ + o(ϵ2) + o(δ)76

≤ 2∣νi∣Lϵ2 + 2
5
2 ∣νi∣

δ

ν
+ δ +Kϵ2 + o(ϵ2) + o(δ).77
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3. Detailed proof of Theorem 3.7 and 3.878

3.1. Proof of Theorem 3.7. Suppose we are in the setting of cICA, where the foreground and background datasets are described
by ICA models

y = Az, x = Az′ +Bs
and the population cumulant tensors are

κ4(y) =
r

∑
i=1

λia⊗4
i , κ4(x) =

r

∑
i=1

λ′ia⊗4
i +

ℓ

∑
i=1

νib⊗4
i .

Let κ̂4(y), κ̂4(x) be the sample cumulant tensors for the two datasets.79

Theorem. Let T = ∑ℓ
i=1 νib⊗4

i and let T̂ be the tensor obtained after Steps 1 and 2 of Algorithm 2 with input sample cumulant
tensors κ̂4(x), κ̂4(y). Let ρ =maxi≠j ∣⟨ai, aj⟩∣, My =Mat(κ4(y)) and ∆M = ∥My −Mat(κ̂4(y))∥2. Let σr(My) denote the r-th
largest singular value of My. Define

∆A =
∆M

σr(My) −∆M
, λ =min

i
∣λi∣, λ′ = λ(1 − (r − 1)ρ).

Under the assumptions that (r − 1)ρ = o(1), that ∆M < λ
45 +O(ρ), and moreover that maxi ∣λ′i∣ 2

√
∆A+3∆A

λ′
= o(1), we have

∥T̂ − T ∥F ≤ ∥κ̂4(x) − κ4(x)∥F + β
√

∆M +O(∆M),

where β = ∑r
i=1(∣λ′i∣

√
2
λ′
+ ∣λ′2i ∣2λ′−

3
2 ).80

Proof. Let a′i be the estimate of ai obtained via Step 1 of Algorithm 2, and µi be the estimate of λ′i via Step 2 of Algorithm 2.81

We can bound the difference between the true tensor T and the recovered tensor T̂ as82

∥T̂ − T ∥F83

=∥κ̂4(x) −
r

∑
i=1

µia′⊗4
i − κ4(x) +

r

∑
i=1

λ′ia⊗4
i ∥F84

≤∥κ̂4(x) − κ4(x)∥F + ∥
r

∑
i=1

µi(a⊗4
i − a′⊗4

i )∥F + ∥
r

∑
i=1
(λ′i − µi)a⊗4

i ∥F85

≤∥κ̂4(x) − κ4(x)∥F +
r

∑
i=1
∣µi∣∥a⊗4

i − a′⊗4
i ∥ +

r

∑
i=1
∣λ′i − µi∣86

≤∥κ̂4(x) − κ4(x)∥F +
r

∑
i=1

2∣µi∣∥ai − a′i∥ +
r

∑
i=1
∣λ′i − µi∣,87

where the first two inequalities follow from the triangle inequality and the last inequality follows from88

∥a⊗4
i − a′⊗4

i ∥2 = 2 − 2⟨ai, a′i⟩489

=2 − 2(1 − 1
2∥ai − a′i∥2)

4
90

≤2 − 2 + 4∥ai − a′i∥2 (using (1 − x)4 ≥ 1 − 4x for small x)91

=4∥ai − a′i∥2.92

By (6, Lemma S.32), we have σr(My) ≥ λσr(G2), where G2 ∈ Rr×r is the matrix with (i, j) entry ⟨ai, aj⟩2. By the proof of
(6, Lemma 6), we have σr(G2) ≥ 1 − ρ2 where ρs = sup∥x∥=1∑r

i=1 ∣⟨x, ai⟩∣s − 1 for s > 0 and ρs ≤ (r − 1)ρ⌊s/2⌋. Thus, we can lower
bound σr(My) by

σr(My) ≥ λ − λ(r − 1)ρ = λ′ = λ +O(ρ).
Let τ = 1

6 − 4ρ2 − 6ρ4 = 1
6 +O(ρ). By (6, Theorem 7), if ∆A < 2τ

2+4τ+12 , we can bound the distance between the true component
ai and learned component a′i by

∥ai − a′i∥ ≤
√

∆A

2 .

The condition is satisfied when ∆M
λ−∆M+O(ρ) ≤

1
44 +O(ρ). This explains our second assumption ∆M ≤ λ

45 +O(ρ).93

By (6, Lemma S.31), the distance between the numbers 1
λ′

i
and 1

µi
is bounded from above by94

∣ 1
λ′i
− 1

µi
∣ ≤

√
8

σr(My)
∥ai − a′i∥ +∆A(

2
σr(My)

+ 1
σr(My) −∆M

)95

≤ 1
σr(My)

(2
√

∆A + 3∆A)96

≤ 1
λ′
(2
√

∆A + 3∆A).97
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This implies that98

∣λ′i − µi∣ ≤ ∣λ′iµi∣
1
λ′
(2
√

∆A + 3∆A)99

≤ (∣λ′2i ∣ + ∣λ′i∣∣λ′i − µi∣)
1
λ′
(2
√

∆A + 3∆A).100

Rearranging, we obtain
∣λ′i − µi∣(1 − ∣λ′i∣

1
λ′
(2
√

∆A + 3∆A)) ≤ ∣λ′2i ∣
1
λ′
(2
√

∆A + 3∆A).

To obtain an upper bound on ∣λ′i−µi∣ from the above inequality, we need ∣λ′i∣ 1
λ′
(2
√

∆A+3∆A) < 1, which is our third assumption101

in the statement. Thus, the distance between the true coefficient λ′i of the rank one component a⊗2
i and the learned coefficient102

µi is bounded by103

∣λ′i − µi∣ ≤ ∣λ′2i ∣
1
λ′
(2
√

∆A + 3∆A)(1 + ∣λ′i∣
1
λ′
(2
√

∆A + 3∆A) +O(∆A))104

= ∣λ′2i ∣
2
λ′
√

∆A +O(∆A).105

Plugging the bounds on ∥a′i − ai∥ and ∣λ′i − µi∣ into the bound on ∥T̂ − T ∥F , we obtain106

∥T̂ − T ∥F ≤ ∥κ̂4(x) − κ4(x)∥F +
r

∑
i=1

2∣µi∣∥ai − a′i∥ +
r

∑
i=1
∣λ′i − µi∣107

≤ ∥κ̂4(x) − κ4(x)∥F +
r

∑
i=1

2(∣λ′i − µi∣ + ∣λ′i∣)
√

∆A

2 +
r

∑
i=1
∣λ′2i ∣

2
λ′
√

∆A +O(∆A)108

≤ ∥κ̂4(x) − κ4(x)∥F +
r

∑
i=1
∣λ′i∣
√

2∆A +
r

∑
i=1
∣λ′2i ∣

2
λ′
√

∆A +O(∆A).109

Note that σr(My) ≤ λ′ so ∆A = ∆M
σr(My)−∆M

≤ ∆M
λ′
+O(∆2

M). Hence, replacing ∆A by ∆M , we obtain110

∥T̂ − T ∥F ≤ ∥κ̂4(x) − κ4(x)∥F + (
r

∑
i=1
∣λ′i∣
√

2
λ′
+ ∣λ′2i ∣

2
λ′

3
2
)
√

∆M +O(∆M).111

3.2. Detailed proof of Theorem 3.8. We restate the theorem for convenience.112

Theorem. Suppose we have N1 samples for the background dataset and N2 samples for the foreground dataset. We can shift113

and scale our latent variables zi, z′i, sj for i, i′ ∈ [r], j ∈ [ℓ], so we assume without loss of generality that114

• E[zi] = E[z′i] = E[sj] = 0,115

• E[z2
i ] = E[z′2i ] = E[s2

j ] = 1.116

Assume moreover that the fourth cumulants of zi, z′i, sj are nonzero, and that the variables zi, z′i, sj are sub-Gaussian. Suppose
ci are the output patterns of the cICA algorithm, with corresponding recovered scalars µi, obtained from the tensor of
foreground patterns T = ∑ℓ

i=1 νib⊗4
i . Under the assumptions of Theorem 2.4 and Theorem 3.7, we have

∣νi − µi∣ ≤ O(ϵ2) + Õ(δ),

min{∥bi − ci∥, ∥bi + ci∥} ≤ O(ϵ2) + Õ(δ)

where
∣⟨bi, bj⟩∣ ≤ ϵ, for all i ≠ j

δ = Õ
⎛
⎜
⎝

p
3
2 ℓ′2

N2
+
√

ℓ′4

N2
+

¿
ÁÁÀpr′2

N1
+
√

r′4

pN1

⎞
⎟
⎠

,

r′ =max{r, p}, ℓ′ =max{ℓ, p} and Õ absorbs polylog terms.117

We prove the theorem via the following lemmas.118

Lemma 3.1. Let A ∈ Rp×r be a matrix with columns a1, . . . , ar, where ∥ai∥ = 1 for all i, and maxi≠j ∣⟨ai, aj⟩∣ ≤ ρ. Then

∥A∥2 = 1 +O(ρ).
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Proof. Let C = ATA. For any v ∈ Rr, we have

∥(C − Ir)v∥ ≤ ρ∥v∥1 ≤
√

rρ∥v∥,

thus
∥C − Ir∥2 ≤

√
rρ.

Let σ be the top eigenvalue of C. Then σ = ∥A∥22. By Weyl’s theorem, we have

∣σ − 1∣ ≤ ∥C − Ir∥2 ≤
√

rρ,

so σ = 1 +O(ρ), and hence119

∥A∥2 =
√

1 +O(ρ) = 1 +O(ρ).120

Suppose T is a symmetric tensor in (Rp)⊗4. Its operator norm is

∥T ∥ = sup
∥v1∥=∥v2∥=∥v3∥=∥v4∥=1

∣T (v1, v2, v3, v4)∣

where
T (v1, v2, v3, v4) =

p

∑
i=1

p

∑
j=1

p

∑
k=1

p

∑
ℓ=1

Tijkl(v1)i(v2)j(v3)k(v4)ℓ.

Lemma 3.2. Suppose T is a symmetric tensor in (Rp)⊗4. Then, we have

∥Mat(T )∥2 ≤ p∥T ∥ and ∥T ∥F ≤ p
3
2 ∥T ∥.

Proof. Let B ∈ Rp2
such that ∥B∥ = 1 and

BT Mat(T )B = ∥Mat(T )∥2.

The matrix Mat(B) is symmetric since it lies in the column span of Mat(T ). Let Mat(B) = ∑p
i=1 λib⊗2

i be its eigendecomposition.121

Then, we have122

BT Mat(T )B =
p

∑
i=1

p

∑
j=1

λiλjT (bi, bi, bj , bj) ≤ (
p

∑
i=1

λi)
2

∥T ∥.123

Note that ∥B∥ = 1, so ∑p
i=1 λ2

i = 1. By the AM–GM inequality, ∣∑p
i=1 λi∣ ≤

√
p. Thus

∥Mat(T )∥2 = BT Mat(T )B ≤ p∥T ∥.

The quantity minT≠0
∥T ∥
∥T ∥F is the best rank-one approximation ratio, see (7, 8). For fourth-order tensors of size p, we have124

∥T ∥F ≤ p3/2∥T ∥ since T can be written as a sum of at most p3 tensors whose vectorizations are orthogonal, see (7, Theorem125

3.5) or (8, Theorem 1.1).126

We will use the following sample complexity result of ICA from (9, Theorem 2).127

Theorem 3.3. Consider N samples xi = Ahi, i ∈ [N], from the ICA model with mixing matrix A ∈ Rd×k. Suppose
∥A∥ ≤ O(1 +

√
k/d) and the entries of h ∈ Rk are independent subgaussian variables with E[h2

j ] = 1 and constant nonzero 4th
order cumulant. Define m =max(d, k). For the 4th order cumulant κ4 in (8) and its empirical estimate κ̂4, if n ≥ d, we have
with high probability

∥κ̂4 − κ4∥ ≤ Õ
⎛
⎝

m2

N
+
√

m4

d3N

⎞
⎠

.

Proof of Theorem 3.8. We have ∥A∥ = 1 +O(ρ) and ∥B∥ = 1 +O(ϵ2) by Lemma 3.1. Using the triangle inequality, we obtain

∥(A, B)∥ ≤ ∥A∥ + ∥B∥ ≤ 2 +O(ϵ2) +O(ρ).

Thus, we have ∥A∥ = O(1) and ∥(A, B)∥ = O(1).128

We obtain that the following bounds on the operator norm of the difference between the sample cumulants and true
cumulants hold with high probability:

∥κ4(y) − κ̂4(y)∥ = Õ
⎛
⎝

r′2

N1
+
√

r′4

p3N1

⎞
⎠

,

∥κ4(x) − κ̂4(x)∥ = Õ
⎛
⎝

ℓ′2

N2
+
√

ℓ′4

p3N2

⎞
⎠

,
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by Theorem 3.3, under the assumptions on zi, z′i, sj in the statement, and using ∥A∥ = O(1) and ∥(A, B)∥ = O(1). Let129

T = ∑ℓ
i=1 νib⊗4

i , and let T̂ be the tensor obtained after Steps 1 and 2 of Algorithm 2. We can bound the distance between the130

true T and the recovered T̂ by131

∥T̂ − T ∥F ≤ ∥κ̂4(x) − κ4(x)∥F + β
√

∆M +O(∆M)132

≤ p
3
2 ∥κ̂4(x) − κ4(x)∥ + β

√
p∥κ̂4(y) − κ4(y)∥ +O(∆M)133

= Õ
⎛
⎜
⎝

p
3
2 ℓ′2

N2
+
√

ℓ′4

N2
+

¿
ÁÁÀp( r′2

N1
+
√

r′4

p3N1
)
⎞
⎟
⎠

134

= Õ
⎛
⎜
⎝

p
3
2 ℓ′2

N2
+
√

ℓ′4

N2
+

¿
ÁÁÀpr′2

N1
+
√

r′4

pN1

⎞
⎟
⎠

,135

using Theorem 3.7. Hence, we obtain the final bounds via Theorem 2.4 that

∣νi − µi∣ ≤ (2∣νi∣L +K)ϵ2 + Õ(δ) = O(ϵ2) + Õ(δ),

and
min{∥bi − ci∥, ∥bi + ci∥} ≤ 23/2Lϵ2 + Õ(δ) = O(ϵ2) + Õ(δ),

where136

δ = Õ
⎛
⎜
⎝

p
3
2 ℓ′2

N2
+
√

ℓ′4

N2
+

¿
ÁÁÀpr′2

N1
+
√

r′4

pN1

⎞
⎟
⎠

.137

4. Proportional cICA138

In this section, we present a variant of cICA called proportional cICA.139

Recall that the cICA model expresses the background y and foreground x as140

y = Az and x = Az′ +Bs. [2]141

Proportional cICA assumes assumes z′ = γz for some scalar γ > 0. This assumption also appears in cPCA (10). There, the142

choice of the hyperparameter γ is not unique. However, in our setting—which involves the fourth-order cumulants κ4(y) and143

κ4(x), under the assumption that r + ℓ ≤ (p+1
2 )—the value of γ is uniquely determined, with a closed-form expression, see144

Theorem 4.1. The details of the ensuing algorithm for computing matrix B are as follows.145

Algorithm 1 Recover B from the background and foreground cumulants when z′ = γz
Input: κ4(x), κ4(y) and ℓ as in [5].

1: Compute γ using the following theorem.
2: Recover B: Compute rank ℓ symmetric decomposition of κ4(x) − γ4κ4(y), using Algorithm 1.

Output: Mixing matrix B.

Theorem 4.1. Consider proportional cICA with z′ = γz, for γ > 0. For generic a1, . . . , ar and b1, . . . , bℓ with r + ℓ ≤ (p+1
2 )146

and r ≠ 8, the hyperparameter γ is the unique value ( 1
λi
(aT

i V D−1V Tai)−1) 1
4 , where i is any index between 1 and r, λi is the147

coefficient of a⊗4
i in κ4(x) and V DV T is the thin eigendecomposition of Mat(κ4(x)).148

Proof. The flattenings of the cumulants κ4(y) and κ4(x) are, respectively,149

My ∶=
r

∑
i=1

λiA⊗2
i , Mx ∶= γ4 (

r

∑
i=1

λiA⊗2
i ) +

ℓ

∑
j=1

νjB⊗2
j ,150

where Ai, Bj ∈ Rp2
vectorize the matrices a⊗2

i and b⊗2
i , respectively and we use that λ′i = γ4λi. We have rank My = r and151

rank Mx = r + ℓ, by the assumptions in the statement.152

Let A ∈ Rp2×r be the matrix with columns A1, . . . , Ar and define D′ = γ4Diag(λ1, . . . , λr). We have rank(Mx −AD′AT) =153

rank(∑ℓ
j=1 νjB⊗2

j ) = ℓ. Suppose that V DV T is the thin eigendecomposition of Mx. We have154

V T(Mx −AD′AT)V =D − (V TA)D′(V TA)T.155

We have that rank D = r + ℓ, the upper bound rank(V TA)D′(V TA)T = rank V TMyV ≤ r, and finally that rank(D −156

(V TA)D′(V TA)T) = rank(V T(Mx −AD′AT)V ) ≤ ℓ. Hence157

D′ = (ATV D−1V TA)−1,158
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by Lemma 3.6. Matrices A, Diag(λ1, . . . , λr), V, D can be recovered uniquely from tensor decomposition of κ4(y) and the159

eigendecomposition of Mx. So D′ can also be recovered uniquely, and hence γ is unique: it is γ4λi = (aT
i V D−1V Tai)−1 for any160

i ∈ [r].161

One can test the proportionality assumption by seeing whether the values ( 1
λi
(aT

i V D−1V Tai)−1)
1
4 from the above Theorem162

are approximately equal as i varies. In practice, exact proportionality may not hold, and learning γ via the above Theorem163

could be challenging. An alternative is to use a sweep of γ values and choose γ according to visualization plots, a similar164

method to that used in cPCA (10).165

We also implement the proportional cICA algorithm and report its performance on various datasets in Section 6 of the166

Appendix along with the numerical experiments details.167

5. Practicalities and interpretation of cICA168

In this section, we discuss the practicalities of cICA: preprocessing the input to speed up the algorithm and how to choose the169

ranks r and ℓ. We also discuss how to interpret coordinates when viewing cICA as a dimensionality reduction method.170

5.1. Choosing the ranks. When computing the tensor decompositions in cICA, a key step is to determine the ranks r and ℓ. To171

choose the ranks, we can use the flattenings of the cumulants, the matrices Mat(κ4(x)), Mat(κ4(y)) ∈ Rp2×p2
. If the expressions172

for the cumulant tensors κ4(x) and κ4(y) in [5] hold exactly, and if r + ℓ ≤ (p+1
2 ) and the vectors ai, bj are generic, then173

r = rank(Mat(κ4(y))) and r + ℓ = rank(Mat(κ4(x))).174

For non-exact cumulants, such as sample cumulants, we do not work with the exact ranks of the flattening matrices, but175

instead examine plots of the eigenvalues in descending magnitude (see Appendix) to choose an appropriate cut-off. We choose r176

such that the decrease of the eigenvalue plot of Mat(κ4(y)) slows down, choose q such that the decrease of the eigenvalue plot177

of Mat(κ4(x)) slows down, and calculate ℓ = q − r. The algorithm cICA has hyperparameters r and ℓ; proportional cICA has178

one hyperparameter ℓ.179

We discuss how the results may be affected by an incorrect choice of r and ℓ and justify our proposed way to order the180

foreground patterns b1, . . . , bℓ by importance in [10].181

Let the true ranks be r and ℓ and assume that we have used r′ and ℓ′ in the input to Algorithm 2.182

• If ℓ′ > ℓ, then ℓ′ − ℓ foreground patterns are noise.183

• If ℓ′ < ℓ, then ℓ − ℓ′ foreground patterns are not recovered.184

• If r′ < r, then background patterns are mixed with foreground patterns, as follows. Assuming without loss of generality185

that we have recovered a1, . . . , ar′ , the third step of Algorithm 2 decomposes the tensor ∑r
i=r′+1 λ′ia⊗4

i +∑ℓ
j=1 νjb⊗4

j via186

HTD, as in Algorithm 1. If the orthogonality hypotheses of Proposition 2.3 hold, then the recovered foreground patterns187

are recovered together with some background patterns that are incorrectly interpreted as foreground patterns. If the188

approximate orthogonality hypotheses of Theorem 2.4 hold, then the foreground patterns are recovered approximately,189

together with background patterns that are classed as foreground patterns. Without an orthogonality condition, the190

recovered foreground patterns b1, . . . , bℓ will be polluted but still roughly collinear to the true foreground patterns for191

small r − r′ or when the dimension of the dataset is large, resulting in almost orthogonality between random vectors.192

• If r′ > r, then foreground patterns are mixed with background noise, as follows. Some background patterns from Algorithm 2193

will be noise, say a′r+1, . . . , a′r′ . Step 2 of Algorithm 2 computes the coefficients of the tensors (a′r+1)⊗4, . . . , (a′r′)⊗4 in194

κ4(x), though they are not true rank one components of κ4(x). In Step 3, the tensor to be decomposed has the form195

∑r′−r
i=1 µi(a′r+i)⊗4 +∑ℓ

i=1 νib⊗4
i for some µ1, . . . , µr′−r ∈ R. As in the case r′ < r, the foreground patterns can still be exactly196

or approximately recovered, under the hypotheses of Proposition 2.3 and Theorem 2.4 respectively, albeit with some197

background noise recovered as foreground patterns.198

The above discussion shows that when r′ ≠ r, the vectors b1, . . . , bℓ obtained from Algorithm 2 could represent foreground199

patterns, background patterns, or noise. We order the vectors according to [10]. The denominator of [10] is the variance of the200

linearly transformed background dataset Y b. The numerator is that of the transformed dataset Xb. Their ratio enables us to201

select the most relevant foreground patterns, as follows.202

• If b is a foreground pattern, we expect bTκ2(y)b to be small relative to bTκ2(x)b, hence a large k(b).203

• If b is a background pattern, we expect bTκ2(y)b ≈ αbTκ2(x)b for some constant α and hence k(b) ≈ α.204

• If b is foreground noise, we expect a small bTκ2(x)b, hence small k(b).205

• If b is background noise, we expect a small bTκ2(y)b, hence a large k(b). To prevent the background noise from showing206

up in the recovered foreground pattern, we require r′ ≤ r.207

In practice, we consider those patterns for which k(b) exceeds a certain threshold or take the patterns with the two highest208

values of k(b).209

Kexin Wang, Aida Maraj, Anna Seigal 9 of 18



5.2. Visualization. We discuss how to interpret coordinates when using cICA for dimensionality reduction. The following210

proposition relates the projections bT
i x for i ∈ [ℓ] to the latent variables si.211

Proposition 5.1. Consider the cICA model in [2]. Suppose ∥bi∥ = 1 for i ∈ [ℓ]. Assume that for some small ϵ > 0 that212

∣⟨bi, bj⟩∣ < ϵ and ∣⟨bi, ak⟩∣ < ϵ for i ≠ j ∈ [ℓ], k ∈ [r]. Then, for each i ∈ [ℓ],213

∣si − bT
i x∣ = (rCz′ + (ℓ − 1)Cs)O(ϵ),214

where Cz′ and Cs are upper bounds on the magnitudes of random variables in z′ and s. In particular, bT
i x approximates the215

component si with an error linear in ϵ.216

Proof. Recall from [2] that x = Az′ +Bs. Hence217

bT
i x = (bT

i A)z′ + (bT
i B)s218

=
r

∑
k=1
⟨bi, ak⟩z′k +

ℓ

∑
j=1,j≠i

⟨bi, bj⟩sj + si.219

The almost orthogonality conditions of the proposition then imply that220

∣si − bT
i x∣ ≤

r

∑
k=1
∣⟨bi, ak⟩∣∣z′k ∣ +

ℓ

∑
j=1
∣⟨bi, bj⟩∣∣sj ∣221

≤ (rCz′ + (ℓ − 1)Cs)ϵ.222

The almost orthogonality conditions in Proposition 5.1 are strong requirements. However, they can be relaxed – if ∣⟨bi, bj⟩∣ < ϵ223

for chosen i, j ∈ [ℓ] and sources si and sj have wider variance than (bT
i A)z′ and (bT

j A)z′, then plotting bT
i X against bT

j X still224

approximates the plot of si against sj .225

If (bT
i A)z′ and (bT

j A)z′ are uncorrelated, we expect the plot of Xbi against Xbj to show axis-aligned clusters; otherwise,226

clusters may not be axis-aligned. We specify the condition for (bT
i A)z′ and (bT

j A)z′ to be uncorrelated, assuming that all227

variables in the tuple z′ have the same variance.228

Proposition 5.2. Consider the cICA model in [2]. Suppose that the independent variables z′ is a tuple of independent random229

variables with the same variance. Then (bT
i A)z′ and (bT

j A)z′ are uncorrelated if and only if ⟨bT
i A, bT

j A⟩ = 0.230

Proof. Write u = bT
i A and v = bT

j A. By the bilinearity of the covariance231

Cov(uz′, vz′) = ∑
1≤i,j≤r

uivjCov(z′i, z′j)232

= ∑
1≤i≤r

uiviVar(z′i)233

=Var(z′1) ∑
1≤i≤r

uivi.234

The last expression is zero if and only if ⟨u, v⟩ = 0.235

6. Details of numerical experiments236

All experiments are run on an Apple M2 Pro with 16 GB memory. Each run of each algorithm takes at most 1 minute.237

6.1. Choices of Methods in Algorithm 2. We describe the details of the synthetic data setup in Section 4.1. Our setup involves a
background dataset of three independent uniform random variables and a foreground dataset with five sources: three uniform
random variables and two mixtures of beta distributions 0.5B(2, 5) + 0.5B(5, 4). The foreground mixing matrix B ∈ R5×2

consists of the last two columns of the identity matrix I5. The background mixing matrix A ∈ R5×3 is

⎛
⎜⎜⎜⎜⎜
⎝

0.74280923 0.91366784 0.52707773
−0.61857537 0.32868577 0.83815881
0.23109269 −0.2120887 −0.08650875
−0.0153426 0.07115626 −0.07315634
0.10936053 0.08445063 0.08272407

⎞
⎟⎟⎟⎟⎟
⎠

.

We show in Figure 3 of the main text that projecting the foreground dataset using the matrix B reveals four distinct clusters238

and we illustrate the performance of our algorithm SPM-HTD and the variants SPM-SPM, HTD-HTD. Here, we report the239

performance of other combinations of tensor decompositions methods, ICA methods and HTD in Figure S2. Only the two240

methods JADE-HTD and FastICA-HTD find the four clusters in the foreground dataset.241

To demonstrate the necessity of our proposed three-step decomposition (Algorithm 2) instead of separately decomposing the242

foreground and background tensors, we introduce an additional comparison method called SPM-SPM-Separate. Here, SPM243
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Fig. S2. The performance of SPM-JADE, SPM-FOOBI, FOOBI-HTD, FOOBI-FOOBIM, SPM-SPM, JADE-HTD, JADE-JADE and FastICA-HTD on synthetic data. Only
JADE-HTD and FastICA-HTD find the four clusters in the foreground dataset.
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is applied separately to the foreground and background cumulant tensors. The resulting patterns are matched using cosine244

similarity to identify the foreground patterns.245

We vary the sample size of both datasets from 100 to 1000. For each sample size, we repeat the experiment 20 times by246

randomly drawing datasets, applying all eleven methods to estimate the matrix B, and computing the silhouette score on the247

foreground data projected via the estimated B. A higher silhouette score indicates that the estimated matrix B accurately248

recovers the four clusters. To mitigate randomness, we record the best silhouette score from 20 independent runs for each249

method and then average these best scores across experiments. Apart from the methods in Figure 3, we also report the250

performance of the method in Figure S3. The method, SPM-SPM-Separate yields the lowest scores. This confirms the need251

to use the three-step decomposition procedure described in Algorithm 2 over separate foreground and background tensor252

decompositions.253
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Fig. S3. We study the accuracy of different approaches to cICA as the number of samples varies. We compare methods using ICA or tensor decomposition followed by HTD
against HTD-HTD, methods using ICA or tensor decomposition methods followed by non-HTD alternatives, and SPM-SPM-Separate, in which SPM is applied separately to
the foreground and background datasets. Performance is evaluated using the silhouette score, which measures how effectively the estimated matrix B recovers the four
clusters shown in the top-right plot of Figure 3. The SPM-SPM-Separate method performs worst among all methods, emphasizing the importance of employing the three-step
decomposition procedure in Algorithm 2. Methods using ICA or tensor decomposition followed by HTD consistently outperform both ICA or tensor decomposition methods
followed by non-HTD approaches, and the HTD-HTD combination. These results justify our decision to use SPM in Step 1 and HTD in Step 3 of our algorithm.

6.2. Salient patterns.254

6.2.1. Synthetic data. We describe the details of the synthetic data setup in Section 4.2.1 that produced Figure 5. We consider255

p ∈ [4, 12]. Our samples come from the distributions [2], where matrices A ∈ Rp×p and B ∈ Rp×(p−1) are random with unit vector256

columns, and the columns of B are assumed to be orthogonal. We assume the orthogonality of the columns of B to facilitate257

comparison with the methods cPCA and PCPCA, which require this assumption.258

For testing Algorithm 2 in Figure 5(a) and (b) in the main text, variables si are exponential distributions exp(θi) where259

θi = 2 when i is odd and θi = 1.5 when i is even. Variables zi and z′i are exponential distributions exp(νi), exp(ν′i) where260

νi = 2, ν′i = 1 when i is odd and νi = 1, ν′i = 2 when i is even. We generate 105 data points for both the foreground and261

background data and apply cICA to the sample cumulant tensors. cICA has randomness coming from the subspace power262

method. We apply our algorithm 100 times and get 100 recovered foreground mixing matrices B ∈ Rp×(p−1).263

We also test Algorithm 1 here. The result is shown in Figure S4.264

We let zi, z′i be exponential distributions exp(νi), exp(ν′i) where νi = ν′i = 1. We learn the hyperparameter γ′ via Theorem 4.1265

of the Appendix. The true γ′ is 1 and the recovered γ′ are all in the range [0.94, 1.08].266

We describe the implementation of the two methods we compare to. For cPCA (10), we test 100 log-evenly spaced267

hyperparameters α between 0 and 1000 with p− 1 components. Each run returns a matrix of size p× (p− 1), whose columns are268

contrastive principal components with norm 1. For PCPCA, we test 100 evenly spaced hyperparameters γ between 0 and 0.9269

and fix p − 1 components. Each run returns a matrix of size p × (p − 1). We normalize the columns to unit norm, to compare270

PCPCA with the other algorithms.271

Since the columns of B that are recovered are only unique up to permutation and sign, we describe how to align the outputs.272

Let B′ ∈ Rp×(p−1) be a recovered matrix. Rather than searching over all ways to match the columns of B to those of B′, we use273

a greedy algorithm to approximate the matching, as follows. We fix the first column of B, denoted b1. We choose one of the274

columns of B′ whose cosine similarity with b1 has the largest absolute value. We set this to be the first column of B′, changing275

its sign if the cosine similarity is negative. Then we select among the remaining columns, the one with the largest absolute276

cosine similarity with b2 and set this as the second column of B′(again, changing the sign if the cosine similarity is negative).277

We continue until we reach the last column. Then we compute the relative Frobenius error and mean cosine similarity which278

are, respectively,279 ¿
ÁÁÀ

p

∑
i=1

p−1

∑
j=1
(bij − b′ij)2/(p − 1) and 1

p − 1

p−1

∑
i=1
⟨bi, b′i⟩.280
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Fig. S4. The similarity of the recovered vs. true foreground patterns (i.e. the accuracy of recovering matrix B), measured via cosine similarity in (a) and relative Frobenius error
in (b) . The x-axis is the number of variables p, which ranges from 4 to 12. For cPCA and PCPCA, we test 100 hyperparameter values and plot the one with the lowest error.

6.2.2. Corrupted MNIST dataset with continuous strength. For the hyperparameters of cICA, we choose the number of components to281

be 30, which explains 85% of the variance. We then choose r, ℓ for cICA and ℓ for proportional cICA. We order the eigenvalues282

of Mat(κ4(y)) and Mat(κ4(x)) according to their absolute values and plot parts of the ordered eigenvalues in Figure S5. Based283

on these plots, we choose r = 65 and r + ℓ = 130.284
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Fig. S5. Absolute values of eigenvalues of Mat(κ4(y)) (left) and Mat(κ4(x)) (right).

We fix the random seed to be 0 for cICA. We check that the absolute values of the foreground-to-background cumulant285

ratios for the background patterns a1, . . . , ar range from 7.2 × 10−3 to 91.286

For cPCA, we run the experiment for α = 1. We run PCPCA for γ′ = 0.9.287

6.2.3. Human and monkey gene expression data. We describe the patterns obtained from the comparison of human and monkey288

gene expression in Section 4.2.3. The selected 15 highest variance genes among the 139 selected genes in (11) are EIF3K,289

NDUFA13, SARNP, MYL10, TAF9, PRCD, BBS5, MRPS14, RING1, AGPAT5, FLOT1, BTBD7, MASTL, KANK1, BDP1.290

The 15 highest variance genes among the remaining 3244 = 3383 − 139 genes are LUC7L3, RBKS, RBM7, AP4S1, CLCN1,291

CLASP1, ADTRP, CNNM3, NDUFAF7, CNIH4, RPUSD2, NELFCD, RPP14, ROMO1, RNF181.292

For cICA, we fix the random seed to be 0. We use the plots of the eigenvalues of the flattenings of κ4(y), κ4(x) to choose293

r = 22 and ℓ = 46 − 22 = 24. We check that the absolute values of the foreground-to-background cumulant ratios for the294

background patterns a1, . . . , ar range from 4.6 × 10−2 to 55 illustrating that the shared gene patterns between human and295

monkey have different strength across the two datasets.296
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The top two foreground patterns are:297

bT
1 = [ − 0.04,−0.041,−0.09,−0.051,−0.12, 0.075, 0.01,−0.004, 0.002, 0.007,298

− 0.07,−0.061, 0.95, 0.192,−0.009,−0.007,−0.002,−0.001,−0.076,−0.042,299

− 0.008,−0.04, 0.005,−0.058, 0.012,−0.012,−0.05,−0.006,−0.046,−0.005]300

bT
2 = [0.615,−0.166, 0.185, 0.119, 0.113,−0.099,−0.118, 0.011, 0.045,−0.025,301

0.098, 0.141,−0.482,−0.339, 0.054, 0.028,−0.005, 0.03, 0.247,−0.017,302

− 0.031, 0.043, 0.012, 0.043, 0.015, 0.04, 0.025, 0.002, 0.236,−0.016],303

where the coordinates are labeled by the 30 genes in the order listed above. The 15 genes with the largest absolute values of304

the top foreground pattern include 10 genes among the 139 selected in (11). The 15 genes with the largest absolute values of305

the second foreground pattern include 13 genes from (11). Therefore, the foreground patterns obtained via cICA demonstrate306

consistency with the finding in (11) that this subset of 139 genes captures human-specific information.307

For ICA, we run HTD for r = 46 and rank the patterns according to [10].308

We denote (b1 < 15) (resp. (b2 < 15)) to be the number of genes among top 15 ones with the largest absolute value in b1309

that are contained in the 139 evolutional relevant genes.310

We run cPCA for 100 α between 0 to 1000 and choose α that achieves the highest value of (b1 < 15) + (b2 < 15). The311

highest value is obtained at α = 0.17. Note that our parameters for proportional cICA are square of the cPCA parameters,312

since if z = λz′, then κ2(z) = λ2κ2(z′) and κ4(z) = λ4κ4(z′).313

We run PCPCA for 100 evenly spaced γ′ values between 0 and 0.9. The best score of (b1 < 15) + (b2 < 15) is obtained314

for γ′ = 0.315

We also run the algorithm for 100 log-evenly spaced γ between 0 and 106 and choose γ that achieves the highest value of316

(b1 < 15) + (b2 < 15). The highest score is achieved at γ = 0.03. We observe that the 15 genes with the highest absolute values317

in b1 (resp. b2) have 10 (resp. 13) genes among the 15 selected genes that come from the subset of 139 in (11). The number of318

misclassified genes in this case is 6.319

6.3. Dimensionality reduction.320

6.3.1. Mouse protein data. There are 270 foreground samples. These are the protein expression in the cortex of mice subjected321

to shock therapy. Of these samples, 135 have Down syndrome and 135 do not. There are 135 background samples, protein322

expression measurements from mice without Down Syndrome who did not receive shock therapy. Each sample measures the323

expression of 77 proteins; that is, p = 77.324

For cICA, we preprocess using PCA as described in Section 3.2. We take k = 15 components, which explain 90% of the325

variance. We then choose r and ℓ, as described in Appendix section 5.1. That is, we compute the eigenvalues of Mat(κ4(y)) and326

Mat(κ4(x)), ranking the eigenvalues by magnitude, see Figure S6. Based on these plots, we choose r = 27 and ℓ = 53 − 27 = 26.327
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Fig. S6. Absolute values of eigenvalues of Mat(κ4(y)) (left) and Mat(κ4(x)) (right).

For cICA, we fix the random seed to be 0. For proportional cICA, we run the algorithm for 100 log-evenly spaced γ between328

0 and 106. The highest silhouette score is obtained at γ = 0, equivalent to running ICA.329

We run cPCA for 100 α between 0 to 1000. These are the default values of α in the code of (10). We plotted the choice330

with the highest silhouette score, which was achieved for α = 26.2.331

We run PCPCA for 100 evenly spaced γ′ values between 0 and 0.9 ⋅ 270
135 . 270 and 135 are the number of samples in the332

foreground and background datasets, respectively. Such choices of γ′ are in accordance with the setup in (12) and are sufficient333

to find the highest silhouette score. The best score was obtained when γ′ = 0.9 ⋅ 270
135 . In (12), the authors take a further step to334

scale the probabilistic contrastive principal components, before calculating the silhouette score. The silhouette score obtained335

after this additional step is 0.450.336
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6.3.2. Corrupted MNIST data with discrete strength. For the hyperparameters of cICA, we choose the number of components to be 30,337

which explains 85% of the variance. We then choose r, ℓ for cICA and ℓ for proportional cICA. We order the eigenvalues of338

Mat(κ4(y)) and Mat(κ4(x)) according to their absolute values and plot parts of the ordered eigenvalues in Figure S7. Based339

on these plots, we choose r = 51 and r + ℓ = 192. The absolute values of the foreground-to-background cumulant ratios for the340

background patterns a1, . . . , ar range from 6.7 × 10−3 to 16.341
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Fig. S7. Absolute values of eigenvalues of Mat(κ4(y)) (left) and Mat(κ4(x)) (right).

We fix the random seed to be 0 for cICA. For cPCA, we run experiments for 100 α values between 0 and 1000 and choose342

α = 6.6 that achieves the highest silhouette score when plotting the mixed images of digits 0 and 1 using their inner product343

with the first two patterns. We run PCPCA for 100 evenly spaced γ′ between 0 and 0.9 and choose the γ′ = 0.9 with the344

highest silhouette score when plotting with the first two patterns.345

We also include ICA with r = 192 to illustrate that cICA performs significantly better than ICA.346

7. Additional numerical experiment347

7.1. Single cell RNA data. We study the single-cell RNA sequencing data from (13). The foreground data points are gene348

expressions of bone marrow mononuclear cells from patients with acute myeloid leukemia before and after they received a349

stem-cell transplant; the background dataset contains gene expression measurements of healthy people. The foreground dataset350

includes 7525 pre-transplant patients and 4874 post-transplant patients, while the background dataset consists of 4457 healthy351

patients. Each sample contains gene expression measurements of bone marrow mononuclear cells. We preprocess the data by352

log-transforming and subsetting to the 500 most variable genes, in accordance with previous analyses on these data (12–14).353

For cICA, the absolute values of the foreground-to-background cumulant ratios for the background patterns a1, . . . , ar range354

from 1.5 × 10−4 to 564. The projection plots of cICA, proportional cICA, cPCA, and PCPCA are shown in Figure S8. The355

method cPCA has the highest silhouette score (0.451), followed by proportional cICA (0.402), then cICA (0.344), then PCPCA356

(0.164). We also run ICA to the foreground dataset and it has silhouette score 0.202 for comparison with cICA.357

For the hyperparameters of cICA and proportional cICA, we choose the number of components to be 30 which explains358

54.5% of the variance. We then choose r, ℓ for cICA and ℓ for proportional cICA. We order the eigenvalues of Mat(κ4(y)) and359

Mat(κ4(x)) according to their absolute values and plot out parts of the ranked eigenvalues in Figure S9. We choose r = 53 and360

r + ℓ = 116.361

We fix the random seed to be 0 for cICA and ICA. For ICA, we run the HTD algorithm for r = 116.362

For proportional cICA, we run the algorithm for 100 log-evenly spaces γ between 0 and 106. The highest silhouette score is363

0.402, obtained when γ = 0.50.364

For cPCA, we plot the first two cPCA components. As above, we run cPCA using 100 α between 0 to 1000, the default365

values from (10). The highest silhouette score is 0.457, obtained when α = 3.5.366

We run PCPCA for 100 evenly spaced γ′ between 0 and 0.9 ⋅ 12399
4457 , in accordance with (12). The numbers 12399 and367

4457 are the sample sizes of the foreground and background datasets, respectively. In accordance with the experiment in368

(10), we run PCPCA with 4 components. The best silhouette score over any γ′ and any pair of probabilistic contrastive369

principal components is 0.164, obtained when γ′ = 0.41 using the third and fourth components. If we normalize the probabilistic370

contrastive principal components and then calculate the silhouette score, the score is 0.184.371

There are three reasons why the silhouette score for cICA methods is suboptimal compared to that of cPCA.372

1. Due to the computational cost of forming large tensors, cICA methods is applied to the PCA transformed dataset using373

the top 30 principal components, which explains only 54.5% of the variance. Consequently, the clustering quality is374

expected to be lower than when cPCA is applied to the complete dataset.375

2. Our cICA methods return patterns that only exist in the foreground while cPCA learns patterns that are more prominent376

in the foreground than in the background.377
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Fig. S8. Dimensionality reduction of the single-cell RNA sequencing data from (13) via (a) cICA (b) proportional cICA (c) cPCA (d) PCPCA (e) ICA.
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Fig. S9. Absolute values of eigenvalues of Mat(κ4(y)) (left) and Mat(κ4(x)) (right).

3. The patterns learned by cICA do not have any relation while cPCA returns perfectly orthogonal patterns. The patterns378

from cICA may enjoy better intrepretability but produce suboptimal plots than cPCA.379

To illustrate these arguments, we generate plots using cPCA and cICA as follows. We apply cPCA to the PCA transformed380

dataset using the top 30 principal components. The plot obtained using the top two cPCA components is shown in Figure S10(a).381

The silhouette score achieved is 0.434. For cICA, we apply proportional cICA to the PCA transformed dataset using the same382

hyperparameters as above. We select the top foreground pattern b and the top background pattern a ranked according to [10].383

We then use b, a−⟨a,b⟩b
∥a−⟨a,b⟩b∥as directions to plot the data. The plot is shown in S10(b). The silhouette score obtained is 0.428,384

almost the same as that of cPCA.385
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Fig. S10. (a) cPCA for the dataset obtained from the top 30 PCA components (b) Proportional cICA plot projected to the top foreground and the top background pattern.
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